Fuentes Conmutadas Teoría General
|
|
|
- Valentín Murillo Hidalgo
- hace 7 años
- Vistas:
Transcripción
1 Fuentes Conmutadas Teoría General Principios de Operación Una fuente de energía DC es regulada usualmente por algún tipo de circuito de retroalimentación que sensa cualquier cambio en la salida DC y efectúa algún tipo de control para compensar este cambio y mantener una salida constante. En un regulador monolítico la salida de voltaje es comparada con un voltaje de referencia y pasada por un amplificador de error. La salida del amplificador de error es usada para controlar el elemento modulador, un transistor que opera variando su punto de operación entre su región lineal o sus dos puntos de corte y saturación. Cuando el transistor de paso opera en su región intermedia de corte y saturación,el regulador opera como un regulador lineal, mientras que al operar en corte y saturación este opera como un regulador de switching. Los modos de corte y saturación son de mayor eficiencia que la operación en la parte lineal por lo que la fuente conmutada tiene mayor eficiencia que la de operación lineal con las fuentes reguladas con solo transformador, puente de diodos, y filtro, se tiene el problema de la eficiencia,donde esta es del orden del 55%, lo que significa que un 45% de esta potencia es disipada en sus elementos para mantener la regulación. En 1977 se introduce la regulación en la modalidad de conmutación Con las fuentes de conmutación se viene a mejorar el factor de eficiencia hasta en un 95% teóricamente, por lo cual su implementación en equipos de cómputo y video.
2 Esto debido a que en la etapa de corte existe un gran voltaje a través del transistor pero baja corriente a través de él, mientras que en la etapa de saturación en transistor tiene bajo voltaje pero alta corriente a través de el. En ambos casos se tiene poca pérdida de potencia y la mayoría de la potencia de entrada es obtenida a la salida y la eficiencia es alta. Oscilador Entrada Volt Ref. + - Logica Control Elemento Control Muestreo Salida En un circuito real un porcentaje cercano al 5% de la potencia de entrada se pierde durante la conmutación del transistor, este efecto puede ser minimizado bajando la frecuencia de conmutación pero esto puede afectar
3 notablemente los modos de conmutación y se requiera una bobina de dimensiones elevadas El proceso de regulación es debido a la variación del ciclo de trabajo que controla la corriente promedio que es transferida a la carga, de modo que a medida que la corriente aumenta cuando la carga lo solicita la regulación se va a mantener. Además de la gran eficiencia de operación se tiene la posibilidad de tener voltajes de salida flexibles ofreciendo voltajes menores y mayores u opuestos al voltaje de entrada. Arquitectura y Bloques Funcionales Cada uno de los modos de operación es construido con los mismos bloques funcionales: *Elemento Conmutador El elemento conmutador usualmente es un transistor bipolar (puede ser oscilador Y S Q Q2 R Q1 - + R Comparador
4 FET), que trabaja en las dos zonas de mayor eficacia,en corte y saturación,lo que trae un ventaja extra, y es que el transistor solo posee tiempos muy cortos durante los transientes en que puede dar una disipación mayor y por lo tanto un posible disipador no será de dimensiones grandes. Por la operación en corte y saturación esto lleva indudablemente a utilizar una onda de tipo cuadrada en la base del transistor para que estos transientes sean lo más rápido posibles. El oscilador genera las señales usadas para el control de la condición de corte-saturación del transistor de conmutación, su frecuencia de oscilación puede ser variada al dimensionar un capacitor externo y sus valores comunes se dan en un rango de 100 Hz a 100 KHz. *El Transistor de Conmutación Es una configuración de tipo Darlington con el colector y emisor llevados a salidas para máxima flexibilidad de diseño.debe tener como característica la capacidad de conmutación de hasta el orden de los 100KHz *Comparador Diferencial De Alta Ganancia Tiene un modo común en una de sus entradas con un voltaje de referencia definido según el integrado, su función es la de hacer una comparación con esta referencia y la señal que es realimentada de la salida *Sistemas de Control La función principal del controles la de proporcionar una señal a la entrada del transistor que se pueda modificar para que pueda provocar que el nivel de rizado a la salida del inductor sea mayor o menor dependiendo de si se disminuye o aumenta la carga respectivamente.
