FÍSICA NUCLEAR. Física de 2º de Bachillerato



Documentos relacionados
83Bi es: a) 83 b) 127 c) 210 d) 293 El número de nucleones (número másico, A) es, según la notación de los núclidos ( A E), 210.

4. a) Algunos átomos de nitrógeno ( 7 14 N ) atmosférico chocan con un neutrón y se

Capítulo 26. Física Nuclear

FÍSICA de 2º de BACHILLERATO FÍSICA NUCLEAR

Preguntas de Multiopción

INTRODUCCIÓN A RADIACTIVIDAD

FÍSICA MODERNA FCA 04 ANDALUCÍA. partícula alfa. Escriba la reacción nuclear y determine las características del núclido X resultante.

PROBLEMAS FÍSICA MODERNA

SELECTIVIDAD: Física cuántica Física nuclear (Teoría)

Esta parte de la Física estudia el comportamiento de los núcleos atómicos. Física nuclear

RADIACTIVIDAD NATURAL

PROBLEMAS FÍSICA MODERNA

Unidad didáctica 11 Física nuclear

FÍSICA NUCLEAR. I WANT TO KNOW GOD S THOUGHTS; THE REST ARE DETAILS (Albert Einstein )

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

Tema 9 Naturaleza eléctrica de la materia

! " # $ " ' % () *! + ),-. /*01 ",*2 ", $ /- % $. * 1 &, * 1 " $, / " % # 1 $ 3 & + " #* 1, 4*5 1 #, " 4-6 " $*$,* 7, 4-8 $" % # $ # %$%

UNIDAD DIDÁCTICA 2: ESTRUCTURA DE LA MATERIA

Física Moderna Cuestiones y Problemas PAU Física 2º Bachillerato. U, éste captura un

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

La física del siglo XX

Transformaciones de las energías

ENUNCIADOS. Cuestiones. Calcule el defecto de masa y la energía total de enlace del isótopo

PROBLEMAS DE FÍSICA NUCLEAR

FÍSICA NUCLEAR EL DESCUBRIMIENTO DE LA RADIACTIVIDAD

RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES.

Modelos atómicos: Dalton, Thomson, Rutherford, Bohr y Mecánica Cuántica. Clasificación de los elementos y propiedades periódicas

H Deuterio (1p+1n); ,02310 = = = 1uma = 1u = = 1,6610 kg

UNIDAD 1: ATOMOS Y MOLÉCULAS

Estructura de los átomos.

FÍSICA de 2º de BACHILLERATO FÍSICA NUCLEAR

Qué es la energía nuclear? Tema1

Interacción nuclear 1

Física Nuclear y Reacciones Nucleares

Slide 1 / 34. Física Nuclear y Reacciones Nucleares

Problemas de Física moderna. Nuclear 2º de bachillerato. Física

C U R S O: FÍSICA MENCIÓN MATERIAL: FM-35 FÍSICA MODERNA II. Radiactividad. Clases de radiación

EVOLUCIÓN HISTÓRICA DE LOS MODELOS ATÓMICOS.

Ejercicios y respuestas del apartado: Teoría atómica. Z, A, isótopos, n, p, e-. Iones

Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 23 febrero 2014

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

La radioactividad es una propiedad intrínseca de los núcleos de los átomos.

E m c 2, J 1751,52 MeV. 7,453 MeV. E m c 1, J 112,86 MeV. 7,524 MeV

IES Menéndez Tolosa Dpto. Física y Química 4º ESO - Modelos atómicos 1S

Temas X y XI: Radiactividad

15.2 Composición del núcleo de los átomos. Isótopos

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

H Deuterio (1p+1n); , uma 1u 1,66 10 kg R 1 10 A

FÍSICA 2º Bachillerato Ejercicios: Física nuclear

NUCLEO ~ m NUCLEÓN ~ m. MATERIA ~ 10-9 m. ÁTOMO ~ m. Átomo. Protón

CUESTIONES. 5. (2006) a) Cómo se puede explicar que un núcleo emita partículas β si en él sólo existen neutrones y protones? b) El

2 Química Nuclear. 2.1 La estabilidad de los núcleos atómicos

LICENCIATURA EN NUTRICION A DISTANCIA CURSO INTRODUCTORIO INTRODUCCIÓN A LA BIOQUIMICA

Glosario. actividad. Número de desintegraciones que ocurren por segundo en un material que contiene elementos radioactivos.

