Amplificadores Operacionales

Documentos relacionados
TEMA 3 Amplificadores Operacionales

APLICACIONES NO LINEALES TEMA 3 COMPARADOR

2 Electrónica Analógica TEMA II. Electrónica Analógica

Parcial_2_Curso.2012_2013

EL42A - Circuitos Electrónicos

Tema 07: Acondicionamiento. M. en C. Edgardo Adrián Franco Martínez edgardoadrianfrancom

El amplificador operacional

Amplificadores Operacionales

Tema 2 El Amplificador Operacional

CARACTERÍSTICAS DEL AMPLIFICADOR OPERACIONAL IDEAL. Ganancia infinita A = Impedancia de entrada infinita Ri = Impedancia de salida cero Ro = 0

Amplificación de las señales.

= = Amplificador inversor. Considere el amplificador operacional de la figura Obtengamos el voltaje de salida

Pontificia Universidad Católica Argentina

Trabajo práctico: Amplificador Operacional

Problemas Tema 6. Figura 6.3

FILTROS ACTIVOS FILTROS ACTIVOS

Temario. Tema 5. El amplificador operacional real OBJETIVOS DEL TEMA. Introducción

Práctica Nº 5 AMPLIFICADORES OPERACIONALES.

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

EC1282 LABORATORIO DE CIRCUITOS PRELABORATORIO Nº 7 PRÁCTICA Nº 9 APLICACIONES DEL AMPLIFICADOR OPERACIONAL. Seguidor de voltaje

Trabajo práctico: Amplificador Operacional

Electrónica Analógica

Tutorial de Electrónica

E.E.T Nº 460 GUILLERMO LEHMANN Departamento de Electrónica. Sistemas electrónicos analógicos y digitales TRABAJO PRÁCTICO

Reguladores de voltaje

UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA

TEMA 4.1 OPAMP TEMA 4 AMPLIFICADOR OPERACIONAL FUNDAMENTOS DE ELECTRÓNICA

Tema 6.-AMPLIFICADORES OPERACIONALES

Amplificadores diferenciales, de instrumentación y de puente

TOTAL DE HORAS: Semanas de clase: 6 Teóricas: 4 Prácticas: 2. SERIACIÓN OBLIGATORIA ANTECEDENTE: Ninguna SERIACIÓN OBLIGATORIA SUBSECUENTE: Ninguna

MÓDULO Nº9 AMPLIFICADORES OPERACIONALES. Explicar que es un amplificador operacional. Entender el funcionamiento de los circuitos básicos con OP AMP.

Electrónica 1. Práctico 1 Amplificadores Operacionales 1

UNIVERSIDAD AUTONOMA DE QUERETARO Facultad de Informática

Electrónica Analógica Amplificadores Operacionales Práctica 4

CUESTIONES DEL TEMA I

Realimentación. Electrónica Analógica II. Bioingeniería

Electrónica 1. Práctico 2 Amplificadores operacionales 2

Amplificador Operacional: caracterización y aplicación

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM ELECTRÓNICA

TEMA 6 AMPLIFICACIÓN. AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

EL AMPLIFICADOR OPERACIONAL

TELECONTROL Y AUTOMATISMOS

INDICE Capitulo 1. Magnitudes Electrónicas y Resolución de Circuitos de cc Capitulo 2. Capacidad e Inductancia. Comportamiento en cc

Fuentes de alimentación. Lineales

Objetivo En este ejercicio se utilizan diversos IV de NI Elvis para medir las características de filtros pasa bajas, pasa altas y pasa banda.

1. PRESENTANDO A LOS PROTAGONISTAS...

AMPLIFICADORES OPERACIONALES. Un Amplificador operacional es un dispositivo con dos puertas de entrada y una de salida, que se caracteriza por tener:

Teoría de Circuitos: amplicadores operacionales

CONSULTA PREVIA La información necesaria para el desarrollo de la práctica, se encuentra disponible al menos en las siguientes referencias.

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

Diagrama en bloques elemental de un instrumento electrónico analógico. Diagrama en bloques elemental de un Instrumento Digital

Teoría de Circuitos: amplicadores operacionales

Amplificador en Emisor Seguidor con Autopolarización

Análisis de estabilidad en circuitos con amplificadores operacionales

TEMA: OPERADOR COMO COMPARADOR

Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.