5 Controladores de frecuencia Fija En los controladores de frecuencia fija, el transistor es excitado a una frecuencia constante que es aportada por un oscilador independiente La ejecución de regulación se hace variando la anchura de los pulsos ante una frecuencia constante, en este caso se determina que el tiempo de conducción del transistor no sea mayor del 50% del periodo para evitar oscilaciones no deseables Controladores de frecuencia Variable Estos no poseen un oscilador independiente, donde la frecuencia toma su valor en función de la carga, el nivel de rizado en la salida del covertidor se regula directamente con la frecuencia,un controlador regulado por voltaje bien conocido es el LM566 (VCO) *Diodo de Conmutación Este diodo permite o inhibe el paso de corriente a través de la bobina y el capacitor,esto ante cambios definidos en el sistema de conmutación y debe tener la capacidad de alta conmutación. Otra función de este diodo es la de evitar corrientes inversas que puedan dirigirse hacia el transistor de conmutación. Análisis de Topologías Operación Reductora: Tienen una alta eficiencia,su salida será siempre inferior a la de entrada como en la mayoría de los reguladores de fuentes de potencia, este tipo de circuito tiende a crear una cantidad de ruido relativamente grande en la línea de entrada, debido a que la conmutación es rápida y la corriente que sale de la fuente es la corriente media del inductor,sin embargo a la salida del circuito el ruido que se detecta es muy bajo dado que el condensador se carga en ambas partes del ciclo, el inductor se calcula para una corriente de
6 pico determinada, pero la corriente de salida debe calcularse que se mantenga en un nivel no mayor de la mitad del valor pico que pasa por el inductor. Esta se ilustra en la figura siguiente. Cuando el interruptor esta cerrado, el voltaje de entrada es aplicado al filtro LC, haciendo que la corriente sobre la bobina y el capacitor se incremente. Cuando el interruptor se abre la energía almacenada en el inductor mantiene el flujo de corriente a la carga a través del diodo. Este filtro LC va a presentar ante la carga un promedio de voltaje aproximadamente constante. Vin IL Vout Configuración Reductora Las formas de onda del Voltaje en el punto a y la corriente en el capacitor se muestran a continuación:
7 Va On Off On Ic Ipk/ 2 Asumamos que antes que se cierre la operación del transistor de conmutación se tiene la condición de : Il = 0, Cuando se cierra el interruptor se tiene Va = Vin Vsat donde Vsat es el voltaje de saturación del interruptor A la vez se tiene que el diodo es inversamente polarizado y la corriente a través de la bobina esta dada por la taza: di/dt = Vl / L =(Vin-Vsat-Vout)/L La corriente a través del inductor continua incrementándose a la razón de que el interruptor se mantenga cerrado y el inductor no se sature.
8 Asumiendo que la salida de voltaje de un ciclo completo no cambia significativamente, esta taza puede considerarse constante y la corriente a través del inductor en cualquier instante será : Il = (Vin Vsat-Vout)*t / L Al fin del tiempo cerrado, el interruptor se abrirá, pero la corriente en el inductor no variará instantáneamente y se generará un voltaje que polarizará el diodo. El Voltaje en el punto a será: Va = -Vd La corriente a través del inductor ahora decae a la razón de : Di / dt = Vl / L= - (Vd+Vout) / L La corriente a través del inductor en cualquier momento, mientras en interruptor esta abierto será: Definiremos la suma de corrientes : IL = Ic + Iout Il=Ipk- (Vd+Vout)*t / L Tomando sus derivadas o cambios equivalentes en el tiempo IL = Ic + Iout Pero Iout es constante, entonces: IL = Ic
