TIPOS DE SEMICONDUCTORES



Documentos relacionados
J-FET de canal n J-FET (Transistor de efecto campo de unión) J-FET de canal p FET

Transistores de Efecto de Campo


TRANSISTORES DE EFECTO DE CAMPO

CAPÍTULO COMPONENTES EL DIODO SEMICONDUCTORES: 1.1 INTRODUCCIÓN

Instituto Tecnológico de Saltillo Ing.Electronica UNIDAD IV TRANSISTORES ING.CHRISTIAN ALDACO GLZ

TEMA 9 REPASO SEMICONDUCTORES

COMPONENTES DE CIRCUITOS ELECTRÓNICOS EMPLEADOS EN TECNOLOGÍA

1. INTRODUCCIÓN A LOS CONVERTIDORES CA/CC

TEMA 5 TRANSISTORES DE EFECTO DE CAMPO

TRANSISTORES DE EFECTO DE CAMPO

El transistor de potencia

Electrónica de potencia e instalaciones eléctricas: Semiconductores: diodo, transistor y tiristor

TEMARIO ESPECÍFICO - TEMA DEMO TECNOLOGÍA TEMA 60: CIRCUITOS DE CONMUTACIÓN CON TRANSISTORES. APLICACIONES CARACTERÍSTICAS

TRANSISTORES DE EFECTO DE CAMPO

EL42A - Circuitos Electrónicos

El motor eléctrico. Física. Liceo integrado de zipaquira MOTOR ELECTRICO

MODULO Nº12 TRANSISTORES MOSFET

CAPI TULO 2 TRANSISTORES MOSFET INTRODUCCIÓN Historia del Transistor

F.A. (Rectificación).

Capítulo I. Convertidores de CA-CD y CD-CA

MODULO Nº6 TIRISTORES UNIDIRECCIONALES

Transistores de efecto de campo (npn) drenador. base. fuente. emisor BJT dispositivo de 3 terminales

Introducción. 3.1 Modelo del Transistor

PROBLEMAS DE ELECTRÓNICA ANALÓGICA (Transistores C.C.)

UNIVERSIDAD DE MATANZAS CAMILO CIENFUEGOS FACULTAD DE INGENIERIAS QUÍMICA MECANICA. MONOGRAFÍA DISPOSITIVOS SEMICONDUCTORES BÁSICOS

AMPLIFICACION EN POTENCIA. Figura 1. Estructura Básica de un Convertidor DC/AC.

TEMA 7 TRANSISTORES DE EFECTO CAMPO

LOS TRANSISTORES DE EFECTO DE CAMPO

Electricidad y electrónica - Diplomado

Apuntes: Energía Solar Fotovoltaica (ESF) Módulo 2: PRINCIPIO FÍSICO DE LOS DISPOSITIVOS FOTOVOLTAICOS

TEMA 5 Fuentes de corriente y cargas activas

A.1. El diodo. Caracterización del diodo

Universidad Tecnológica de Puebla. Electrónica I Manual de asignatura. Carrera de Electricidad y Electrónica Industrial.

Tutorial de Electrónica

Tema 3: Semiconductores

2. Electrónica Conductores y Aislantes. Conductores.

SEMICONDUCTORES PREGUNTAS

Diodos: caracterización y aplicación en circuitos rectificadores

POLARIZACION DEL TRANSISTOR DE EFECTO DE CAMPO DE UNION J-FET (JUNTION FIELD EFFECT TRANSISTOR)

2.1. MOSFET de Enriquecimiento 2.2. MOSFET de Empobrecimiento

TEMA 9 Cicloconvertidores

UNIVERSIDAD ABIERTA INTERAMERICANA Facultad de Tecnología Informática

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011

Figura Nº 4.1 (a) Circuito MOS de canal n con Carga de Deplexion (b) Disposición como Circuito Integrado CI

