Pauta 1 : Sucesiones y Continuidad
|
|
|
- Luis Miguel Montero Soriano
- hace 7 años
- Vistas:
Transcripción
1 MA Cálculo Diferencial e Integral Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Función por partes] Pauta 1 : Sucesiones y Continuidad 8 de agosto del 2017 Sea a R \ {0, 1} y b R. Consideremos la función f : R R definida por: sin((1 a)x) x si x < 0 f(x) = b(x a) 2 si 0 x 1 si 1 < x sin(a(x 1)) log(x) a) Estudie la continuidad de f en los intervalos (, 0), (0, 1) y (1, ). b) Que condiciones deben satisfacer a y b para que f sea continua en 0? c) Que condiciones deben satisfacer a y b para que f sea continua en 1? d) Que condiciones deben satisfacer a y b para que f sea continua? P2. [Continuidad por ε δ] Demuestre que f(x) = x 2 es continua mediante la definición ε δ 1
2 P3. [Sucesiones y Subsucesiones] a) Considere la siguiente sucesión definida por recurrencia: { ns n 1 s n = sin(n)s n 2 si n es impar si n es par Con condiciones iniciales s 0 = s 1 = 1. Demuestre que s n tiene una subsucesión convergente. b) Sea f : [a, b] R una función continua y (x n ) una sucesión tal que f(x n ) ȳ. Demuestre que x [a, b] tal que f( x) = y. Obs: Ojo que (x n ) no necesariamente es convergente. c) Sea x n una sucesión tal que las subsucesiones x 2n, x 2n+1 y x 3n son convergentes. Demuestre que x n es convergente. Solución 1. a) b) c) Notemos que las sucesiones podrían converger a distintos limites, es decir, solamente sabemos que x 2n l 1, x 2n+1 l 2 y x 3n l 3. A pesar de lo anterior sabemos que x 6n = x 3(2n) l 3 pues es subsucesión de x 3n, por otro lado x 6n = x 2(3n) l 1 pues es subsucesión de x 2n, por unicidad del limite concluimos que l 1 = l 3. De manera análoga sabemos que x 6n+3 = x 3(2n+1) l 3 debido a que es subsucesión de x 3n y x 6n+3 = x 2(3n+1)+1 l 2 pues es subsucesión de x 2n+1, nuevamente la unicidad del limite nos da que l 2 = l 3. Por lo anterior definamos l = l 1 = l 2 = l 3, donde l será nuestro candidato a limite de x n. Sea ε > 0, como x 2n l tenemos que existe N 1 tal que para todo n N par se verifica x 2n l ε. Como x 2n+1 l también existe N impar tal que para todo n N impar se verifica x 2n+1 l ε. Tomemos n 0 2 máx{n par, N impar }, luego para todo n n 0 tenemos los siguientes casos: Si n es impar, entonces n = 2k + 1, de esto k = n 1 2 n 2 máx{n par, N impar } N impar y por tanto: x n l = x 2k+1 l ε Si n es par, entonces n = 2k, de esto k = n 2 máx{n par, N impar } N par y por tanto: x n l = x 2k l ε Es decir hemos concluido que ε, n 0 N tal que n n 0 tenemos x n l ε es decir x n l. 2
3 P4. [Propiedades que implican continuidad] a) Sea f : R + R una función que para todo x, y R + satisface f(xy) = f(x) + f(y). Demuestre que si f es continua en 1, entonces lo es en todo su dominio. b) Sea f : R R una función Lipchitz, esto es, que existe L > 0 tal que para todo x, y R se verifica: Demuestre que f es continua. f(x) f(y) L x y c) Suponga que f y g son dos funciones tal que g es continua en 0, g(0) = 0 y f(x) g(x). Demuestre que f es continua en 0. Solución 2. a) b) Sea x R y (x n ) R una sucesión tal que x n x, como f es Lipchitz f(x n ) f( x) L x n x lím f(x n ) f( x) L lím x n x 0 lím f(x n ) f( x) 0 De esto lím f(x n ) f( x) = 0 y por tanto f(x n ) f( x) lo que nos dice que f es continua. c) Notemos primero que evaluando la desigualdad en 0, tenemos que f(0) g(0) = 0. Luego dada una sucesión (x n ) Dom(f) tal que x n 0 notemos que: f(x n ) g(x n ) lím f(x n ) lím g(x n ) /Continuidad de x x lím f(x n ) lím g(x n ) /Continuidad de g lím f(x n ) g(0) lím f(x n ) 0 De esto f(x n ) 0 = f(0) lo que nos da la continuidad de f en 0. 3