9 Por lo que concluimos en los tiempos de on y off de interruptor: Sii, IL = Iout Entonces, Ic = 0 Sii, IL = 0 Entonces, Ic = - Iout Para que el voltaje a través del capacitor se mantenga constante, la energía adquirida del inductor debe ser igual a la energía robada al capacitor. Analizando la forma de onda de la corriente en el capacitor podemos definir que el voltaje en el capacitor es el área bajo la curva (integral de la señal) y que este es el voltaje que se encuentra el paralelo con la carga. Operación Inversora Este circuito suministra una tensión negativa a partir de una tensión positiva en la entrada, produce un nivel de ruido relativamente alto en la línea de alimentación, pero tiene la ventaja que se pueden obtener tensiones de salida mayores que las tensiones de entrada. Vin Vout IL Ic Configuración Inversora
10 Durante el ciclo de carga (interruptor cerrado), el inductor se alimenta solo del potencial de entrada y al igual que la configuración elevadora la entrada no aporta contribución a la carga ni a la corriente de salida. En la figura anterior se muestra la operación inversora.para analizar asumiremos la condición que es verdadera antes de cerrar el interruptor Il = 0 Cuando se cierra el interruptor el voltaje en el punto a será: Va = Vin Vsat Donde Vsat es el voltaje de saturación del interruptor. En este momento el diodo esta inversamente polarizado y la corriente a través del inductor se incrementa a la razón de : dil/dt = Vl/L = (Vin-Vsat)/L La corriente en el inductor en cualquier instante será: IL = (Vin-Vsat)*t / L Y se tiene que Ipk es igual a IL evaluado en el tiempo donde se abre el interruptor Cuando el interruptor se abre, el inductor genera un voltaje que polariza al diodo y el voltaje en el punto a será: Va = Vout Vd La corriente en el inductor decae a una razón de : dil/dt = VL/L= (Vout-Vd)/L La corriente en el inductor y el diodo en cualquier instante será : IL = Ipk + VL/L * t
11 Operación Elevadora Llamada de tipo reforzador o paralelo, este circuito logra en la salida de la fuente un voltaje mayor que el voltaje en la entrada y con igual polaridad, en comparación con el circuito reductor su nivel de ruido interno es menor pero introduce mayor ruido en la salida. Durante el ciclo de carga (interruptor cerrado)el inductor se alimenta directamente del potencial de entrada y el diodo esta inversamente polarizado y no permite que el inductor supla de energía a la carga, lo que hace que no se entregue energía a la carga ni al capacitor, es por esto que son más representativos los picos de corriente en la carga Vin IL Vout IC Configuración Elevadora La figura anterior ilustra esta configuración. Al igual que antes empezaremos por analizar en el momento en que el interruptor se encuentra cerrado IL = 0 Cuando el interruptor se cierra el voltaje en el punto a será :
12 Va = Vsat Donde Vsat es el voltaje de saturación en el interruptor A la vez el diodo es inversamente polarizado y la corriente a través del inductor se incrementa a la razón de : DIL/dt = Vl/L=(Vin-Vsat)/L Esto hasta que el interruptor se encuentre cerrado y el inductor no se sature, se tendrá la corriente en cualquier instante: IL = (Vin-Vsat)*t / L Y se tiene que Ipk es igual a IL evaluado en el tiempo donde se abre el interruptor. Cuando el interruptor se abre, el inductor genera un voltaje que polariza el diodo y el voltaje en el punto a será: Va=Vout + Vd, La corriente a través del inductor decaerá a la razón de : dil/dt=vl/l= (Vin-Vd-Vout)/L La corriente en el inductor y el diodo en cualquier instante mientras el interruptor este abierto será: IL= Ipk-(Vout+Vd-Vin)*t / L
13 Bibliografía: National Semiconductor.Aplication Notes J,spencer,P,Wilson.Regulated Sources W,Serrano.Fuentes Reguladas de Conmutación.1985
Qué es una fuente de alimentación? Una fuente de alimentación es un dispositivo que convierte la corriente eléctrica alterna a corriente continua.
Su Historia Qué es una fuente de alimentación? Una fuente de alimentación es un dispositivo que convierte la corriente eléctrica alterna a corriente continua. También llamadas rectificadores, transformadores,
ESTRUCTURA BÁSICA Y FUNCIONAMIENTO
ESTRUCTURA BÁSICA Y FUNCIONAMIENTO La estructura básica de una fuente conmutada o switching consta de 4 partes, como se muestra en la figura 1: Rectificador y filtro de entrada. El elemento activo conmutador.