Componentes: RESISTENCIAS FIJAS

El transistor. Estructura física y aplicaciones. Asier Ibeas Hernández PID_

ELECTRICIDAD BÁSICA EN REPARACIÓN DE AUTOMÓVILES

SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO

Al finalizar esta asignatura el estudiante estará en condiciones de:

INTRODUCCIÓN A LOS TRANSISTORES

MOSFET DE ENRIQUECIMIENTO

ELECTRONICA DE POTENCIA

Teoría de bandas de energía en los cristales

TEGNOLOGIA ELECTROMECÀNICA V SEMESTRE

LÓGICA CON DIODOS. Los primeros circuitos Lógicos se construyeron usando Diodos, pero no eran integrados. El funcionamiento era el siguiente: V CC

DIODOS CIRCUITOS CON DIODOS SEMICONDUCTORES

INTRODUCCION A PRÁCTICAS DE AMPLIFICADORES CON TRANSISTOR BIPOLAR, DISEÑADOS CON PARAMETROS HIBRIDOS

Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.

Electromagnetismo Estado Solido II 1 de 7

6. Amplificadores con transistores

Índice 1 NOCIONES BÁSICAS DE FUNCIONAMIENTO 2 COMPONENTES DE UNA INSTALACIÓN SOLAR FOTOVOLTAICA 3 TIPO DE INSTALACIONES

UNIDAD 2: ELECTRÓNICA ANALÓGICA

Transistor de Juntura de Efecto de Campo Es unipolar con canal tipo n o tipo p Dopado Gate > dopado canal

TEMA 8 Reguladores e interruptores estáticos de alterna

CAPÍTULO 1 FUNDAMENTOS DE LA FÍSICA DE LOS SEMICONDUCTORES

En la 3ª entrega de este trabajo nos centraremos en la relación entre magnitudes eléctricas, hecho que explica la famosa Ley de Ohm.

Unidad didáctica: Electrónica Básica

BIBLIOGRAFÍA 2.1 INTRODUCCIÓN 2.1 INTRODUCCIÓN (2) Tema 3: EL TRANSISTOR FET

TRANSISTORES BIPOLARES DE UNION BJT SANCHEZ MORONTA, M. - UGALDE OLEA, U.

FUENTES DE ALIMENTACION

IG = 0 A ID = IS. ID = k (VGS - VT) 2

TEMA V TEORÍA DE CUADRIPOLOS LINEALES Introducción Parámetros de Impedancia a circuito abierto.

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

TEMA ELECTRÓNICA 3º ESO TECNOLOGÍA

P9: ENSAYO DE VACÍO Y CORTOCIRCUITO DEL TRANSFORMADOR MONOFÁSICO FUNDAMENTOS DE TECNOLOGÍA ELÉCTRICA

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

ELECTRÓNICA 4º ESO IES JJLOZANO Curso

UNIDAD 3 EL DIODO SEMICONDUCTOR Y MODELOS

Práctica 5. Circuitos digitales: control del nivel de un depósito

Objetivo.- Al finalizar el tema, el estudiante será capaz de clasificar a los materiales según sus propiedades eléctricas.

Medida de magnitudes mecánicas

Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001

Tutorial de Electrónica

Seminario de Electricidad Básica

Líneas Equipotenciales

Temas de electricidad II

UNIDAD 4 TRANSISTORES BJT Y JFET

TEMA 4 CONDENSADORES

Carrera: ECC Participantes Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos. Academias de Ingeniería

1. Introducción. Universidad de Cantabria 1-1

Arquitectura de Redes y Comunicaciones

MICRÓFONOS. Conceptos básicos

TEMA 2. CIRCUITOS ELÉCTRICOS.

cuando el dispositivo está en funcionamiento activo.