4 P5. [Una función aditiva] Sea f : R R una función continua y aditiva, esto es: x, y R f(x + y) = f(x) + f(y) Demuestre que α R tal que f(x) = αx. Hint: Demuestre que f(x) = xf(1) para x N, Z, Q y R (en ese orden). Solución 3. Sea x N, luego: f(x) = f( ) x veces = f(1) + f( ) x 1 veces. = f(1) + + f(1) x veces = xf(1) Sea x Z, si x > 0 no hay problema pues estamos en el caso anterior. Si x = 0, entonces: Por tanto f(0) = 0f(1). Si x < 0, entonces x > 0, luego: f(0) = f(0 + 0) = f(0) + f(0) = f(0) = 0 0 = f(0) = f(x + ( x)) = f(x) + f( x) = f(x) xf(1) De lo anterior f(x) = xf(1). Si x Q, entonces tenemos que x = a b con a, b Z y b 0, luego: Que era lo pedido. af(1) = f(a) = f( a b b) = bf(a b ) = f(a b ) = Notemos que hasta ahora no hemos ocupado la continuidad, la ocuparemos de la siguiente manera, si x R podemos aproximar x por una sucesión de racionales, esto es, existe (s n ) Q tal que s n x. Luego: f(s n ) = s n f(1) lím f(s n ) = f(1) lím s n f(x) = xf(1) /Continuidad de f Tomando α = f(1) concluimos que f(x) = αx. 4
5 P6. [Extra - Completitud] Una sucesión (x n ) se dirá de Cauchy si ε > 0, N N tal que n, m N se verifica x n x + m ε. El objetivo de este problema será probar que una sucesión es de Cauchy si y sólo si es convergente. a) Demuestre que una sucesión convergente es de Cauchy. b) Demuestre que las sucesiones de Cauchy son acotadas. c) Demuestre que si una sucesión de Cauchy tiene subsucesión convergente, entonces la sucesión converge. d) Concluya que las sucesiones de Cauchy son convergentes. Solución 4. a) Si x n es convergente, entonces x n l para algún l R. Sea ε > 0, luego para ε 2 n N, x n l ε. Luego si m, n > N, entonces: > 0 existe N tal que De donde tenemos que la sucesión es Cauchy. x n x m = (x n l) + (l x m ) x n l + x m l ε/2 ε/2 b) Como la sucesión es Cauchy, para ε = 1 existe N tal que para todo n, m N: ε x n x m 1 Ocupando la triangular inversa tenemos que x n x m x n x m 1. Tomando m = N tenemos que para todo n N se verifica x n x N + 1. Notemos que lo anterior acotó CASI todos los elementos de la sucesión. Luego para todo n tenemos que se verifica: x n máx{ x 0, x 1,..., x N 1, x N + 1} De donde vemos que la sucesión es acotada. Obs: Podriamos haber tomado ε igual a cualquier cosa y la demostración funciona igual. c) Supongamos ahora que (x n ) es Cauchy y tiene subsucesión convergente, es decir (x f(n) ) l para alguna subsucesión. Queremos probar que ε > 0, N tal que para n N se tiene x n l ε. Sea ε > 0, como la sucesión es Cauchy existe M 1 tal que para todo n, m M se verifica x n x m ε/2, además como (x f(n) ) l podemos encontrar M 2 tal que n M 2 se verifica x (fn) l ε/2. Por último sea n máx{m 1, M 2 } y k tal que f(k) máx{m 1, M 2 }: Es decir x n l. x n l = x n x f(k) + x f(k) l x n x f(k) + x f(k) l ε/2 ε/2 ε d) Notemos que si tenemos una sucesión de Cauchy, por la parte b) sabemos que es acotada. Por el teorema de Bolzano-Weierstrass tiene una subsucesión convergente y por la parte c) concluimos que converge. 5
1. Continuidad. Universidad de Chile Subsucesiones. Ingeniería Matemática
1. Continuidad 1.1. Subsucesiones Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Importante: Visita regularmente http://www.dim.uchile.cl/~calculo.
