3. DETERMINACIÓN DE LA DENSIDAD RELATIVA Y LA DENSIDAD APARENTE DE UN CERÁMICO EN POLVO



Documentos relacionados
Práctica 2 DENSIDAD RELATIVA Y DENSIDAD APARENTE DE UN MATERIAL EN POLVO

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

GUIA DE LABORATORIO PRACTICA N 03 GRAVEDAD ESPECIFICA DE LOS SUELOS

FUNDAMENTOS FÍSICOS DE LA INGENIERÍA CUARTA SESIÓN DE PRÁCTICAS

5. PREPARACIÓN DE FRACCIONES DE UN SISTEMA MATERIAL DISPERSO Y ANÁLISIS GRANULOMÉTRICO POR TAMIZADO

ρ 20º/20º = ρ a /ρ ref (I)

PRÁCTICA 1. Mediciones

La Densidad, es la masa de un cuerpo por unidad de volumen.

9. MEDIDA DE LA DENSIDAD DE LÍQUIDOS

Manual de Laboratorio de Química Analítica

DETERMINACION DEL PESO ESPECIFICO DEL CEMENTO

MATERIAL DE LABORATORIO

Calor específico de un metal

Medidas y errores. Introducción teórica: Recordemos que medir es comparar una magnitud con otra de la misma especie que

y por lo tanto se tiene (5)

8/6/2014. Objetivos. Propiedad física. Marco teórico. Densidad de sólidos y tratamiento estadístico de los datos experimentales

LABORATORIO N 2 PREPARACIÓN DE SOLUCIONES

CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS CMS

11. Desgaste de herramientas. Contenido: 1. Desgaste de herramientas 2. Medida del desgaste 3. Ensayos de duración de herramientas

PROPIEDADES DE LOS FLUIDOS

PCPI Ámbito Científico-Tecnológico LA MATERIA

7. ABSORCIÓN DE AGUA A PRESIÓN ATMOSFÉRICA Y POR CAPILARIDAD EN MATERIALES CERÁMICOS DE CONSTRUCCIÓN

ALGUNAS PROPIEDADES DE LA MATERIA: SOLUBILIDAD Y DENSIDAD

1. Las propiedades de los gases

23. MICROSCOPIO COMPUESTO: DETERMINACIÓN DE SU AUMENTO y MEDIDA DE ÁREAS MICROSCÓPICAS

Oferta tecnológica: Novedoso equipo para determinar simultáneamente la adsorción de mezclas binarias de gases en sólidos adsorbentes

Alianza para el Aprendizaje de Ciencias y Matemáticas. Materia: Ciencia (Química) Nivel: 4 6 Preparado por: Héctor A. Reyes Medina, UPR-Río Piedras

MMP. MÉTODOS DE MUESTREO Y PRUEBA DE MATERIALES

Manual de laboratorio de termodinámica I. Ley de Gay-Lussac

TRABAJO PRÁCTICO N 2 DETERMINACIÓN DE DENSIDADES

DETERMINACION DE LA DENSIDAD Y HUMEDAD DE EQUILIBRIO I.N.V. E - 146

LA MATERIA Y SU MEDIDA. 2º ESO Ciencias de la naturaleza

ANEJO 1: MEDIDA DE DENSIDAD RELATIVA DE UN SÓLIDO

FICHA DE EVALUACION - PRACTICA Nro. 3: Mediciones directas e indirectas. Propagación de errores.

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

Tema 11: Intervalos de confianza.

INSTRUMENTOS DE MEDIDAS Y TEORÍA DEL ERROR

Guía de Laboratorio 3. Asignatura: Química General Básica. Práctica 6: Estudio de las Soluciones

MEDIDAS DE LONGITUD. Objetivos:

CON INYECCIÓN POR EL FONDO

LABORATORIO 1. TITULO: Reconocimiento del material de laboratorio y medición de Volúmenes.