CONVERTIDOR ELEVADOR Y CONVERTIDOR REDUCTOR
CAPITUO 2 CONVERTIDOR EEVADOR Y CONVERTIDOR REDUCTOR 2.1 Introducción os convertidores de CD-CD son circuitos electrónicos de potencia que transforman un voltaje de corriente continua en otro nivel de
FUENTES DE ALIMENTACIÓN CONMUTADAS
FUENTE ALIMENTACIÓN LINEAL FUENTE DE ALIMENTACIÓN CONMUTADA Las fuentes conmutadas son de circuitos relativamente complejos, pero podemos siempre diferenciar cuatro bloques constructivos básicos: 1) En
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Fuente de tensión continua regulada
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING)
REGULADOR DE TENSION CONMUTADO (FUENTE SWITCHING) Cátedra de Dispositivos Electrónicos Departamento de Electricidad, Electrónica y Computación (DEEC) FACET - UNT Fuente de tensión continua regulada R S
Generador Solar de Energía Eléctrica a 200W CAPÍTULO III. Convertidores CD-CD
Generador olar de Energía Eléctrica a 00W CAPÍTU III Convertidores CD-CD 3.1.- Introducción En muchas aplicaciones industriales se requiere convertir un voltaje fijo de una fuente de cd en un voltaje variable
FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI
FUENTES DE ALIMENTACION CONMUTADA INSTRUCTOR RAUL ROJAS REATEGUI CLASIFICACIÓN 1. SEGÚN LA TECNOLOGIA UTILIZADA a. Fuente Lineal. Utilizan un transformador para disminuir el voltaje de línea (120 o 220V).
DISEÑO DE UNA FUENTE CONMUTADA PARA PC
DISEÑO DE UNA FUENTE CONMUTADA PARA PC Se pretende diseñar una fuente para uso en una computadora personal que entregue voltajes de salida de 5 y, usando como topología una fuente de conmutada del tipo
ELECTRÓNICA DE POTENCIA
Ejercicio 1. ELECTRÓNICA DE POTENCIA Curso 2018 En la Figura 1 se muestra el circuito de un convertidor reductor (buck) con las siguientes características: V i =150V, f s = 150KHz, la potencia P 0 varía
CARGADOR DE CELULAR. Figura 08. Diagrama en bloque del cargador.
DIAGRAMA DE BLOQUES CARGADOR DE CELULAR Figura 08. Diagrama en bloque del cargador. TRANSFORMADOR Primeramente por medio del transformador de acople (diagrama de bloques) se reduce el voltaje de línea
Introducción. Diagrama de Bloques.
Temario. 4.- Fuentes de Alimentación Conmutadas. 4h 4.1.- Introducción. 4.2.- Modelos de transformadores. 4.3.- Convertidor flyback. 4.4.- Convertidor forward. 4.5.- Convertidor push-pull. 4.6.- Convertidores
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO
5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta
Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por
Contenido. Capítulo 2 Semiconductores 26
ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión
LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4
ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO
Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida.
Reguladores por conmutación. Configuraciones con transformador de aislamiento. Operación en el régimen de corriente no interrumpida. I-Regulador "de retroceso" ( flyback ). a)configuración. b)circuito
CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO. funciona, así, como la obtención de valores de dispositivos del CFP para su
CAPITULO 3 PROPUESTA DEL DISEÑO DEL CIRCUITO 3.1 INTRODUCCIÓN En este capítulo se verá el diseño del circuito, las diferentes etapas en las que funciona, así, como la obtención de valores de dispositivos
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos
INDICE Prologo Capitulo 1. Introducción Capitulo 2. Semiconductores Capitulo 3. Teoría de los diodos Capitulo 4. Circulitos de diodos
INDICE Prologo XIII Capitulo 1. Introducción 1-1 los tres tipos de formulas 1 1-2 aproximación 4 1-3 fuentes de tensión 6 1-4 fuentes de corriente 9 1-5 teorema de Thevenin 13 1-6 teorema de Norton 18
Configuraciones "entrelazadas" o "en contrafase".
Configuraciones "entrelazadas" o "en contrafase". Cuando se opera con corrientes elevadas, y/o se desea minimizar el rizado, es posible llegar a requerir filtros cuyos componentes resultan inaceptables
CAPITULO XIII RECTIFICADORES CON FILTROS
CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:
2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.
1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.