Guía Semana 1 1. RESUMEN. Universidad de Chile. Ingeniería Matemática
1. RESUMEN FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo en Varias Variables 08-1 Guía Semana 1 Geometría. Dados x, y Ê N, su producto interno canónico (o producto punto) es x
sup si A no es acotado.
Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y
Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Continuidad
1 Universidad Nacional Autónoma de México Licenciatura en Economía Cálculo Diferencial e Integral Continuidad Hasta hace muy poco se creía que una función continua siempre tenía una primera derivada cuyo
Pauta 11 : Conjuntos Infinitos
MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino P1. [Varios de numerabilidad] a) Considere el conjunto Pauta 11 : Conjuntos Infinitos 2 de junio del 2017 C = {..., 16,
Nociones topológicas elementales de R n
Nociones topológicas elementales de R n 1 Espacio vectorial R n Consideremos el conunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fio. Los elementos de R n, que llamamos
Espacios métricos completos
5 Espacios métricos completos Comenzamos introduciendo las sucesiones de Cauchy, que relacionamos con las sucesiones convergentes. En el caso de que coincidan, se trata de un espacio métrico completo.
2.3. Aplicaciones del teorema de Baire a espacios de Banach
40 CAPÍTULO. COMPLETITUD Y CATEGORÍAS.3. Aplicaciones del teorema de Baire a espacios de Banach En esta sección, veremos algunas aplicaciones del teorema de Baire a espacios vectoriales normados. En particular,
sup si A no es acotado.
Capítulo 5 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la
Sucesiones en R n. Ejemplos.-Considerando el espacio R 2 sea la sucesión {x k } 1 dada por x k = ( k, 1 k) podemos listar como sigue:
Sucesiones en R n Definición. Una sucesión en R n es cualquier lista infinita de vectores en R n x, x,..., x,... algunos de los cuales o todos ellos pueden coincidir entre si. Dada una sucesión x, x,...,
1. Sucesiones. Sucesiones. Compacidad. {( 1) n, n N} = { 1, 1, 1, 1, 1, 1,... } es una sucesión de elementos del conjunto { 1, 1}, y la familia
1.. De una manera informal, una sucesión es una familia de elementos de un conjunto, ordenada según el índice de los números naturales. Los elementos pueden estar repetidos o no. Por ejemplo la familia
CÁLCULO DIFERENCIAL EN VARIAS VARIABLES
UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS CÁLCULO DIFERENCIAL EN VARIAS VARIABLES Ramón Bruzual Marisela Domínguez Caracas, Venezuela Julio
1.3. El teorema de los valores intermedios
Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 07-2 Importante: Visita regularmente http://www.dim.uchile.cl/calculo. Ahí encontrarás
SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente.
ANÁLISIS MATEMÁTICO BÁSICO. SUBSUCESIONES. Las sucesiones convergentes son acotadas, como hemos visto. El recíproco no es cierto. No toda sucesión acotada es covergente. Ejemplo.. Sea la sucesión (x n
Elementos Básicos de Análisis Funcional en. Dr. Oldemar Rodríguez Rojas
Elementos Básicos de Análisis Funcional en Análisis Numérico Dr. Oldemar Rodríguez Rojas Agosto 2008 Contents 1 Elementos Básicos de Análisis Funcional 2 1.1 Espacios normados...........................
Tema 1 EL TEOREMA DE PEANO. 1 Compacidad en C(I; R N ): el Teorema de Ascoli-
Tema 1 EL TEOREMA DE PEANO En este tema vamos a probar que bajo la hipótesis de ser f continua en un entorno del punto (, y 0 ), se puede garantizar la existencia, aunque no necesariamente la unicidad,
Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas.
Continuidad y Continuidad Uniforme. Aplicaciones lineales continuas. Beatriz Porras 1 Límites Las definiciones de ĺımite de funciones de varias variables son similares a las de los ĺımites de funciones
Tema 7: Funciones de una variable. Límites y continuidad.
Tema 7: Funciones de una variable. Límites y continuidad. José M. Salazar Noviembre de 2016 Tema 7: Funciones de una variable. Límites y continuidad. Lección 8. Funciones de una variable. Límites y continuidad.
El espacio euclideano
Capítulo 1 El espacio euclideano 1. Definiciones básicas El espacio Euclideano, denotado por R n, está definido por el conjunto (1.1) R n = {x = (x 1, x 2,..., x n ) : x i R}. Es decir, R n es efectivamente
El Teorema de Baire Rodrigo Vargas
El Teorema de Baire Rodrigo Vargas Teorema 1 (Baire). Sea M un espacio métrico completo. Toda intersección numerable de abiertos densos es un subconjunto denso de M. Definición 1. Sea M un espacio métrico.