Física 2º Bacharelato

BOLETÍN DE TEORÍA FÍSICA NUCLEAR (trabajo) C1: Defina actividad de una muestra radioactiva, escriba su fórmula e indique sus unidades en el S.I.

BOLETÍN DE TEORÍA FÍSICA NUCLEAR (trabajo) C1: Defina actividad de una muestra radioactiva, escriba su fórmula e indique sus unidades en el S.I.

CENTRALES NUCLEARES CENTRALES NUCLEARES DE AGUA EN EBULLICIÓN (BWR). CENTRALES NUCLEARES DE AGUA A PRESIÓN (PWR)

Resolución PRÁCTICO 9

CUESTIONES DE FÍSICA NUCLEAR

RADIOACTIVIDAD - (2015)

A-1 - Indique cual de las siguientes afirmaciones es correcta:

EL ÁTOMO. Se supuso que estas partículas deberían estar en todos los átomos. Thomson las llamó electrones.

EL ÁTOMO. Contenidos (1)

Z, ( a veces se suprime Z),donde X es el símbolo químico del elemento. Así por ejemplo tenemos los isótopos del carbono:

Química General III. Tema 13. Química Nuclear. Sulfato doble de K y U, emite radiación fuente de rayos radiactivos.

Preguntas de Física Nuclear. 1. Qué partículas forman el núcleo? Cuál es el término general para nombrarlas? De qué están compuestas esas partículas?

física física conceptual aplicada MétodoIDEA E L núcleo atómico y la radiactividad Entre la y la 1º de bachillerato Félix A.

TEMA 3: La materia. Propiedades eléctricas y el átomo. 1.- En la siguiente sopa de letras puedes encontrar los nombres de 13 elementos químicos.

Ley de Coulomb. Introducción

Fusión Nuclear. Por qué se pierde masa durante el proceso?

Interacción nuclear PONENCIA DE FÍSICA DE ANDALUCÍA. CURSO

Desintegración radiactiva

física física conceptual aplicada MétodoIDEA P rocesos nucleares Entre la y la 1º de bachillerato Félix A. Gutiérrez Múzquiz

1. Cuál de los siguientes enunciados es uno de los postulados correspondientes al modelo atómico de Bohr?

Conceptos Básicos de la Energía Nuclear

EJERCICIO 1; OPCION A APARTADO A

quimica2univia.wordpress.com

Curso de Radioactividad y Medio Ambiente clase 2

Mundo Atómico. Profesor: Robinson Pino H.

E L E C T R I C I D A D. Acción de un Campo Magnético sobre una Corriente. Acción de un Campo Magnético sobre una Corriente

Unidades de la enegía. Unidad Símbolo Equivalencia. Caloría Cal 1 cal = 4,19 J. Kilowatio hora kwh 1 kwh = J

Recomendaciones para el estudio independiente

TEMA 6.- EL NÚCLEO 1.- LA NATURALEZA DE LAS REACCIONES NUCLEARES 2.- ESTABILIDAD NUCLEAR. Energía de enlace nuclear 3.- RADIACTIVIDAD NATURAL

a) La constante de desintegración radiactiva. b) La actividad inicial de la muestra. c) La masa que quedará sindesintegrar después de años.

QUÍMICA 3ºESO ACT TEMA 4. EL ÁTOMO. 1. UN ÁTOMO MUY ANTIGUO.

4. Radiactividad natural cámara abierta. Los primeros aparatos de esta clase se empezaron a. aplicaciones, hubo que andar un largo camino.

Física nuclear. Núcleo atómico

Todo lo que puedas imaginar está compuesto por átomos.

CUESTIONES DE FÍSICA NUCLEAR

[a] Consulta el libro de Física. Recuerda que la explicación del efecto fotoeléctrico, debida a Einstein, reafirma la teoría corpuscular de la luz.

Átomo. Posee protones y neutrones. Estos se llaman Nucleones. Alrededor giran los electrones en. forma de nube. Son eléctricamente neutro

NATURALEZA ELECTRICA DE LA MATERIA Y EL ATOMO

FÍSICA NUCLEAR INTRODUCCIÓN RESEÑA HISTÓRICA. Radiactividad

Departamento de Física y Química Adaptaciones para 3º E.S.O.