Las fuentes de alimentación
Las fuentes de alimentación La mayoría de los circuitos electrónicos trabajan con corriente continua. Lo normal es que ésta sea suministrada por pilas o baterías, pero para las situaciones en la que esto
Las Fuentes de Alimentación Conmutadas (Switching). Tutorial de Electrónica
Las Fuentes de Alimentación Conmutadas (Switching). Tutorial de Electrónica Introducción Las fuentes de alimentación convencionales usan transformadores operando a 50 Hz y que suelen ser inconvenientes,
Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua.
Convertidor DC-DC. Gerardo Fonseca, Josemario Chávez, Néstor Meléndez, Jadher Báez. Universidad Nacional de Ingeniería, Managua, Nicaragua. [email protected] [email protected] [email protected]
INDICE Capítulo 1. Principios del Modelado y Procesamiento de Señal Capítulo 2. Amplificadores Operacionales
INDICE Prólogo XI Prólogo a la Edición en Español XIV Capítulo 1. Principios del Modelado y Procesamiento de Señal 1 1.1. Sinergia hombre computador 3 1.2. Características tensión corriente y transferencia
Debido al estrés al que son sometidos los dispositivos semiconductores y en especial los
Conmutación uave Capítulo 5 53 Capítulo 5 Conmutación uave Debido al estrés al que son sometidos los dispositivos semiconductores y en especial los transistores MOFET, se necesitan técnicas que hagan que
Fuente reguladas Guía 10 1/7
1/7 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 10 Fuentes reguladas Problemas básicos 1. Calcule la regulación de línea para una fuente cuya tensión de salida cambia de 12 a 12,5 Volt cuando la entrada
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos
Convertidores y Fuentes Modulares
Convertidores y Fuentes Modulares Capítulo 3 13 Capítulo 3 Convertidores y Fuentes Modulares Las topologías modulares son ejemplo del uso de los convertidores al ser configuradas como se muestra en el
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Unidad 6 - Ing. Juan Jesús Luna Amplificadores Operacionales
Electrónica 5 EM ITS Lorenzo Massa Pagina 1 Amplificadores Operacionales 1 Introducción: El Amplificador Operacional (en adelante, Operacional) es un tipo de circuito integrado que se usa en un sinfín
ÍNDICE Capítulo 1: Introducción Capítulo 2: Corrección del Factor de Potencia Capítulo 3: Convertidores y Fuentes Modulares
ÍNDICE Capítulo 1: Introducción... 1 1.1 Antecedentes... 1 1.2 Planteamiento del Problema... 2 1.3 Objetivos de la Tesis... 3 1.4 Justificación... 3 Capítulo 2: Corrección del Factor de Potencia... 5 2.1
INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc
INDICE Prólogo XI Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de 1 cc 1.1. Introducción 1 1.2. Magnitudes más relevantes del circuito electrónico 2 1.2.1. Tensión eléctrica 2 1.2.2. Intensidad
Electrónica de Potencia
Electrónica de Potencia Dra. Victoria Serrano II Semestre 2018 Electrónica de Potencia 1 Introducción Objetivo de la Electrónica de Potencia Procesar el flujo de energía eléctrica de forma óptima para
AMPLIFICADORES DE POTENCIA- CLASIFICACION A ; AB ; B y C
AMPLIFICADORES DE POTENCIA- CLASIFICACION A ; AB ; B y C Al estudiar Amplificación con un transistor partimos de la premisa que la etapa estaba polarizada ( I C y V CE de C.C.) en el centro de la recta
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales
"#$%&'()*&+,-#.+#'(/$0%1+*1(%(%( 4*50*.%.,%"(&%#,16.+#*"( 71%'(%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 5: Amplificadores Operacionales APARTADOS OBLIGATORIOS DE LA PRÁCTICA "#$%&'()*+,-.-*-##(
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL
AVERÍAS DE UNA FUENTE DE ALIMENTACIÓN LINEAL Tensión de red baja (V1) Tensión de red alta (V1) Cable de red en circuito abierto Fusible de entrada o c.a. en circuito abierto Interruptor en circuito abierto
INDICE 1. Dioses Semiconductores 2. Aplicaciones de Diodos 3. Transistores Bipolares de Unión 4. Polarización de DC BJT
INDICE Prefacio XVII Agradecimientos XXI 1. Dioses Semiconductores 1 1.1. Introducción 1 1.2. El diodo ideal 1 1.3. Materiales semiconductores 3 1.4. Niveles de energía 6 1.5. Materiales extrínsecos: tipo
Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales
"#$%&'()*&+,-#.+#'(/$0%+*(%(&#%( *0*.%.,%"(&%#,.+#*"( %'(%(8%#.*&*9:'(&%#,.+#'(( Prácticas - PSPICE Práctica : Amplificadores Operacionales PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica : Amplificadores
6. Circuitos de Polarización para BJT. Electrónica Analógica
6. Circuitos de Polarización para BJT Electrónica Analógica Temas: El punto de operación en cd Circuitos de Polarización para BJT Polarización por medio de un divisor de voltaje Otros métodos de polarización
INDICE 1. Sistemas Electrónicos 2. Circuitos Lineales 3. Amplificadores Operacionales 4. Diodos
INDICE 1. Sistemas Electrónicos 1 1.1. Información y señales 2 1.2. Espectro de frecuencia de las señales 3 1.3. Señales analógicas y digitales 5 1.4. Amplificación y filtrado 7 1.5. Comunicaciones 9 1.6.