Práctica 5 -Completitud, Continuidad uniforme y Compacidad- A. Completitud
Cálculo Avanzado Primer Cuatrimestre de 2011 Práctica 5 -Completitud, Continuidad uniforme y Compacidad- Cuanto más sólido, bien definido y espléndido es el edificio erigido por el entendimiento, más imperioso
Nociones topológicas elementales de R n
Nociones topológicas elementales de R n Cálculo II (2004) * 1. Espacio vectorial R n Consideremos el conjunto R n de las n-uplas de números reales, donde n es un número natural arbitrario fijo. Los elementos
La propiedad de compacidad
En un artículo anterior hemos obtenido dos importantes resultados relacionados con la continuidad de una función en un intervalo: el teorema de los ceros de Bolzano y el teorema del valor intermedio. De
diám A = x,y A d(x,y) si A es acotado si A no es acotado. {d(x,y) : x,y A}
Capítulo 6 Teoría de Baire 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y la
Cálculo diferencial e integral I. Eleonora Catsigeras
Cálculo diferencial e integral I Eleonora Catsigeras Universidad de la República Montevideo, Uruguay 01 de setiembre de 2011. CLASE 14 complementaria. Sobre sucesiones y conjuntos en la recta real. Sucesiones
1. La topología inducida.
PRACTICO 4. ESPACIOS METRICOS. 1. La topología inducida. Sea (M, d) un espacio métrico. La bola abierta de centro x y radio r es el conjunto B(x; r) = {y M : d(x, y) < r}. La bola cerrada de centro x y
Sucesiones. Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como
Universidad de la República Facultad de Ingeniería IMERL Sucesiones Curso Cálculo 1 2008 Una sucesión de números reales es una tira, o una lista, de nḿeros reales que generalmente denotamos como a 1, a
Conceptos clave para el examen de Análisis Matemático
Conceptos clave para el examen de Análisis Matemático 1. Axioma de Dedekind. Existencia de supremos e ínfimos. Sucesiones monótonas y acotadas. Axioma de Dedekind: Dados dos subconjuntos no vacíos A y
Semana 09 [1/28] Sucesiones. 29 de abril de Sucesiones
Semana 09 [1/28] 29 de abril de 2007 Semana 09 [2/28] Definición Sucesión Una sucesión real es una función: f : N R n f (n) Observaciones Para distinguir a una sucesión de las demás funciones, se ocupará
1. Convergencia en medida
FACULTAD CS. FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE MA3801 Teoría de la Medida. Semestre 2009-02 Profesor: Jaime San Martín Auxiliares: Andrés Fielbaum y Cristóbal Guzmán Clase auxiliar 7 21 de Septiembre
Continuidad. 5.1 Continuidad en un punto
Capítulo 5 Continuidad 5.1 Continuidad en un punto Definición 5.1.1 (Aplicación continua en un punto). Sean (X, τ) e (Y, τ ) dos espacios topológicos, y sea f : X Y una aplicación entre ellos. Diremos
Espacios completos. 8.1 Sucesiones de Cauchy
Capítulo 8 Espacios completos 8.1 Sucesiones de Cauchy Definición 8.1.1 (Sucesión de Cauchy). Diremos que una sucesión (x n ) n=1 en un espacio métrico (X, d) es de Cauchy si para todo ε > 0 existe un
Espacios compactos. 7.1 Espacios compactos
58 Capítulo 7 Espacios compactos 7.1 Espacios compactos Definición 7.1.1 (Recubrimiento). Sea X un conjunto y sea S X. Un recubrimiento de S es una familia A = {A i } i I de subconjuntos de X tales que
Teoremas de Convergencia
Capítulo 24 Teoremas de Convergencia El teorema de la convergencia monótona (Lema 21.3) establece ciertas condiciones sobre una sucesión de funciones medibles para que se puedan permutar los símbolos y
Espacios compactos. Capítulo Cubiertas. En este capítulo estudiaremos el concepto de compacidad en un espacio métrico.