TERMOQUÍMICA A MICROESCALA

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = J

ECUACIÓN DE ESTADO DE LOS GASES IDEALES

Tema 13: La materia Ciencias Naturales 1º ESO página 1. Materia es todo aquello que posee masa y ocupa un volumen. Está formada de partículas muy

TALLER BÁSICO DE MECÁNICA DE SUELOS Límite de Contracción

Práctica No 2. Determinación experimental del factor de compresibilidad

Conclusiones generales

Interacción aire - agua. Termómetro húmedo

Determinación de la Masa Molar del Magnesio

PRÁCTICA Nº 1: MEDIDA EXPERIMENTAL DE DENSIDADES

DETERMINACIÓN DE LA DENSIDAD

Prácticas Integrales I Año Lectivo Modulo I Procedimientos e instrumentación Básica en el Laboratorio

PRÁCTICA 1: DETERMINACIÓN EXPERIMENTAL DE LA VELOCIDAD DE SEDIMENTACIÓN

PRÁCTICA 1: CONTROL DE CALIBRACIÓN DEL MATERIAL VOLUMÉTRICO. ELABORÓ: Silvia Citlalli Gama González. REVISÓ: Alain Queré Thorent

Cómo motivar a los estudiantes mediante actividades científicas atractivas LA LEY DE BOYLE

DETERMINACIÓN DE LOS FACTORES DE CONTRACCIÓN DE LOS SUELOS. ASTM D-427, AASHTO T-92, J. E. Bowles ( Experimento Nº 4), MTC E

CALIBRADO DE UN TERMOPAR

Actividades de consolidación

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS Asignatura: FÍSICA II

ENSIDAD DE LÍQUIDO DE LA. Determinación de LA DENSIDAD DE LÍQUIDOS 23 PAPIME PE205917

DILATACIÓN EN SÓLIDOS Y LÍQUIDOS

DIFERENCIA ENTRE FLUIDOS Y SÓLIDOS

Estadística Descriptiva. SESIÓN 12 Medidas de dispersión

PRÁCTICA 3: MEDIDAS DE LONGITUDES, PESOS Y TIEMPOS.

8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO

Descripción de los 3 estados de la materia. Química General II Estados líquido y sólido. Diagrama de Fases

FACULTAD DE INGENIERIA LABORATORIO DE QUIMICA TEMA: VOLUMENES. Belkis saumeth lopez cod: Faviel Miranda Lobo cod:

OBJETIVO Aprender a preparar disoluciones de concentración dada, ya que la mayor parte de las reacciones químicas tienen lugar en forma de disolución.

SEPARACIÓN DE LOS COMPONENTES DE UNA MEZCLA OBJETIVOS: Establecer los fundamentos teóricos de los proceso de separación.

DIDÁCTICA DEL MEDIO NATURAL I

D.2 ANÁLISIS ESTADÍSTICO DE LAS TEMPERATURAS DE VERANO

AEROSTATICA La aerostática frente a la hidrostática La compresibilidad de los gases. Ley de Boyle. La presión atmosférica p = p0 + g h

PRACTICA No.7 DENSIDAD Y USO DEL TERMOMETRO

Se desea determinar la densidad de un conjunto de rocas.

Laboratorio Asistido por Ordenador

Cálculo del rendimiento de una reacción química

1.5. DETERMINACIÓN DEL COEFICIENTE DE PERMEABILIDAD.

EL CICLO DEL SULFATO DE COBRE PENTAHIDRATADO

QUÍMICA ANALÍTICA EXPERIMENTAL I ANÁLISIS CUANTITATIVO DE ANALITOS PREVIA SEPARACIÓN POR PRECIPITACIÓN INTRODUCCIÓN

Medición de los trabajos de Poliuretano Proyectado

TALLER BÁSICO DE MECÁNICA DE SUELOS Peso Volumétrico de Suelo Cohesivo

Cálculo de densidades.

PRÁCTICA 1 HERRAMIENTAS Y OPERACIONES BÁSICAS EN EL LABORATORIO BIOANALÍTICO

Determinación de la porosidad

El resultado se expresa mediante una cantidad seguida de la unidad elegida. La cantidad representa el número de veces que se repite la unidad.