A.3. El transistor unipolar

UNIDAD TEMATICA 6: CIRCUITOS PARA APLICACIONES ESPECIALES

TEMA 1: Propiedades de los semiconductores 1.1

Transcripción:

ntroducción a la Tecnología de los Computadores. T1-1 ntroducción a la Tecnología de los Computadores. T1-2 TEMA 1. Principios Básicos de Semiconductores CONDUCTORES, ASLANTES Y SEMCONDUCTORES. Una de las propiedades características de los materiales es la resistividad (ρ), que es la inversa de la conductividad (σ). En función del valor de dicha propiedad los materiales son: SEMCONDUCTORES ρ 10-2 CONDUCTORES ρ 10-6 ASLANTES ρ 10 4 DFERENCAS PRNCPALES SEMCONDUCTORES Tienen dos tipos de portadores Huecos Electrones Al aumentar la temperatura disminuye la resistividad CONDUCTORES Tienen un solo tipo de portador Electrones Al aumentar la temperatura aumenta la resistividad Los SEMCONDUCTORES son sólidos cristalinos con enlaces covalentes. Podemos distinguir: Elementales: Si, Ge. Compuestos: AsGa, PGa, OZn, y otras aleaciones. La estructura cristalina del Si, base de la inteligencia artificial, es idéntica a la del C, base de la inteligencia humana ; se trata de la estructura diamantina: Representación tridimensional Representación bidimensional Para estudiar las propiedades de conducción de los semiconductores se utiliza el modelo de Bandas de Energía, basado en la aglomeración de los diferentes niveles de energía de los orbitales atómicos. Se forman tres tipos de bandas: Banda de Electrones de alencia (B) Banda de Electrones de Conducción (BC) Banda Prohibida (BP) o gap La distancia que define la periodicidad de una red cristalina, determina el grado de interacción entre los electrones de los orbitales externos (valencia), de modo que las Bandas de Conducción y de alencia pueden adoptar diferentes configuraciones, dependiendo si quedan separadas por una Banda Prohibida, o si resultan solapadas, así como por el grado de ocupación de los orbitales contenidos en cada capa. Así, si la distancia de cristalización se correspondiese con r 1 las Bandas de Conducción y de alencia quedarían separadas por una Banda Prohibida de valor E g (energía del gap). Estos materiales no son conductores de modo espontáneo. Si el valor de E g supera los 2 e, el material tiende a ser aislante, ya que resultará difícil conseguir que algún electrón de la Banda de alencia salte a la Banda de Conducción para que facilite el movimiento de carga.

ntroducción a la Tecnología de los Computadores. T1-3 ntroducción a la Tecnología de los Computadores. T1-4 TPOS DE SEMCONDUCTORES Si la Banda de Conducción y la Banda de alencia quedan separadas por distancias energéticas de alrededor de 1 e, como es el caso del Si, algunos estados en la Banda de Conducción pueden ser ocupados por electrones que hayan saltado desde la Banda de alencia (esto significa que se han salido de su posición de enlace habitual, o que han roto el enlace), y en este caso el material será débilmente conductor, pero sólo a partir de una cierta temperatura, ya que a 0ºK el material será totalmente aislante. A este tipo de materiales se le denomina Semiconductores. Los Semiconductores ntrínsecos son aquellos materiales que presentan una conductividad nula a bajas temperaturas, pero que pueden ser débilmente conductores a temperatura ambiente, debido a que la anchura de la Banda Prohibida no es elevada, lo que hace que la resistividad del material, con ser alta no sea infinita. Algunos de los semiconductores intrínsecos, o en estado de máxima pureza más conocidos son el Silicio (Si), el Germanio (Ge), o el Arseniuro de Galio (AsGa). La tabla muestra la anchura de la Banda Prohibida para los mismos. En este tipo de semiconductor existe un equilibrio entre el número de electrones libres (n) y el número de huecos libres (p) Si la distancia de cristalización corresponde al caso r 2 da lugar a un solapamiento de la Banda de Conducción y la de alencia, y en este caso los electrones pueden moverse con total libertad, pues romper un enlace para conducir requiere muy poca energía, y a temperaturas fuera de los 0ºK esto sucede de forma natural. Este material es de tipo Conductor. Es posible para un conductor, que las Bandas de Conducción y de alencia se hallen separadas, pero la Banda de Conducción tenga parte de sus estados ocupados. Los semiconductores extrínsecos, son aquellos en que se ha introducido un elemento contaminante, llamado impureza, generalmente del grupo o de la tabla periódica, que cambia drásticamente las propiedades de conducción del material intrínseco, reduciendo enormemente la resistividad del mismo. Se distinguen dos tipos de semiconductores extrínsecos: TPO P (n < p) TPO N (n > p)