LABORATORIOS DE: DISPOSITIVOS DE ALMACENAMIENTO Y DE ENTRADA/SALIDA. MEMORIAS Y PERIFÉRICOS.

INDICE. XV I. Dispositivos de efecto de campo Capitulo 1. Transistores de unión de efecto de campo

Laboratorio de Electrotecnia Experiencia 3: Amplificadores Operacionales

Electrónica 2. Práctico 2 Osciladores

EC 1177 CIRCUITOS ELECTRÓNICOS I

Control PID. Sintonización e implementación

6.071 Prácticas de laboratorio 4 Amplificadores operacionales

Sistema de Medida de Respuesta en Frecuencia de Circuitos Analógicos

6. Amplificadores Operacionales

APLICACIONES LINEALES DEL AMPLIFICADOR OPERACIONAL

PREPARACIÓN DE LA PRÁCTICA 2: DIODOS Y ZENERS RECTIFICADORES Y REGULADORES. Hoja de datos del diodo rectificador 1N400X. Valores Máximos Absolutos

TEMA 5.- AMPLIFICADORES OPERACIONALES

ELECTRÓNICA Y CONTROL II Prof. Fabián Villaverde

AMPLIFICADOR OPERACIONAL REALIMENTADO

TEMA 1. Introducción al procesado analógico de señales

Práctica No. 2 Leyes de Kirchhoff Objetivo Hacer una comprobación experimental de las leyes de Kirchhoff.

AMPLIFICADOR OPERACIONAL REALIMENTADO

PRACTICA Nº 1: APLICACIONES DEL AMPLIFICADOR OPERACIONAL

GENERADORES DE ONDA ESCALERA

Contenido. Capítulo 2 Semiconductores 26

Filtros pasivos. Practica 1 de diseño con electrónica integrada:

DISPOSITIVOS ACTIVOS EN MODO DE CONMUTACIÓN

UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"

Ejercicios analógicos

TEMA 5 AMPLIFICADORES OPERACIONALES

Centro universitario UAEM Zumpango. Ingeniería en Computación. Semestre: Sexto. Docente: M. en C. Valentín Trujillo Mora

4.3.- EL AMPLIFICADOR DE INSTRUMENTACIÓN

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADOR DIFERENCIAL DISCRETO

Teoría de Circuitos. Práctico 8 Amplificadores Operacionales 2012

i = Is e v nv T ANÁLISIS MATEMÁTICO UTILIZANDO LA CARACTERÍSTICA REAL DEL DIODO (APROXIMACIONES SUCESIVAS)

MEDICIONES DE CARACTERÍSTICAS DE CIRCUITOS ELECTRÓNICOS APLICACIÓN DEL AMPLIFICADOR DIFERENCIAL

Amplificadores de Instrumentación

Tecnología Electrónica

Amplificadores operacionales con diodos

INDICE. Prologo I: Prologo a la electrónica Avance Breve historia Dispositivos pasivos y activos Circuitos electrónicos

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO. Asignatura: Horas: Total (horas):

Slew Rate. Debido al efecto Slew rate se obtiene:

UNIVERSIDAD RICARDO PALMA FACULTAD DE INGENIERÍA ESCUELA ACADEMICO PROFESIONAL DE INGENIERIA ELECTRONICA

ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB

Electrónica 2. Práctico 7 Estructura de los Amplificadores Operacionales

AMPLIFICADOR OPERACIONAL CASCODO PLEGADO EN TECNOLOGÍA CNM25

Transcripción:

Amplificadores Operacionales Introducción l amplificador operacional es básicamente un amplificador de tensión con la particularidad de tener dos entradas, y amplificar solo la señal diferencia entre ellas. Fue utilizado originalmente para realizar operaciones aritméticas de suma, resta, derivación, integración, logaritmación, etc, en computadores analógicos. Actualmente está presente en casi todas las aplicaciones electrónicas como instrumentos, audio, radio, televisión, computación, etc. l siguiente esquema representa un amplificador operacional: e e e _ l amplificador operacional amplifica la tensión e con una ganancia a produciendo una tensión de salida. Las entradas y pueden alimentarse por dos tensiones referidas a masa, y, o por una tensión flotante e, aplicada directamente entre e y e. La tensión de salida, referida a masa, está en fase con la tensión de entrada y en contrafase con la tensión de entrada. = e = ( ) ae Las tensiones, y se llaman tensiones de modo común y pueden ser de varios milivoltios a decenas de voltios, mientras que e es una tensión diferencial. n los amplificadores operacionales reales e suele ser muy pequeña, desde algunos microvoltios hasta algunos milivoltios. Las características deseadas en un amplificador de tensión son: Baja impedancia de salida Alta impedancia de entrada Alta ganancia de tensión Ancho de banda grande Tensiones de entrada y salida, de modo común, altas Para un amplificador operacional ideal" se define: Impedancia de salida = 0 Impedancia de entrada = Ganancia de tensión = Tensiones de entrada y salida de modo común = Con la tecnología actual, los amplificadores operacionales reales cumplen o superan los siguientes valores: Impedancia de salida < 00 Ω

Impedancia de entrada > MΩ Ganancia de tensión > 00 db Producto ganancia - ancho de banda > MHz Tensiones de entrada y salida de modo común > ±0 (con fuente se alimentación de ± ) Las técnicas de realimentación logran que un amplificador operacional real se comporte muy aproximadamente como un amplificador de tensión ideal. Conceptos básicos de realimentación La mayoría de las aplicaciones prácticas de amplificadores operacionales se basan en los conceptos de realimentación. l siguiente esquema muestra un amplificador realimentado : e a Amplificador _ básico r r Circuito de realimentación l amplificador básico tiene una ganancia a llamada ganancia a lazo abierto. La función de transferencia del circuito realimentador es r. ste circuito opera monitoreando la señal de la salida y produciendo la señal de realimentación r = r. Generalmente es r <, ya que r > produce inestabilidad. La señal efectivamente aplicada al amplificador básico es la diferencia entre la señal de entrada del amplificador realimentado y la señal de realimentación: e = r La señal de salida es = a e, con lo que: = a e = a ( r ) = a ( r ) Y la amplificación del sistema resulta: A = a = ar l producto ar se llama "ganancia de lazo" y cuando ar >> la amplificación del sistema o "ganancia de lazo cerrado", se aproxima a, ya que lim a r ar ar =. r Como el circuito de realimentación se compone de elementos pasivos, el valor de r puede lograrse con precisión, fijando así el comportamiento del sistema e independizándolo de las variaciones en la ganancia de lazo abierto a del elemento activo del sistema (en nuestro caso el amplificador operacional). sta independencia de los parámetros del amplificador básico, en el

comportamiento a lazo cerrado del sistema, es el principal motivo del extenso uso del amplificador operacional como elemento activo en circuitos analógicos. Aplicaciones típicas de los amplificadores operacionales Debido a la simplicidad de los circuitos que estudiaremos, resulta más conveniente su análisis utilizando las leyes de Kirchoff en lugar de considerarlos circuitos realimentados, aunque utilizaremos los principios de realimentación para entender su comportamiento. Amplificador de tensión realimentado Con un amplificador operacional puede lograrse un amplificador de tensión con una ganancia fija y muy estable. Hay dos formas de configurarlo, según se requiera que la tensión de salida esté en fase con la de entrada o en contrafase. Amplificador inversor e I a I e e A = ganancia del amplificador realimentado = / a = ganancia del amplificador operacional (o a lazo abierto) e y e son las entradas, en fase y contrafase respectivamente con la tensión de salida. Asumimos que la impedancia de entrada del amplificador operacional es infinita y su impedancia de salida es cero. umando corrientes en el nodo e se plantea: e e = 0 eagrupando: = e( ) Con una ganancia de lazo a, la tensión de entrada del amplificador operacional es: Combinando se tiene: A = e = a = a