13 Física nuclear. Actividades del interior de la unidad

FÍSICA NUCLEAR. PARTÍCULAS Y FUERZAS FUNDAMENTALES. 85At, 206

Transcripción:

FÍSICA NUCLEAR Física de 2º de Bachillerato

La física nuclear nace con el descubrimiento en 1896 de la radiactividad por el físico francés H. Becquerel y el experimento de E. Rutherford en 1911. El descubrimiento de la estructura atómica ha liberado enormes fuentes de energía y muchas y nuevas aplicaciones. Tanto poder no está libre de riesgos: Las bombas atómicas. El control sobre la fabricación de uranio enriquecido. Las centrales nucleares y el control de los residuos que generan son algunos ejemplos. 2

INDICE 1. Introducción. 2. El núcleo atómico. 3. Radiactividad. 4. Estabilidad de los núcleos. 5. Reacciones nucleares. 6. Armas y reactores nucleares. 7. Las cuatro interacciones. Física Nuclear - 2º de Bachillerato 3

1. INTRODUCCIÓN En 1895 H Becquerel observó que el sulfato de uranilo producía fluorescencia al incidir sobre él una radiación, pero no había relación entre las intensidades y la fluorescencia; mientras que el fenómeno si era proporcional a la cantidad de uranio en la muestra. Posteriormente los esposos Curíe descubrieron este mismo fenómeno en dos nuevos elementos radiactivos: el polonio y el radio. H Rutherford estudió las radiaciones emitidas por estas sustancias y su comportamiento frente a un campo magnético descubriendo tres tipos de radiación. Física Nuclear - 2º de Bachillerato 4

2. EL NÚCLEO ATÓMICO H. Rutherford, en 1911 propuso un modelo nuclear planetario a partir de su famoso experimento al bombardear láminas delgadas de oro con partículas alfa procedentes de elementos radiactivos. Física Nuclear - 2º de Bachillerato 5

Descubierto el neutrón unos años después por Chadwick el núcleo del átomo estaba formado por partículas pesadas llamadas nucleones: protones y neutrones. El número de protones identifica a cada elementos y se le denomina número atómico (Z) y el número de nucleones, partículas que hay en el núcleo se le llama número másico (A). A N Z Se llama núclido a cada especie nuclear, conjunto de núcleos iguales entre sí que tienen el mismo número másico y el mismo número atómico. Se denominan isótopos los átomos de un elemento que tienen el mismo numero atómico y distinto número másico. Isótopos del uranio: U U U 234 235 238 92 92 92 Física Nuclear - 2º de Bachillerato 6

12 C 6 Se hace preciso definir una unidad de masa adecuada. La unidad de masa atómica (u): es la doceava parte de la masa del átomo de carbono 12. 1 u 1 átomo 12 6 C 12,00 g C 12 6, 02 10 átomos C 23 12 6 24 1,66 10 g Una unidad de masa atómica (1 u) es, en gramos, el inverso del número de Avogadro. Podemos considerar los núcleos aproximadamente esféricos y su radio depende del número másico, del número de nucleones que contenga. 15 1/3 E1.: Calcula la densidad de un núcleo atómico. R 1,2 10 A Física Nuclear - 2º de Bachillerato 7

3. RADIACTIVIDAD La radiactividad fue descubierta por H Becquerel y es la transformación de unos núcleos en otros por emisión de radiación. Cuando se estudia la radiación emitida, se comprueba que existen tres tipos de radiación. Radiación : son núcleos de He, formados por dos protones y dos neutrones. Su velocidad es baja y tienen un escaso poder de penetración. Radiación β: son electrones emitidos por el núcleo, que viajan a velocidades próximas a la de la luz y tienen alto poder de penetración. Radiación γ: es radiación electromagnética de muy alta frecuencia que procede de la desexcitación de los núcleos. Física Nuclear - 2º de Bachillerato 8