DEPARTAMENTO DE ELECTRÓNICA Y AUTOMATICA ELECTRÓNICA ANALÓGICA I. Carrera: INGENIERÍA EN ELECTRÓNICA. Programa Analítico de: Año : 2009
DEPARTAMENTO DE ELECTRÓNICA Y AUTOMATICA Universidad Nacional de San Juan Facultad de Ingeniería Carrera: INGENIERÍA EN ELECTRÓNICA Programa Analítico de: ELECTRÓNICA ANALÓGICA I Año : 2009 Ing. Carlos
UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática
ELECTRÓNICA ANALÓGICA(1302). ÁREA DE CONOCIMIENTO: ARQUITECTURA DE LAS COMPUTADORAS CRÉDITOS: 7 HORAS TEÓRICAS ASIGNADAS A LA SEMANA: 2 HORAS PRÁCTICAS ASIGNADAS A LA SEMANA: 2 PROGRAMAS EDUCATIVOS EN
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
EL TRANSISTOR COMO CONMUTADOR INTRODUCCIÓN
INTRODUCCIÓN 1.- EL INTERRUPTOR A TRANSISTOR Un circuito básico a transistor como el ilustrado en la Figura 1 a), conforma un circuito inversor; es decir que su salida es de bajo nivel cuando la señal
Aplicaciones Fuentes Switching
Aplicaciones Fuentes Switching 1 ÍNDICE Aplicaciones de fuentes controladas Elevador con un LM 78S40 Reductor con un TL-497 Conversor de 12 Vdc a 220 Vac Cargador de Baterías Fuente para PC UPS On-Line
ELECTRÓNICA INDUSTRIAL FUENTES DE ALIMENTACIÓN CONMUTADAS
ELECTRÓNICA INDUSTRIAL FUENTES DE ALIMENTACIÓN CONMUTADAS 6 B ELECTRÓNICA 2011 1. INTRODUCCIÓN Todo dispositivo electrónico requiere de una fuente de alimentación para su funcionamiento. Si bien bajos
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES
TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES
Las fuentes de alimentación se pueden clasificar de forma general en dos grandes grupos: las fuentes lineales y las conmutadas.
1. Introducción Una fuente de alimentación es un dispositivo que convierte la corriente alterna, proveniente de la red eléctrica, en corriente continua. Este proceso de transformación se realiza para adecuar
Fuentes de alimentación. Lineales
Fuentes de alimentación Lineales Regulador integrado 7805 Diagrama en bloques Mediciones Diagrama en bloques Fuente de alimentación lineal Fuente no regulada ni estabilizada Fuente regulada y estabilizada
El símbolo y estructura del SCR se muestran en la figura. Este proceso regenerativo se repite hasta saturar Q1 y Q2 causando el encendido del SCR.
Reguladores (cont.) Para finalizar el tema teórico de los tiristores presentamos un resumen. SCR- Símbolo, estructura y funcionamiento básico. El SCR (Rectificador controlado de silicio) es un dispositivo
Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del D 2 T 1. v 1 - i S N 1 N 3 N 2 D 3.