ntroducción a la Tecnología de los Computadores. T1-5 ntroducción a la Tecnología de los Computadores. T1-6 Si el material contaminante es del tipo (B, Al, Ga, n), los átomos de dicho material completan solamente tres enlaces covalentes, quedando un enlace covalente incompleto, que puede ser completado por un electrón de un orbital vecino de un átomo de Si con una pequeña aportación de energía del entorno. Si esto sucede, se genera un hueco. La consecuencia de impurificar con este tipo de materiales, llamados aceptadores, es la aparición de un hueco por cada átomo de impureza introducido en el cristal. El semiconductor tiene entonces un exceso de huecos (n < p). Se trata de un tipo p. E C E F E LA UNÓN P-N Se trata de la unión de un semiconductor tipo p y uno de tipo n. Su fruto será la obtención de un dispositivo semiconductor llamado diodo de unión. Desde el punto de vista de su forma de operación, el dispositivo semiconductor más simple y fundamental es el diodo; todos los demás dispositivos pueden entenderse en base a su funcionamiento. Cuando un semiconductor de tipo n y otro del tipo p se unen, las concentraciones inicialmente desiguales de electrones y huecos dan lugar a una trasferencia de electrones a través de la unión desde el lado p al n y de huecos desde el lado n al p. Como resultado, se crea una doble capa de carga en la unión semejante a la de un condensador de placas paralelas, siendo negativo el lado p y positivo el lado n. Ya que esta región se ha vaciado de carga libre se le denomina región de vaciamiento, (o región de carga espacial, o región de transición). Si la impureza es del grupo (P, As, Sb) se completarían los cuatro enlaces covalentes con los cuatro átomos vecinos de Si, sobrando un electrón débilmente ligado, que podría pasar a la Banda de Conducción. Este tipo de material recibe el nombre de donador y al existir un exceso de electrones (n > p) el semiconductor es del tipo n. E C E F _ + En atención a las bandas de energía E F debe ser constante, con lo que se produce una curvatura de las bandas de energía. Esta curvatura implica la aparición de un campo eléctrico hacia la izquierda, y como consecuencia una variación de potencial en la zona de transición, el potencial de contacto bi. E E C E F ε E C E F E Al aplicarle a la un semiconductor una excitación externa, se logra un flujo ordenado de los electrones y de los huecos. Son los electrones libres los que realmente se mueven, pero el sentido de la corriente eléctrica, por convenio, se toma en sentido contrario. T Nd Na T ln n bi = 2 i = KT q K = 1.381 x 10-23 J/K T = 300º K q = 1.602 x 10-19 C T (T=300K) = 0.0259 n i (T=300K)= 1.45 x 10-10 cm -3 E