Capítulo 3 Espacios compactos 1. Cubiertas En este capítulo estudiaremos el concepto de compacidad en un espacio métrico. Definición 3.1. Sea (X, d) un espacio métrico y A X. Una cubierta de A es una familia
TEMA 4. Sucesiones de números reales.
Cálculo I E.T.S.I. de Minas Curso 2008-2009 TEMA 4. Sucesiones de números reales. Definición. Una sucesión de números reales es una aplicación que a cada número natural n 1leasignaunúnico número real x
Pauta 14 : Divisores del Cero, Cuerpos y Complejos
MA1101-5 Introducción al Álgebra Profesor: Mauricio Telias Auxiliar: Arturo Merino Pauta 14 : Divisores del Cero, Cuerpos y Complejos de julio del 017 P1. [Anillos Booleanos] Sea (A, +, ) un anillo booleano,
Espacios compactos. Se pretenden alcanzar las siguientes competencias específicas:
4 Espacios compactos En este capítulo introducimos los conceptos de espacio y subespacio compacto. Se estudian propiedades de los conjuntos compactos, así como relación entre la compacidad y las funciones
Análisis Matemático I
Análisis Matemático I Funciones Implícitas Francisco Montalvo Curso 2011/12 Índice 1. Teorema de existencia de Funciones Implícitas 1 1.1. Punto fijo.............................. 1 1.2. Planteamiento............................
El espacio de funciones continuas
Capítulo 4 El espacio de funciones continuas 1. Funciones continuas En este capítulo estudiaremos las funciones continuas en un espacio métrico, además de espacios métricos formados por funciones continuas.
Conjuntos Abiertos y Cerrados
Conjuntos Abiertos y Cerrados 1. (a) En la prueba de que la intersección de una colección finita de conjuntos abiertos es un conjunto abierto, dónde se uso la hipótesis de que la colección es finita? 2.
1 Continuidad uniforme
Centro de Matemática Facultad de Ciencias Universidad de la República Introducción a la Topología Curso 2016 NOTAS 6: ESPACIOS MÉTRICOS II: COMPLETITUD 1 Continuidad uniforme Denición. Sean (M, d 1 ) y
Tema 1: Repaso de conocimientos previos. Funciones elementales y sus gráficas. Límites. Continuidad.
Tema 1: Repaso de conocimientos previos.... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Outline Relaciones trigonométricas 1 Relaciones trigonométricas 2 3 4 5 6 Outline Relaciones
Sucesiones y convergencia
Capítulo 2 Sucesiones y convergencia 1. Definiciones Una de las ideas fundamentales del análisis es la de límite; en particular, el límite de una sucesión. En este capítulo estudiaremos la convergencia
iii. Q es denso en F (para todo par x, y F tal que x < y, existe un r Q tal que x < r < y); v. Para todo a R tal que a < 1, lím n a n = 0.
LOS TEOREMAS CENTRALES DEL CÁLCULO Y LA COMPLETITUD DE LA RECTA NUMÉRICA: UNA REFLEXIÓN SOBRE LA IMPOSIBILIDAD DE FORMULAR EL CÁLCULO EN EL CONJUNTO DE LOS NÚMEROS RACIONALES JORGE M. LÓPEZ Resumen. En
: k }, es decir. 2 k. k=0
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San
2. El Teorema del Valor Medio
2.24 45 2. El Teorema del Valor Medio Comenzaremos esta sección recordando dos versiones del teorema del valor medido para funciones de 1-variable y por tanto ya conocidas: 2.22 Sea f : [a, b] R R una
RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO
RESUMEN ELEMENTOS DE GEOMETRÍA DIFERENCIAL Y TOPOLOGÍA CURSO 2008-09 En este resumen no se puede escribir o añadir nada, ni por delante, ni por detrás. En todo caso, sólo se permite subrayar lo que se
Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias.
Teorema de Existencia y Unicidad Ecuaciones Diferenciales Ordinarias. Dr. Rafael Morones E. Dept. de Matemáticas ITAM August 5, 2002 1 Contenido 1 Preliminares. 3 1.1 Sucesiones...............................
TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable. Domingo Pestana Galván José Manuel Rodríguez García
TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 TEMA
Mariano Suárez-Alvarez. 7 de mayo, Límites superiores y límites inferiores
ĺımsup y ĺıminf Mariano Suárez-Alvarez 7 de mayo, 2013 1.1. Definiciones 1. Límites superiores y límites inferiores 1.1. Sea (a n ) n 1 una sucesión de números reales que es acotada superiormente. Si para
El Teorema de Contracción de Mapas
El Teorema de Contracción de Mapas Carlos Gamez Escuela de Matemática Facultad de Ciencias Naturales y Matemática Universidad de El Salvador Presentación Beamer Esquema Introducción Contracción Punto Fijo,
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. Conjuntos invariantes
ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 8. CONJUNTOS INVARIANTES Y CONJUNTOS LÍMITE. ESTABILIDAD POR EL MÉTODO DE LIAPUNOV. Conjuntos invariantes 1. Definición. Se dice que un conjunto D Ω es positivamente
10. Series de potencias
FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 7-2 Basado en el apunte del curso Cálculo (2do semestre), de Roberto Cominetti, Martín Matamala y Jorge San
Sucesiones Cuasi-Cauchy *
Sucesiones Cuasi-Cauchy * David Burton y Jhon Coleman ** Las sucesiones de Cauchy son más que sucesiones en la cual existe un elemento de la sucesión, tal que, para los términos sucesivos la distancia
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES.
SUCESIONES DE CAUCHY DE NÚMEROS RACIONALES La construcción más habitual, es la que se utiliza los límites las sucesiones de Cauchy del cuerpo Donde Una sucesión, se dice que es de CAUCHY si satisface:
Análisis Real: Primer Curso. Ricardo A. Sáenz
Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 16 Capítulo 2.
Práctico Preparación del Examen
Cálculo Diferencial e Integral (Áreas Tecnológicas) Segundo Semestre 4 Universidad de la República Práctico Preparación del Examen Límites, funciones y continuidad Ejercicio Sea log(+x ) f(x) =, si x
Análisis Real Apuntes de clase. Preparado por JC Trujillo O.
Análisis Real Apuntes de clase Preparado por JC Trujillo O. Agosto - Diciembre 2013 Índice general 1 Números Reales 5 1 Clase 1-2013/07/29................................. 5 2 Los números reales..................................
x i x io V no V n+1 ; y no x = x io x V n+1. Por tanto x i x V n+1 + V n+1 V n,
COMPLETITUD La noción de completitud que vamos a definir, es una generalización de la conocida en espacios métricos. Como en este caso, el hecho de saber que un cierto conjunto de un e.v.t. es completo
1. Espacios topológicos compactos.
PRACTICO 6. COMPACIDAD. 1. Espacios topológicos compactos. Definición 1 Un cubrimiento de un conjunto X es una familia de subconjuntos de X cuya unión da X. Un cubrimiento de un espacio es abierto si cada
CARACTERIZACIONES DE LA COMPLETITUD DE R
CARACTERIZACIONES DE LA COMPLETITUD DE R 1 Definición 1. Diremos que un cuerpo ordenado K es arquimediano si lím n n que decir que N, visto como subconjunto de K, no está acotado en K. = 0 en K. Esto es
Clase Auxiliar N o 2 : Continuidad Profesor: Jorge San Martín Auxiliares: Francisco Jiménez - Ramiro Villagra
Resumen Clase Auxiliar N o : Continuidad Profesor: Jorge San Martín Auxiliares: Francisco Jiménez - Ramiro Villagra Teorema de los valores intermedios (TVI) 1. Para f( x) = 0: sea f : [a, b] R continua
Taller de Cálculo Avanzado - Segundo Cuatrimestre de Práctica 3
Taller de Cálculo Avanzado - Segundo Cuatrimestre de 2008 Práctica 3 Topología. Decir qué propiedades (abierto, cerrado, acotado) tienen los siguientes conjuntos. (a) Q. (b) N. (c) {x R : x > 0}. (d) (0,
Funciones de Variable Real
Tema 1 Funciones de Variable Real 1.1. La Recta Real Los números reales se pueden ordenar como los puntos de una recta. Los enteros positivos {1, 2, 3, 4,...} que surgen al contar, se llaman números naturales
c n sucesiones numéricas. Si n a n. } k=1 dos subsucesiones de la sucesión { } k=1 = an. Entonces, si lím = L se tiene que lím a n = L.