Desplazamientos radiactivos: Ley de Soddy y Fajans Transformación : A Z X Y Q A Z 4 4 2 2 226 222 218 88 Ra 86 Rn 84 Po Transformación β: A Z X Y Q A 0 Z 1 1 214 214 214 82 Pb 83Bi 84 Po La emisión β: n p C N 1 1 0 14 14 0 0 1 1 e 6 7 1 e La emisión β se debe a la existencia de una fuerza nuclear denominada interacción nuclear débil. Su alcance es aún mas corto que la interacción nuclear fuerte y su magnitud es, 10 5 veces menor. Física Nuclear - 2º de Bachillerato 9

E2.: Calcula en MeV la energía que equivale a 1 u. A partir de la ecuación de Einstein y conocida la equivalencia entre la u y el g se tiene: 2 2 27 8 1 2 10 E mc 1u c 1,66 10 kg 3 10 m s 1,49 10 J ó C V 1e 10 E 1,49 10 C V 19 1,6 10 C 1Me 10 6 e 931MeV Para pasar de unidades de masa a tómica a MeV se ultiplica por 931 E3.: Un elemento radiactivo E, de número másico 220 y número atómico 85, emite una partícula alfa y se transforma en el elemento X, el cual emite una partícula beta y da lugar al elemento Y. Establece los números másicos y atómicos de X e Y, e identifica los átomos. 220 E 216 X 4 216 X 216 Bi 85 83 2 83 83 X Y Y Po 216 216 0 216 216 83 84 1 84 84 Física Nuclear - 2º de Bachillerato 10

Ley de desintegración radiactiva El número de núcleos que se desintegran en un intervalo de tiempo es directamente proporcional al número de núcleos. dn N N dt 0 N e t Física Nuclear - 2º de Bachillerato 11

Significado de la constante de desintegración: es la fracción de átomos radiactivos que se desintegran por segundo. / dn N dt Actividad: es el número de desintegraciones producidas por unidad de tiempo. Se mide en Bq (1 Bq= 1 desintegración/s) dn A A N dt Física Nuclear - 2º de Bachillerato 12

Periodo de semidesintegración Tiempo para que el número de núcleos se reduzca a la mitad. N 2 0 N e T T1/ 2 0 1/ 2 0,0693 Vida media El promedio de vida. El tiempo, que por término medio, tardará un núcleo en desintegrarse. 1 t 1 t 1 t dn t N dt t e dt N N t 0 0 0 0 0 Física Nuclear - 2º de Bachillerato 13

E4.: Un isótopo radiactivo tiene un periodo de semidesintegración de 10 años. Se tiene una muestra de 80,0 mg de este isótopo, establece: a) Su constante de desintegración radiactiva. b) La masa que se tendrá al cabo de 30 años. c) La masa que hubo de este isótopo hace treinta años. 0,0693 años -1 ; 10,0 mg; 640,0 mg E5.: El curio es una unidad de actividad radiactiva que se define como la actividad de una muestra de un gramo de radio. Cuál es la relación entre el Ci y el Bq (del SI)? El número de átomos existentes en 1 g de Ra es: Datos: Ra=1,4310-11 s -1 m 1 g 23 1 21 N N A 6,022 10 átomos mol 2,26 10 átomos 1 M 226 g mol M Ra =226 u La actividad de esta muestra radiactiva es: N A =6,022 10 23 11 1 21 10 A N 1,4 10 s 2,26 10 átomos 3,7 10 Bq Por tanto 1 Ci 3,7 10 10 Bq Física Nuclear - 2º de Bachillerato 14

4. ESTABILIDAD DE LOS NÚCLEOS ATÓMICOS Las nucleones dentro del núcleo se encuentran a una distancia de un fermi (10-15 m). A esta distancia la fuerza de repulsión electrostática entre los protones es muy fuerte y la de atracción gravitatoria muy débil. En consecuencia, para que los núcleos sean estables debe existir una tercera fuerza mucho más intensa, de muy corto alcance y atractiva. Esta fuerza se denomina fuerza nuclear fuerte. Actúa solo sobre los nucleones y es responsable de la estabilidad de los núcleos atómicos. Otro hecho importante es que al determinar la masa de los núcleos (con un espectrógrafo de masas) se comprobó que la masa de los núcleos es menor que la suma de las masas de los nucleones que lo forman. Esta diferencia se denomina defecto de masa. Física Nuclear - 2º de Bachillerato 15