CONOCATORIA EXTRAORDINARIA CURSO 009/0: 0 de Septiembre de 00 Problema Se desea diseñar una fuente de alimentación conmutada con las especificaciones y la topología del convertidor CC/CC que se muestra
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 1 1.1. Rectificador de media onda... 3 1.2. Rectificador de onda completa... 4 1.3. Rectificador de media onda con condensador... 5 2.
Inversores. Conversión de continua en alterna
Inversores Conversión de continua en alterna Introducción Introducción Los inversores son circuitos que convierten la corriente continua en corriente alterna. Los inversores transfieren potencia desde
LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 6
FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1. TEMA PRÁCTICA N 6 CONVERSORES DC-DC CONFIGURACIONES BÁSICAS: REDUCTOR
Electrónica de Potencia Introducción. Mgs. Ing. Damian Eleazar Sal y Rosas Celi
Electrónica de Potencia Introducción Indice Rol de le Electrónica de potencia Electrónica de Potencia vs Electrónica Lineal Análisis de un circuito electrónico de potencia Aplicaciones Proyectos 2009 UNI
Los voltajes de operación del convertidor CD/CD que se necesitaron fueron: desde
Capítulo 3 3 Diseño del convertidor CD/CD 3.1 Condiciones del convertidor CD/CD Los voltajes de operación del convertidor CD/CD que se necesitaron fueron: desde 145.14 V dc hasta 70.0 V dc como voltajes
Características de esta familia
Familia lógica RTL RTL son las iniciales de las palabras inglesas Resistor, Transistor, Logic. Es decir es una familia cuyas puertas se construyen con resistencias y transistores. Fue la primera familia
Aplicaciones del diodo
Tema 3 Aplicaciones del diodo Índice 1. Rectificación de ondas... 53 1.1. Rectificador de media onda... 55 1.2. Rectificador de onda completa... 56 1.3. Rectificador de media onda con condensador... 57
lntroduccion a las fuentes Conmutadas Figura 1
1.1. Fuentes Conmutadas lntroduccion a las fuentes Conmutadas Figura 1 aplicaciones industriales y comerciales. Las fuentes conmutadas fueron desarrolladas inicialmente para aplicaciones militares y aerospaciales
INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES
INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE ESTUDIOS PROFESIONALES ESCUELA:SUPERIOR DE INGENIERIA MECANICA Y ELECTRICA CARRERA:INGENIERO EN COMUNICACIONES Y ELECTRONICA ESPECIALIDAD:
ELECTRONICA GENERAL Y APLICADA-FACULTAD DE INGENIERIA. UNCuyo - Ing. Roberto HAARTH
Página1 OBJETIVOS Comprender el concepto de rectificación y filtrado de una fuente de alimentación de energía eléctrica. Reconocer las características y parámetros de rectificación de media onda y onda
Universidad Nacional de Quilmes Electrónica Analógica I. Diodo: Circuitos rectificadores
1 Diodo: Circuitos rectificadores Una aplicación típica de los diodos es en circuitos rectificadores los cuales permiten convertir una tensión alterna en una tensión continua. Los circuitos rectificadores
Fuentes Reguladas Lineales
Fuentes Reguladas ineales 1 Fuentes Reguladas Clasificaciones. Fuentes reguladas Discretas Fuentes reguladas ntegradas Reguladores Series Reguladores en paralelo 2 1 Fuentes Reguladas Diagrama en bloque
Introducción al control de fuentes conmutadas.