ELABORACIÓN Y CONTROL DE CAPSULAS DURAS

CARACTERÍSTICAS DE LOS INSTRUMENTOS. Cada instrumento de medida queda definido por las siguientes características:

LABORATORIO TECNOLOGIA DEL HORMIGON THA 2201 GUIAS DE LABORATORIO CLASE N 2

Escuela Técnica Superior de Ingenieros Agrónomos Departamento de Química y Análisis agrícola PRACTICAS QUÍMICA

COVENIN 347:2004 NORMA VENEZOLANA CONCRETO FRESCO DETERMINACIÓN DEL CONTENIDO DE AIRE MÉTODO VOLUMÉTRICO. (1 ra Revisión) FONDONORMA

PESO ESPECÍFICO DE LOS SUELOS Y LLENANTE MINERAL (FILLER)

Unidades de masa atómica

REACCIONES REVERSIBLES. ASPECTOS PRÁCTICOS DEL EQUILIBRIO QUÍMICO

Modelos atómicos. El valor de la energía de estos niveles de energía está en función de un número n, denominado número cuántico principal 18 J.

La materia es todo aquello que nos rodea, ocupa un lugar en el espacio y tiene masa.

UNIVERSIDAD INTERAMERICANA Recinto de Bayamón Departamento de Ciencias Naturales y Matemáticas. Química General para Ingenieros: QUIM 2115

Ley de conservación de la masa (Ley de Lavoisier) La suma de las masas de los reactivos es igual a la suma de las masas de los productos de la

TEORICO-PRÁCTICO N 5: LEYES DE LOS GASES IDEALES

Balanza: Con alcance de g y aproximación de 0,1 g. Horno eléctrico con control de temperatura con alcance mínimo de C o parrilla de gas.

Transcripción:

3. ETERMINACIÓN E LA ENSIA RELATIVA Y LA ENSIA APARENTE E UN CERÁMICO EN POLVO 3.1. Objetivos docentes Conocer un método para determinar la densidad de un sistema material sólido disperso con tamaño de partícula muy fino (en polvo). Conocer los distintos tipos de densidades que se pueden definir en un material poroso. 3.2. Objetivo del trabajo práctico eterminar la densidad relativa a la del agua y la densidad aparente de las partículas de un suelo arcilloso cuyo tamaño de partícula es inferior a 63 micras. 3.3. Fundamento teórico ensidades de un material poroso La densidad de un material es la masa por unidad de volumen que ocupa. Son unidades habituales de densidad el g/cm 3, kg/m 3 o Mg/m 3. Sin embargo, el volumen de un material cambia con la temperatura (dilatación térmica) de manera que la densidad de los materiales también varía con la temperatura. A temperaturas próximas a la temperatura ambiente este efecto es especialmente significativo en los materiales líquidos y gaseosos, pero en los sólidos también es conveniente indicar la temperatura a la que se realizan los experimentos. Además existen muchos materiales que son porosos, es decir, el material no rellena todo el espacio sino que deja unos espacios vacíos o huecos que se denominan poros. Normalmente los poros se encuentran llenos de gas o de líquido y van a dificultar la determinación tanto del volumen como de la masa real de sólido. Poro cerrado Poro abierto a la superficie Material sólido Poros vacíos (gas) Por muy pequeña que sea una partícula sólida puede contener poros, incluso para sistemas materiales en polvo (< 44 μm). Al igual que el tamaño de partícula, el tamaño de los poros es muy variado, desde los macroporos que se observan a simple vista hasta los micro y nanoporos que requieren de potentes microscopios 1