Radiactividad natural y artificial Representando el número de neutrones en función del número de protones, aparece una banda de estabilidad, fuera de ella los núcleos son inestables. Radiactividad natural: existen una serie de núcleos en la naturaleza que son inestables y emiten radiación hasta alcanzar la zona de estabilidad. Radiactividad artificial: cuando a un núcleo estable se le bombardea puede inestabilizarse y emitirá radiación hasta alcanzar la banda de estabilidad. Física Nuclear - 2º de Bachillerato 16

Series radiactivas Cuando un núcleo inestable se transforma en otro por emisión alfa o beta, el nuevo núcleo puede ser también inestable y seguir desintegrándose. El proceso continua hasta llegar a un núcleo estable. Actualmente se conocen cuatro series radiactivas, tres naturales y una artificial. Se denominan con el nombre del cabeza de la serie. Hay elementos que son radiactivos y no pertenecen a ninguna serie: 3 H(12,4 años), 10 Be(2,5 10 6 años), 14 C(5,73 10 3 años). Estos isótopos se forman continuamente en la alta atmósfera por bombardeo de rayos cósmicos. Física Nuclear - 2º de Bachillerato 17

Defecto de masa y energía de enlace Según la ecuación de Einstein, la energía equivalente a este defecto de masa es: m Z m ( A Z) m M p n E mc 2 Esta energía es la energía de enlace o energía de ligadura del núcleo, y es la energía que se libera al formarse el núcleo a partir de sus nucleones. Coincide con la energía que hay que comunicar para separarlos. Calcula la energía correspondiente al defecto de masa de 1 u en MeV. 1 u 1 g 23 6,023 10 u 1 kg 3 10 g 8 2 (2,9979 10 ) J( C V ) 1 kg 1 e 1MeV 19 6 1,6022 10 C 10 e 931,3 MeV Física Nuclear - 2º de Bachillerato 18

Energía de enlace por nucleón en función de A Un dato muy interesante a cerca de la estabilidad de los núcleos es la representación de la energía de enlace por nucleón en función del número másico. Cuanto mayor es la energía por nucleón más estable es el núcleo. El más estable es el 56 Fe. Si un núcleo pesado se divide en dos más ligeros (fisión nuclear), o si dos núcleos más ligeros se unen para formar uno más pesado (fusión nuclear), se obtienen núcleos más estables y se libera gran cantidad de energía. Física Nuclear - 2º de Bachillerato 19

Li+ H 2 He. 7 1 4 E6.: Sea la reacción nuclear: 3 1 2 Realiza las siguientes actividades: a) Comprueba que no se cumple la ley de conservación de la masa. b) Calcula la energía que se desprende por mol de Li. c) Calcula la masa de carbón (calor de combustión del carbón, 33 kj/g) que se deben quemar para obtener esa energía. Datos: m( 7 Li)=7,01433 u; m( 1 H)=1,00728 u; m( 4 He)=4,00151 u m=0,01859 u; 1,67 10 12 J; 51 t de carbón E7.: Calcula la energía de enlace del núcleo y su energía de enlace por nucleón. Datos: m( 14 N) = 13,99922 u; m n = 1,008665 u; m p = 1,007277 u y 1 u = 931 MeV m=0,112374 u; E=105 MeV; E/A=7,47 MeV Física Nuclear - 2º de Bachillerato 20

5. REACCIONES NUCLEARES Son reacciones en las que intervienen núcleos atómicos. En estas reacciones se conserva el número atómico y el número másico. Primera reacción nuclear (Rutherford 1919) 14 4 17 1 7 N 2 He 8O 1H El uso de partículas alfa y protones como proyectiles para bombardear los núcleos presenta la desventaja de su repulsión electrostática, los neutrones en cambio pueden entrar más fácilmente en el núcleo. Al n Mg H 27 1 27 1 13 0 12 1 B n Li He 10 1 7 4 5 0 3 2 Be He C n 9 4 12 1 4 2 6 0 Li H 2 He 7 1 4 3 1 2 Física Nuclear - 2º de Bachillerato 21

Reacciones de fisión Es la división de un núcleo pesado en dos más ligeros y más estables liberando gran cantidad de energía de le proceso. Se liberan también neutrones que hacen posible la fisión de nuevos núcleos iniciando una reacción en cadena U n U Kr Ba 3 n 200 MeV 235 1 236 * 92 141 1 92 0 92 36 56 0 Física Nuclear - 2º de Bachillerato 22