Introducción al control de fuentes conmutadas. En una fuente conmutada ideal la tensión de salida es una función de la tensión de entrada y del valor del ciclo de trabajo definido. En la práctica existirán
Realimentación. Electrónica Analógica II. Bioingeniería
Realimentación Electrónica Analógica II. Bioingeniería Concepto: La realimentación consiste en devolver parte de la salida de un sistema a la entrada. La realimentación es la técnica habitual en los sistemas
EJERCICIO 1 EJERCICIO 2
EJERCICIO 1 Se miden 0 Volt. en los terminales del diodo de la fig. siguiente, la tensión de la fuente indica +5 Volt. respecto de masa. Qué está mal en el circuito? EJERCICIO 2 En la fig. siguiente la
2 Electrónica Analógica TEMA II. Electrónica Analógica
TEMA II Electrónica Analógica Electrónica II 2007 1 2 Electrónica Analógica 2.1 Amplificadores Operacionales. 2.2 Aplicaciones de los Amplificadores Operacionales. 2.3 Filtros. 2.4 Transistores. 2 1 2.4
Electrónica Analógica
Prácticas de Electrónica Analógica 2º urso de Ingeniería de Telecomunicación Universidad de Zaragoza urso 1999 / 2000 PATIA 1. Amplificador operacional. Etapas básicas. Entramos en esta sesión en contacto
CUESTIONES DEL TEMA - IV
ema 5: Osciladores de elajación... Presentación En el tema 5 se tratan distintos circuitos que producen en su salida ondas de tipo cuadradas, triangulares, pulso, etc. : a) Se analiza el comportamiento
PROBLEMAS SOBRE FUENTES REGULADAS
UNIVERSIDAD NACIONAL DE ROSARIO FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA III PROBLEMAS SOBRE FUENTES REGULADAS Autores: Francisco S. López, Federico
Es interesante destacar que la tensión en la carga es UNIDIRECCIONAL (positiva) pero adolece de defectos:
Rectificación 1 RECTIFICADORES DE MEDIA ONDA: En la Figura 1 se representa un RECTIFICADOR DE MEDIA ONDA, en el cual un diodo se interpone entre la fuente y la carga.cuando la Tensión de la fuente es positiva,
S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 31
S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 31 2.4 Convertidor de Subida de Voltaje. 2.4.1. Topología Boost. La topología Boost es un convertidor de potencia, el cual genera una tensión
INVERSORES RESONANTES
3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,
TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN
TEMA 4 EL TRANSISTOR BIPOLAR DE UNIÓN TTEEMAA 44: :: EEll ttrraanssi issttoorr bbi ippoollaarr dee uunióón 11 1) En un transistor bipolar de unión la zona de semiconductor menos dopada corresponde a, a)
6. Amplificadores Operacionales
9//0. Amplificadores Operacionales F. Hugo Ramírez Leyva Cubículo Instituto de Electrónica y Mecatrónica [email protected] Octubre 0 Amplificadores Operacionales El A.O. ideal tiene: Ganancia infinita
CEDEHP Profesor: Agustín Solís M. Medición y análisis de componentes y circuitos electrónicos CUESTIONARIO NRO. 2. El Transistor
CUESTIONARIO NRO. 2 El Transistor 1.- El transistor es un dispositivo electrónico semiconductor que cumple funciones de? R: amplificador, oscilador, conmutador o rectificador. 2.- El término "transistor"
INVERSORES DC AC. Reconocer los inversores dc ac mediante investigación para conocer sus formas de ondas.
INVERSORES DC AC RESUMEN: Los inversores transforman la corriente continua en corriente alterna mediante el switcheo de transistores, esto se aplica en el control de la magnitud y la frecuencia de la señal
Electrónica Analógica. Conferencia #4 Funcionamiento y características del transistor bipolar.
Electrónica Analógica Conferencia #4 Funcionamiento y características del transistor bipolar. Transistor bipolar. Principio de funcionamiento. Modelos y representación del BJT. Modos de operación. Bibliografía:
INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos
Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos INDICE Circuitos discretos e integrados Señales analógicas y digitales Notación 3 Resumen
Capítulo 1. Historia y fundamentos físicos de un transistor.
Capítulo 1. Historia y fundamentos físicos de un transistor. 1.1 Fundamentos del transistor TBJ 1.1.1 Corrientes en un transistor de unión o TBJ El transistor bipolar de juntura, o TBJ, es un dispositivo
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA
EJEMPLOS DE CIRCUITOS LABORATORIO ELECTRÓNICA ANALÓGICA Rev: 1.0 (Mayo/2016) Autor: Unai Hernández ([email protected]) Contenido 1. Circuitos con resistencias... 3 1.1 Experimentar con asociaciones de
Examen de Electrónica Industrial. 29 de junio de 2005
Examen de Electrónica Industrial. 29 de junio de 25 Tiempo: 2 horas. Problema (2 puntos) En el circuito de la figura: a) Obtener el valor medio de la tensión en la carga (en la fuente de corriente) Mientras