ntroducción a la Tecnología de los Computadores. T1-7 ntroducción a la Tecnología de los Computadores. T1-8 DODOS Un diodo es básicamente una unión p-n. Se trata de un dispositivo semiconductor que permite el paso de la corriente en un solo sentido. MODELOS MATEMÁTCOS SMPLFCADOS PARA LOS DODOS. Debido a la complejidad de la ecuación de Shockley, en la resolución de circuitos con diodos se suelen usar otros modelos más simples. El primero de ellos es el Modelo Elemental de Conmutador de Corriente, según el cual, cuando la tensión supere el cero, la corriente puede dispararse hasta el infinito, mientras que en sentido contrario se producirá un bloqueo total de corriente. Cuando aplicamos un voltaje externo a la unión que facilite la combinación entre electrones y huecos, la corriente fluye fácilmente. La unión está entonces directamente polarizada ( D > 0). Cuando aplicamos un voltaje opuesto sólo circula un pequeña corriente que puede despreciarse. La unión está inversamente polarizada ( D < 0). Se puede aplicar un voltaje negativo suficientemente grande como para forzar la corriente en sentido inverso, se entra entonces en una zona de ruptura o avalancha. La característica - del diodo es: El segundo de los modelos es el Modelo de Conmutador de Corriente con caída de Tensión; es equivalente al anterior salvo que la tensión a vencer para que conduzca corriente es un valor dado D = 0,7, que es la tensión a la que la corriente comienza a despuntar claramente. Finalmente, el Modelo de Conmutador de Corriente con caída de Tensión y Resistencia Equivalente. El valor de la resistencia R d puede aproximarse por la inversa de la pendiente de la curva del diodo en el punto de arranque ( F ). F es la tension directa de polarización y vale aproximadamente 0.7. B es la tension de ruptura y varía entre 3.3 y k según el tipo de diodo. En polarización inversa la corriente que fluye por el diodo es negativa y con un valor S 10-12 A. Se puede modelar por la ecuación de Shockley: D = S n D T D ( e 1) D = nt ln( + 1) S Usando dichos modelos podemos resolver este sencillo problema. (Rs = 1kΩ, F=0.7)

ntroducción a la Tecnología de los Computadores. T1-9 ntroducción a la Tecnología de los Computadores. T1-10 OTROS TPOS DE DODOS ZENER Se trata de un diodo que suele trabajar en la zona de ruptura. Cuando la tensión de ruptura B está por debajo de los 10 se suele denominar tensión Zener Z. Cuando la tensión a la que está sometido el diodo trata de ser menor que Z se produce el efecto de avalancha y según la característica - del diodo el diodo se comporta como una fuente de alimentación con valor Z bastante estable. Por ello una de las aplicaciones es la estabilización y regulación de fuentes de tensión. APLCACONES: RECTFCADOR DE MEDA ONDA. Esta aplicación permite convertir voltaje AC en DC. Durante el semiclo positivo el diodo conduce (ON) y durante el semiciclo negativo no (OFF). LED Los diodos LED se basan en la recombinación de carga que tiene lugar cuando una unión p-n está fuertemente polarizada en directo. La colisión de un electrón con un hueco supone la reconstrucción de un enlace covalente, perdiendo el electrón el exceso de energía que portaba, que resulta emitida en forma de un fotón, bien en el espectro visible o del infrarrojo (RED). Dicha radiación puede excitar la base de un transistor bipolar, obligándolo a proporcionar corriente. Un dispositivo así formado es un optoacoplador. CRCUTO CARGADOR DE BATERA La corriente fluye solo cuando m sen(ωt) < BAT. RECTFCADOR FLTRADO También llamado detector de pico, se construye con un rectificador y un condensador C en paralelo con la carga. El resultado es una señal prácticamente DC. SCHOTTKY Se trata de un diodo constituido por la unión de un semiconductor tipo n y un metal. El metal sustituye al semiconductor tipo p. Las ventajas es que conducen más rápidamente y su F 0.35. Las desventajas estriban en su mayor s y menor B. Su símbolo: m C fr r L si r << 1