147 Matemáticas 1 : Cálculo diferencial en IR Anexo 4: Demostraciones Sucesiones de números Series numéricas Demostración de: Proposición 241 de la página 138 Proposición 241- Sean { }, { } y { } c n sucesiones
2 Obtener el término general de las siguientes sucesiones definidas por recurrencia: y0 = a > 0
CÁLCULO NUMÉRICO I (Ejercicios Temas 1 y ) 1 Cuáles de los siguientes algoritmos son finitos? (a) Cálculo del producto de dos números enteros. (b) Cálculo de la división de dos números enteros. (c) Cálculo
Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García. UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior
INGENIERÍAS TÉCNICAS INDUSTRIALES TEORIA DE CÁLCULO I Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento
F-ESPACIOS. 1.- Introducción
F-ESPACIOS 1.- Introducción Recordemos que un subconjunto A de un espacio topológico X se llama diseminado o raro (nowhere dense en ingés) si A=. Un subconjunto que se pueda escribir como unión numerable
Reconocer y utilizar las propiedades sencillas de la topología métrica.
3 Funciones continuas De entre todas las aplicaciones que pueden definirse entre dos espacios métrico, las aplicaciones continuas ocupan un papel preponderante. Su estudio es fundamental no sólo en topología,
Departamento de Matemáticas
MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales
Espacios conexos. 6.1 Conexos
Capítulo 6 Espacios conexos 6.1 Conexos Definición 6.1.1 (Conjuntos separados). Dado un espacio topológico (X, τ) y dos subconjuntos A, B X, diremos que A y B están separados si A B = A B = Es evidente
Normas Equivalentes. Espacios Normados de Dimensión Finita
Capítulo 2 Normas Equivalentes. Espacios Normados de Dimensión Finita Dos son los resultados más importantes que, sobre la equivalencia de normas, veremos en este capítulo. El primero de ellos establece
Teorema del Valor Medio
Tema 6 Teorema del Valor Medio Abordamos en este tema el estudio del resultado más importante del cálculo diferencial en una variable, el Teorema del Valor Medio, debido al matemático italo-francés Joseph
Continuidad 2º Bachillerato. materiales Editorial SM
Continuidad 2º Bachillerato materiales Editorial SM Continuidad en un punto: primera aproximación Estatura medida cada 5 años: hay grandes saltos entre cada punto y el siguiente. Estatura medida cada año:
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
TEORÍA DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 1: Funciones de una variable real. Domingo Pestana Galván José Manuel Rodríguez García
TEORÍA DE CÁLCULO I Para Grados en Ingeniería Capítulo 1: Funciones de una variable real Domingo Pestana Galván José Manuel Rodríguez García Figuras realizadas con Arturo de Pablo Martínez 1 CAPÍTULO 1.
Espacios conexos. Capítulo Conexidad
Capítulo 5 Espacios conexos 1. Conexidad En este capítulo exploraremos el concepto de conexidad en un espacio métrico, y estudiaremos algunas de sus aplicaciones. Definición 5.1. Decimos que el espacio
Series. Capítulo Introducción. Definición 4.1 Sea (x n ) n=1 una sucesión de números reales. Para cada n N. S n = x k = x 1 + x x n.
Capítulo 4 Series 4 Introducción Definición 4 Sea (x n ) n= una sucesión de números reales Para cada n N definimos n S n = x k = x + x 2 + + x n k= La sucesión (S n ) n se conoce como la serie infinita
CÁLCULO NUMÉRICO I (Tema 2 - Relación 1)
CÁLCULO NUMÉRICO I (Tema - Relación 1) 1 Cuáles de los siguientes algoritmos son finitos? a) Cálculo del producto de dos números enteros. b) Cálculo de la división de dos números enteros. c) Cálculo de
Práctica 1. Continuidad Ejercicios resueltos
Práctica 1. Continuidad Ejercicios resueltos 1. Estudiar la continuidad de los campos escalares definidos por f(x, y) = x y x 2 + y 2 g(x, y) = x2 y x 2 + y 4 h(x, y) = x y2 x 2 + y 4 para todo (x, y)
Espacios Metricos, Compacidad y Completez
46 CAPÍTULO 3. Espacios Metricos, Compacidad y Completez Una sucesión en un conjunto X es una función N X. Si la función se llama f entonces para sucesiones acostumbra denotarse {f(n)} n N en cambio de
Espacios Métricos. 25 de octubre de 2011
Espacios Métricos 25 de octubre de 2011 1. Nociones de espacios métricos Llamaremos espacio métrico a un conjunto X con una función d : X X R 0 (que llamaremos la métrica de X) que verifica las siguientes