Donde A es la ganancia del amplificador. i la ganancia a del amplificador operacional es suficientemente grande como para que: << a La ganancia de lazo cerrado resulta: A l signo negativo indica que la señal de salida está en contrafase con la señal de entrada, por eso esta configuración recibe el nombre de inversor de tensión. Notar que la ganancia de lazo cerrado (o del sistema) depende sólo de los componentes pasivos y, ambos externos al amplificador operacional, por lo que puede lograrse una gran precisión en el comportamiento del amplificador independizándose de variaciones en la ganancia a del amplificador operacional. Por ejemplo, asumamos = KΩ y = 0 KΩ, y probemos dos 4 5 amplificadores operacionales, uno con a =0 y otro con a =0 : A = = a Usando la ecuación, obtenemos para el primero una ganancia A = 9,989 y para el segundo A = 9,999. Gracias a la enorme ganancia de los amplificadores operacionales podemos aproximar el análisis de este tipo de circuitos al concepto de sumador. Cuando el amplificador operacional es utilizado en un circuito realimentado vimos que siendo e = / a (para valores finitos de ), cuando ar >> podemos aproximar el voltaje de entrada del amplificador operacional a cero, o sea e 0. sto a su vez nos permite asumir que no entra o sale ninguna corriente en los terminales de entrada del amplificador operacional, ya que la tensión entre ellos es cero. Con lo que el terminal de entrada e (conocida también como entrada inversora) del amplificador operacional es un nodo sumador de corrientes. Para ilustrar el concepto de suma de corrientes, vemos que la corriente de entrada es I = /, pero no entra al amplificador operacional, sino que se dirige a la salida a través de, generando una tensión = ( / ). e puede considerar que el terminal e se comporta como "masa virtual", ya que en todo momento su tensión respeto de masa es cero. Como la entrada e (conocida también como entrada no inversora) está conectada masa, la impedancia de entrada del amplificador resulta Z =. Aunque la impedancia de salida del amplificador operacional real (Z ) es mayor que cero, la impedancia de salida del amplificador inversor (Z ALIDA ) se ve reducida gracias al efecto de la realimentación, con lo que si a >> resulta Z ALIDA << Z. Amplificador no inversor e e e Ie e e

Considerando que la impedancia de entrada del amplificador básico es infinita, será: Ie = 0 y e = eemplazando en = a e = a (e e ), se tiene que a Operando se llega a: A = = a que para a >> resulta: A = Dado que es A > 0, la tensión de salida está en fase con la de entrada. Para esta configuración se ve que siendo e = / a, con a >> resulta e 0 (para valores finitos de ). Y en consecuencia la impedancia de entrada del amplificador realimentado resulta infinita, ya que el efecto de la realimentación hace que la tensión presente en e sea idéntica a la de e y por lo tanto no circulará ninguna corriente entre las entradas e y e por el interior del amplificador básico, incluso utilizando un amplificador operacional real con impedancia de entrada diferencial no es infinita. n un amplificador operacional real, además de la impedancia de entrada diferencial Z D, existen también las impedancias de entrada de modo común entre las entradas e, e y masa. e Z Z D Z ALIDA e _ Z ~ a ( e e ) Las impedancias Z y Z no están incluidas en el efecto de realimentación y aparecen presentes en la entrada del amplificador no inversor, de manera que su impedancia de entrada es Z = Z. Además Z queda en paralelo con de la malla del realimentador, debiendo considerarse su efecto cuando no se verifica que Z >>. La impedancia de salida del amplificador realimentado es la del amplificador operacional reducida por el factor /(ar), siendo r = / ( ), resultando Z ALIDA = Z / ( ar). i por ejemplo es r = /0, a = 0 5 y Z = 00 Ω, resulta Z ALIDA = 0,0 Ω. Notar que sin realimentación, Z ALIDA = Z, pues es r = 0. Una variante muy empleada del amplificador no inversor es el seguidor de tensión e e _

Donde utilizando A = con = y = 0 se obtiene: A = = La impedancia de entrada es muy alta y la de salida muy baja, por lo que éste circuito se utiliza como separador de ganancia unidad. Otro efecto importante de la realimentación es el aumento del ancho de banda del amplificador realimentado en relación con la del amplificador operacional. Para la mayoría de los amplificadores operacionales, el producto ganancia - ancho de banda es constante respecto de la frecuencia. iendo AB ALIDA el ancho de banda del amplificador realimentado y AB el ancho de banda del amplificador operacional, se verifica que ABALIDA = AB ( ar). Notar que a depende de la frecuencia en un amplificador operacional real. l producto ganancia - ancho de banda es constante solo si la respuesta en frecuencia del amplificador operacional tiene una pendiente de 0 db/década a partir de la frecuencia de corte. l siguiente ejemplo permite apreciar como están relacionados la amplificación y el ancho de banda: A, a [db] 00 a e a 0 A 0 0 0 5 0 6 f [Hz] A = 0 veces = 0 db Amplificador diferencial Combinando el amplificador inversor y el no inversor se tiene el siguiente esquema: e e a e