Reacciones de fusión Es la unión de núcleos ligeros para formar núcleos más pesados y estables liberando gran cantidad de energía. 2 H 3 H 4 He 1 n 17,6 MeV 1 1 2 0 Física Nuclear - 2º de Bachillerato 23

6. ARMAS Y REACTORES NUCLEARES Si un neutrón de cada fisión produce otra fisión la reacción se mantiene y se libera energía de forma continua: esto es el fundamento de una central nuclear. Si en cada fisión se producen más de un neutrón capaz de producir nuevas fisiones se produce una reacción en cadena que constituye una bomba nuclear. Física Nuclear - 2º de Bachillerato 24

E8.: Sabiendo que la fisión de un átomo de uranio-235 produce 200 MeV de energía. Calcula la energía producida por la fisión de 1,00 g de dicho isótopo. Considera que la masa atómica del uranio-235 es 235 u. Expresa el resultados en kwh 2,28 10 4 kwh E9.: Calcula la masas de deuterio que requeriría cada día una hipotética central de fusión de 500 MW de potencia eléctrica en 2 4 la que la energía se obtuviese del proceso: 2 Datos: m( 2 H) = 2,01474 u; m( 4 1H 2He. He) = 4,00387 u y 1 u = 931 MeV 252 g de deuterio Física Nuclear - 2º de Bachillerato 25

7. LA CUATRO INTERACCIONES Existen cuatro tipos de interacciones fundamentales: Nuclear fuerte: La más intensa, de muy corto alcance, 10-15 nucleones. Es responsable de la estabilidad de los núcleos. m, afecta a los Electromagnética: es la segunda en intensidad. 100 veces menor que la interacción fuerte. Actúa sobre partículas cargadas. Es responsable de las estructura de la materia. Nuclear débil: tiene un radio de acción de 10-17 m, es 10-5 veces menor que la interacción fuerte. Es responsable de la desintegración beta de los núcleos atómicos. Gravitatoria: es la más débil. Es atractiva en todas las masas, su alcance es ilimitado y es responsable de la estructura general del Universo. Física Nuclear - 2º de Bachillerato 26

DATACIÓN ARQUEOLÓGICA POR EL MÉTODO DEL 14 C El 14 C se forma por la acción de los rayos cósmicos, que, al interaccionar con las capas altas de la atmósfera, producen neutrones. Estos neutrones colisionan después con núcleos de 14 N y originan el 14 C según la reacción: 1 14 14 1 0n 7 N 6C 1H El isótopo formado se mezcla con el isótopo estable 12 C en el medio ambiente y, a través del proceso de intercambio, es ingerido por los seres vivos. Una vez que el ser vivo fallece, el proceso de intercambio cesa y la proporción de 14 C comienza a disminuir por desintegración beta, según el siguiente proceso: C N 14 14 0 6 7 1 e Así pues, midiendo la proporción residual de 14 C en la muestra y teniendo en cuenta que su período de semidesintegración es de 5730 años, puede determinarse la antigüedad de un resto arqueológico. Física Nuclear - 2º de Bachillerato 27

E10.: Se observa que la actividad radiactiva de una muestra de madera prehistórica es diez veces menor que la de una muestra de igual masa de madera moderna. Sabiendo que el período de semidesintegración del 14C es de 5730 años, calcula la antigüedad de la madera prehistórica. Si la actividad de la muestra es la décima parte, es porque el número de átomos de 14 C sin desintegrar es también la décima parte del que habría originalmente, que sería el mismo que el que contiene la muestra moderna. Si N 0 es el número de núcleos de 14 C presentes inicialmente en la muestra, el tiempo que transcurre hasta que se reduce a la décima parte será: N0 t ln10 ln10 e t T1/ 2 t 192035 años 10 ln ln 2 Ésta sería la edad aproximada de la muestra de madera prehistórica. E11.: Una muestra de madera procedente de la caja de una momia egipcia, da 13536 desintegraciones en un día/gramo de carbono. Establece la edad de la caja de la momia. Datos: 1 g de C de una muestra actual experimenta 920 desintegraciones/hora; T 1/2 ( 14 C): 5730 años. 4045 años Física Nuclear - 2º de Bachillerato 28