ntroducción a la Tecnología de los Computadores. T1-11 ntroducción a la Tecnología de los Computadores. T1-12 APLCACONES: RECTFCADOR DE ONDA COMPLETA. Este circuito usa un transformador con derivación central, creando dos fuentes de entrada efectivas. TRANSSTORES BPOLARES BJT BJT significa Bipolar Junction Transistor (Transistor de Unión Bipolar). Se trata de un dispositivo no lineal semiconductor basado en el diodo de unión p-n. Su uso fue frecuente hasta 1975, fecha a partir de la cual se usó mas el transistor MOS. La tecnología bipolar actual hace uso preferentemente de un híbrido BCMOS. Tienen dos principales aplicaciones: Como amplificador en circuitos analógicos Como conmutador en circuitos digitales Durante el semiciclo positivo DA (ON) y DB (OFF). En el semiciclo negativo al contrario. ACCÓN DE TRANSSTOR: consiste en la captación de portadores minoritarios provenientes de una unión PN directamente polarizada, que los emite por otra unión PN inversamente polarizada y muy cercana a la anterior. BJT NPN BJT PNP APLCACONES: RECTFCADOR DE ONDA COMPLETA. En lugar de usar un transformador con derivación central, este circuito usa un puente de diodos, resultando más barato y más moderno. REGONES DE OPERACÓN TRANSSTOR NPN Semiciclo positivo: D1 y D3 (ON), D2 y D4 (OFF) Semiciclo negativo: D1 y D3 (OFF), D2 y D4 (ON) RECTFCADOR FLTRADO Como la salida del rectificador es de onda completa, el condensador C se descarga aproximadamente la mitad de tiempo que el caso del rectificador de media onda. m C 2 fr r L si r << 1 REGÓN Unión B-E Unión B-C Característica Corte (OFF) nversa nversa E = B = C = 0 Activa Directa (ZAD) Directa nversa Amplificador Saturación (SAT) Directa Directa CE ~ 0 Activa nversa (ZA) nversa Directa Poco uso

ntroducción a la Tecnología de los Computadores. T1-13 ntroducción a la Tecnología de los Computadores. T1-14 MODELOS MATEMÁTCOS SMPLFCADOS PARA LOS BJT. Las ecuaciones matemáticas que describen el comportamiento de los transistores Bipolares son las ecuaciones de Ebers-Moll. Debido a la complejidad de estas ecuaciones se suelen usar modelos más sencillos como en el caso de los diodos. Un modelo muy usado es la versión Híbrida en π. CT = CC - EC TRANSSTORES DE EFECTO CAMPO: FET Dispositivos semiconductores de tres terminales. Tipos: JFET (Junction FET, MESFET) MOSFET (Metal-Oxide-Semiconductor FET, nsulated-gate FET) Son dispositivos de portadores mayoritarios (unipolares), cuyo funcionamiento se basa en la aplicación de un campo eléctrico para gobernar una corriente. Se modelizarán como fuentes de corriente controladas por tensión. E C CC EC = = S S ( e ( e BE BC T T 1) 1) JFET DE CANAL N Estructura: CC EC β F β R B β F es un parámetro típico de los transistores dado por el fabricante. Se calcula como: α F β F = 1 α dónde α F se define como la relación entre la intensidad capaz de llegar al colector y la intensidad que entra en el emisor. Para la Z.A.. se tiene β R. F Operación: ZONA LNEAL-OHMCA (Triode) De una forma simple el transistor se puede modelar en un circuito como: ZONA ACTA DRECTA ZONA DE SATURACÓN ZONA SATURACÓN (Pinch-off) B C B C BE(ON) = 0,7 C = β F B BE(SAT) = 0,8 CE(SAT) = 0,2 C < β F B E E

ntroducción a la Tecnología de los Computadores. T1-15 TRANSSTOR MESFET Es una variación del JFET construida en AsGa y con uniones metalsemiconductor (Schottky). Su comportamiento es similar, pero más rápido. TRANSSTOR MOS DE CANAL N nmos de Empobrecimiento nmos de enriquecimiento Simbología: Modos de Operación: nversión Débil: bajas corrientes, funcionamiento similar al BJT nversión Fuerte: grandes corrientes cuando GS > TH Zona Subumbral o Corte ( GS < TH ) Zona Ohmica o Lineal ( GS > TH y DS < GS - TH ) Zona Saturación ( GS > TH y DS GS - TH ) nversión Moderada: entre las dos anteriores. COMPARATA FETs