para su detección. La porosidad es una característica de los materiales, y afecta de manera muy significativa a las propiedades de la pieza sólida. Se distinguen los poros cerrados, aquellos que no están abiertos a la superficie externa del sólido, y poros abiertos los que son accesibles desde la superficie. En un sólido poroso se diferencian tres tipos de volúmenes: 1) El volumen total (V t ) se determina utilizando instrumentos como un calibre o un micrómetro para medir las dimensiones principales del objeto, y corresponde al volumen que ocupa el sólido con todos sus poros. 2) El volumen aparente (V a ) es el volumen que desplaza el sólido cuando se sumerge en un líquido, el cual será el volumen de sólido y el volumen de poro cerrado ya que el líquido penetra en los poros abiertos. 3) El volumen último del sólido (V s ) es el volumen real de sólido, y su determinación experimental es bastante más laboriosa. Se tiene que cumplir que V t V s + V Poro cerrado + V Poro abierto V a + V Poro abierto La porosidad es el porcentaje de volumen total de poro (V Poro cerrado + V Poro abierto ) respecto del volumen total (V t ). Asociados a estos tres volúmenes se definen tres tipos de densidades en los materiales porosos: - ensidad volumétrica: es la densidad calculada cuando se ha medido el volumen total. m v V - ensidad aparente: es la densidad que proporciona el volumen aparente. Esta densidad es la que habitualmente se determina experimentalmente. m a V - ensidad última del sólido: es la densidad real del sólido. Para sólidos cristalinos se puede determinar una vez conocida la composición química exacta y la estructura cristalina, esto es, conociendo la masa y las dimensiones que tiene la celda unidad del compuesto. m u V Además de estas tres densidades, en el ámbito ingenieril se utiliza (entre otras) la densidad relativa (G), que se define como la relación entre la densidad del material sólido y la densidad del agua a 20 ºC a G H2O (20º C) Ésta es una magnitud adimensional, es decir, no tiene unidades. t a s 2

La presencia de porosidad también introduce pequeñas desviaciones de los valores de la masa que se determina por pesada en una balanza, ya que los poros están llenos de aire u otro gas, y además la pesada se hace en aire donde el objeto está sometido al empuje del fluido. No obstante, estos efectos son despreciables y no suelen ser tenidos en cuenta, sobre todo cuando los poros están llenos de aire y la pesada se realiza en aire. 3.4. Material e instrumental necesarios Picnómetros de Gay-Lussac de 50 ml de capacidad (tres unidades) Embudo de cuello fino y largo para introducirlos en los picnómetros Jeringa de plástico con aguja larga (de punción lumbar) Vasito de precipitado o recipiente de boca ancha Cuchara o espátula para pesar Bandejita o papel satinado para pesar Balanza de precisión 0.001 g Paño para secar Muestra de suelo arcilloso (que pase por un tamiz de 0,063 mm) Agua destilada Guantes y mascarilla protectora para el polvo Estufa hasta 110 ºC y desecador 3.5. Protocolo para la realización práctica Para la realización de esta práctica se va a seguir la norma UNE 103-302-94 eterminación de la densidad relativa de las partículas de un suelo con pequeñas modificaciones para adaptarla al tiempo de una sesión de prácticas. Según indica la norma, el suelo tiene que secarse a 110 ºC hasta masa constante y enfriarse en un desecador libre de humedad ambiente, y el tamaño de partícula debe ser menor de 400 μm. En esta práctica utilizaremos una muestra que ya ha sido preparada con un tamaño de partícula inferior a 63 μm. e este modo el suelo se puede clasificar claramente como arcilloso, con lo que únicamente se necesitan 10 g de muestra para cada experimento. El ensayo se realizará a la temperatura del laboratorio, lo que evita la utilización de un baño termostatizado y se eliminan los tiempos de espera necesarios para equilibrar la temperatura. Se realizarán tres experimentos independientes, por lo que los pasos siguientes se repetirán tres veces, una vez con cada uno de los tres picnómetros disponibles. El volumen de cada picnómetro está calibrado con su cuello, por lo que ambas partes (cuerpo y cuello) tienen que estar marcados con un número para identificarlos. Comprueba que los cuellos están colocados correctamente. A lo largo de toda la práctica, TEN CUIAO QUE NO SE MEZCLEN LOS CUELLOS NI SE BORREN LOS NÚMEROS 3