Procediendo en forma similar a los casos anteriores se llega a = ( ) O sea que el circuito amplifica / veces la tensión diferencia. Las impedancias de entrada son Z = para la entrada y Z = para la entrada. Ésta configuración es muy utilizada en instrumentación, por ejemplo para medir el balance de un puente de Wheatstone. Integrador C e I I e Basado en el amplificador inversor, la corriente de entrada I debe ser igual a la corriente I debido a que e (masa virtual) funciona como sumador (de corrientes). La corriente I cargará el capacitor C según la ecuación: y como I = I =, será: t (t) = I dt (0) C 0 (t) = dt (0) C 0 t Para un amplificador operacional real, el rango práctico de tensiones para está acotado por las tensiones de su fuente de alimentación. Diferenciador e intercambia el capacitor y el resistor. C e I I e

abemos que tratándose de un circuito realimentado con la misma configuración que el amplificador inversor, las corrientes I e I son iguales. Además por ser e una masa virtual, la corriente en el capacitor es: como es = I, y siendo I = I, resulta: umador I = d C dt d = C dt Puede realizarse un amplificador inversor con varias entradas dónde la salida resulta suma de todas las entradas y la ganancia se fija independientemente para cada una. 3 I I I 3 3 e Ie e e I n n egún lo visto para el amplificador inversor, siendo a >> resulta e 0 (para valores finitos de ). También Ie 0 debido a que la impedancia del amplificador operacional es muy grande (podemos considerarla infinita). Por lo que e resulta un nodo sumador, a la vez que puede considerarse una masa virtual. Planteando Kirchoff y resolviendo para obtenemos: = Las impedancias de entrada son respectivamente: I n 3 3 n n Z = Z = Z 3 = 3... Z n = n Comparador de tensión e e

eremos una aplicación que no usa realimentación, pero que es muy utilizada en instrumentos. Por ejemplo, en el circuito de disparo (trigger) del osciloscopio se compara la señal de entrada con una tensión interna ajustable para establecer el comienzo del barrido horizontal. La señal de salida del amplificador operacional es = a ( ), y como a es del orden de 0 5, una diferencia entre y de solo unos pocos cientos de microvoltios hace que tienda a superar los límites físicos impuestos por la fuente de alimentación y. Debido al diseño interno del amplificador operacional, la tensión máxima que alcance será (en módulo) algo menor que la tensión de la fuente. Ésta condición se conoce como recorte y se dice que el amplificador llega al límite de excursión de la señal de salida. l signo de, determinará el signo de. También existen límites para las tensiones aplicadas a las entradas, que cuando se superan pueden dañar al amplificador operacional. e llama excursión máxima de la señal de entrada en modo común, a la tensión máxima aplicable entre las entrada e o e y masa. uele ser o voltios menor que la tensión de alimentación. Consideraciones finales xisten muchas más aplicaciones interesantes que pueden consultarse en la extensa bibliografía existente o de los manuales de especificaciones técnicas de los fabricantes de circuitos integrados analógicos. Pueden realizarse filtros activos con un comportamiento superior a los filtros pasivos, preamplificadores de audio de muy alta calidad, simuladores de inductores utilizando capcitores mediante la técnica del girador (de fase), rectificadores perfectos al incluir el diodo en la realimentación, etc. l circuito integrado amplificador operacional más conocido es el 74 (su nombre industrial). i bien es adecuado para la mayoría de las aplicaciones, hay otros circuitos integrados con características superiores, sobre todo en lo referente al ancho de banda y la impedancia de entrada. Para familiarizarse con los parámetros del mismo, y también con sus limitaciones, se ha anexado su hoja de datos. Autor Ingeniero Albero Bertuccio Bibliografía Título: Analisis y diseño de circuitos integrados analógicos Autores: Paul. Gray y obert G. Meyer ditorial: John Wiley & ons Título: l amplificador operacional y sus aplicaciones Autores: J. C. Marchais ditorial: Marcombo Título: Analog/Interface Ics Device Data ol. & Autores: Motorola ditorial: Motorola

Datos técnicos del amplificador operacional 74