1- Enrasado del picnómetro con agua y determinación de M 1 Retira el cuello del picnómetro y llénalo hasta arriba con agua destilada. Introduce el cuello verticalmente con un movimiento rápido para que el agua ascienda por el capilar del cuello. Una vez que el cuello esté bien encajado, elimina las burbujas que hayan podido quedar atrapadas dándole golpecitos al picnómetro o bien pinchándolas o absorbiéndolas con la aguja, que se introduce por el capilar del cuello con mucho cuidado. Vierte agua en un vasito de precipitado para poder llenar cómodamente la jeringa de agua cuando lo necesites. Cuando no se vean burbujas, procede a retirar el agua que sobrante o a añadir agua por el capilar del cuello hasta que el picnómetro quede enrasado. Línea de enrase Seca el exterior del picnómetro con un paño o papel y pésalo en la balanza de sensibilidad 0.001 g. Esta masa es M 1. 2- eterminación de M 2 Retira el cuello del picnómetro y vacía el agua aproximadamente hasta la mitad. Sécalo y pésalo sin colocar el cuello. Esta es la masa M 2. 3- eterminación de M 3 La masa M 3 es la del picnómetro sin cuello medio lleno de agua y con la muestra de suelo dentro. Procede en primer lugar a pesar 10.000 g de muestra en polvo. Introduce la muestra en el picnómetro medio lleno de agua con ayuda del embudo. Para ello, introduce el embudo hasta cerca del nivel del agua pero sin mojarlo, y vierte el polvo poco a poco. e este modo se evitará que quede polvo en la superficie de contacto entre el cuerpo y el cuello del picnómetro. 4

Una vez introducido el polvo, agita un poco el picnómetro para que se moje bien y se eliminen las burbujas de aire atrapadas entre las partículas. Seca el picnómetro por fuera y pésalo para determinar M 3. 4- eterminación de M 4 Rellena con agua destilada el picnómetro hasta por debajo de la parte donde se introduce el cuello. Coloca el cuello y termina de enrasar el picnómetro introduciendo el agua restante por el capilar de cuello con ayuda de la aguja larga. Para evitar la formación de burbujas, elimina el aire de la jeringa antes de introducir la aguja en el capilar, sumerge la aguja en el agua del picnómetro e inyecta el líquido lentamente. Una vez libre de burbujas y enrasado, seca el picnómetro y pésalo en la balanza de 0.001 g para determinar M 4. 5- Lavar el material utilizado en la práctica: El material de vidrio y las espátulas y la aguja se lavan con abundante agua del grifo. Se le da un último enjuague con un poco de agua destilada. Se seca ligeramente con papel y se deja todo secando en la estufa a 70-80 ºC. 6- eterminación de la densidad relativa Según la norma, la densidad relativa del suelo con respecto a la del agua a la temperatura del ensayo (T) viene dada por la expresión: G T (M 3 M - M 2 3 M 2 ) + (M 1 - M 4 ) 5

Para obtener la densidad relativa (G) hay que multiplicar por un factor K 1 que es el cociente entre la densidad del agua a la temperatura del ensayo y la densidad del agua a 20 ºC. T (ºC) H2O (g/cm 3 ) 15 0,999099 16 0,998943 17 0,998774 18 0,998595 19 0,998405 20 0,998203 21 0,997992 22 0,997770 23 0,997538 24 0,997296 25 0,997044 26 0,996783 Y a partir de esta densidad relativa se calcula la densidad aparente ( a ) del sólido. Finalmente, la norma indica que la densidad relativa y densidad aparente del suelo será la media aritmética de los valores que han proporcionado las muestras ensayadas, y la incertidumbre vendrá dada por la dispersión o la desviación estándar, siguiendo la teoría de medidas. 3.6. Claves para el informe - educir la fórmula que dan en la norma UNE 103-302-94 para calcular la densidad a partir de M 1, M 2, M 3 y M 4. - Indicar de forma correcta la densidad relativa (G±ΔG) y la densidad aparente ( a ±Δ a ). - Estimar el error absoluto de la densidad relativa y de la densidad aparente a partir de la propagación de errores por derivadas parciales de las magnitudes fundamentales que se han determinado experimentalmente. - Comparar el error calculado de este modo con el error estadístico, que es el que se debe utilizar según la norma. - Utiliza la teoría de medidas para determinar si habría sido necesario realizar más medidas para determinar la densidad aparente del sistema en polvo que se ha estudiado. 6