PRÁCTICA 8. REACCIONES QUÍMICAS Y ESTEQUIOMETRÍA DE REACCIONES

Documentos relacionados
PRÁCTICA 8. REACCIONES QUÍMICAS Y ESTEQUIOMETRÍA DE REACCIONES

- Leyes ponderales: Las leyes ponderales relacionan las masas de las sustancias que intervienen en una reacción química.

Las sustancias reaccionan entre sí. REACCIÓN QUÍMICA: proceso en el cual una o varias sustancias cambian para formar sustancias nuevas

UD 3. Las Reacciones químicas. 1-Reacciones y ecuaciones químicas

LEYES PONDERALES Y ESTEQUIOMETRIA- ESTEQUIOMETRIA (ejercicios)

CLASE Nº 2 ESTEQUIOMETRÍA

Tema 2. Reacciones Químicas_Estequiometria Índice

1. REACCIONES QUÍMICAS

5. Transformar los moles de la sustancia problema a las unidades que pida el problema.

Química General. Tema 5 Estequiometría y Reacciones Químicas

FACULTAD DE INGENIERÍA DEPARTAMENTO DE CIENCIAS BÁSICAS QUÍMICA GENERAL REACCIONES QUÍMICAS

Tema 3: Reacciones químicas

4. Estequiometría Antoine-Laurent de Lavoisier

REACCIONES QUÍMICAS. Cómo se simbolizan las reacciones químicas

FACTORES QUE INFLUYEN

Práctica 12. Equilibrios de óxido-reducción. Estados de oxidación y potenciales estándar

Física y Química 4 ESO REACCIONES QUÍMICAS Pág. 1

EL CONCEPTO DE MOL. que contiene 6, moléculas de agua. átomos de hierro. moléculas de amoniaco

Balance de Ecuaciones Químicas

TEMA 2 CONCEPTOS BÁSICOS Cálculos estequiométricos

Moles, Número de Avogadro y Estequiometría

La suma de las masas atómicas de los átomos que forman una molécula es la. masa molecular. Normalmente se miden en Unidad de Masa Atómica (uma).

Universidad Técnica Nacional

Las dos reacciones indicadas previamente pueden describirse de la manera siguiente:

TEMA 7: Problemas de Química

Estequiometría y Leyes Ponderales

UD 0. Cálculos en química

MATERIAL DIDACTICO REACCIONES QUÍMICAS

Estequiometria estequio metría

QUIMICA GENERAL. Una reacción química es el proceso por el cual unas sustancias se transforman en otras.

HCl. NaCl + CO. AgCl + NaNO. Al SO + H H SO. CaO + CO. Na2CO. ZnSO. Hg + CuCl. MgO ZnCl. REACCIONES QUíMICAS

ESTEQUIOMETRÍA II. 2 MgO. En el ejemplo, una molécula monoatómica de magnesio, reacciona con una molécula de oxígeno, formando óxido de magnesio.

REACCIONES DE TRANSFERENCIA DE ELECTRONES, AJUSTE Y ESTEQUIOMETRÍA. 1-Nombra tres sustancias que sean oxidantes enérgicos Por qué?

ÍNDICE REACCIONES QUÍMICAS QUÍMICAS

REACCIONES QUÍMICAS Conceptos básicos CO H 2 O

REACCIONES QUIMICAS. Ciclo del cobre. FUNDAMENTO TEORICO (Reacciones químicas) Objetivos. Universidad Católica del Norte

Representación simbólica de una reacción química en términos de fórmulas químicas.

Química: el estudio del cambio

ESTEQUIOMETRÍA DE LAS REACCIONES

CAMBIOS QUÍMICOS ACTIVIDADES DE REFUERZO ACTIVIDADES FICHA 1

REACCIONES QUÍMICAS. Elementos. Compuestos. CuS

QUÍMICA GENERAL E INORGÁNICA QUÍMICA GENERAL REACCIONES QUÍMICAS Y ESTEQUIOMETRÍA

E S T E Q U I O M E T R I A

LEYES FUNDAMENTALES DE LA QUÍMICA

Seminarios de Química 1

MASAS ATOMICAS. 1 u = 1, g 1 g = 6, u

SESIÓN 2 ESTUDIO DE LA ESTEQUIOMETRIA

ESTEQUIOMETRIA. Es la rama de la química que establece relaciones cuantitativas entre: . Elementos en la formación de compuestos

C: GASES Y PRESIÓN DE VAPOR DEL AGUA

Cambio de color Liberación de energía en forma de luz o calor Absorción de energía (disminución de temperatura) Cambio de olor Aparición de burbujas

Contenidos. Relación Masa-Número de Unidades. Determinación de fórmula Empírica y Molecular. Ecuación Química. Balance de Ecuaciones Químicas

Septiembre Pregunta B1.- Ajuste las siguientes reacciones iónicas redox. Indique para cada caso el agente oxidante y el reductor.

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 7: REACCIONES REDOX

ESTEQUIOMETRIA. Ca + 2 HNO 3 Ca (NO 3 ) 2 + H 2 Relación molar 1 at.gr 2 mol. gr. 1 mol. gr 1 mol. gr Relación en peso 40 g 126 g 164 g 2 g

CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(g)

montagepages.fuselabs.com

ANEXO 1. SECUENCIA DIDACTICA NO. 1 REACCIONES QUÍMICAS

DIVISIÓN DE INGENIERÍA MECATRÓNICA

Reacción y Ecuación Química. SEMANA 04 Licda. Lilian Judith Guzmán Melgar

Relaciones de masa en las reacciones químicas

Representación de una ecuación química. Esta interacción puede llevarse a cabo entre, entre compuestos o bien entre elementos y compuestos.

TIPOS DE REACCIONES QUIMICAS

UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS GUIA DE CLASE No 7

4. CAMBIOS QUÍMICOS 4.1. REACTIVIDAD QUÍMICA.

PUCPR PONCE Enero 2011

SOLUCIONES A LOS EJERCICIOS DE ESTEQUIOMETRÍA

Cálculos de Estequiometría

Masas atómicas (g/mol): O = 16; S = 32; Zn = 65,4. Sol: a) 847 L; b) 710,9 g; c) 1,01 atm.

Práctica 12. Equilibrios de óxido reducción. Estados de oxidación y potenciales estándar

todoesquimica.bligoo.cl

COLEGIO HISPANO AMERICANO PADRES ESCOLAPIOS DEPARTAMENTO DE CIENCIAS

TRABAJO PRÁCTICO N 9 ÓXIDO-REDUCCIÓN

REACCIONES QUÍMICAS. Concepto Ley de Acción de masas Tipos de reacciones Ejemplos

CAMBIOS QUÍMICOS ACTIVIDADES DE REFUERZO. " cloruro de calcio + agua a) Escribe y ajusta la ecuación química correspondiente. ACTIVIDADES FICHA 1

ASIGNATURA: QUIMICA AGROPECUARIA (RB8002) TALLER N 4: ESTEQUIOMETRIA

===== Métodos ===== Tanteo Consiste en dar coeficientes al azar hasta igualar todas las especies.

1. Ajusta la siguiente reacción: El cloro diatómico reacciona con el hidrógeno diatómico para formar cloruro de hidrógeno

PRACTICA No.9 REACCIONES QUIMICAS I

REACCIONES QUÍMICAS. 1º Bachillerato Santa María del Carmen Alicante

ESTEQUIOMETRIA. H 2 SO Na Na 2 SO 4 + H 2 Acido sulfúrico Sodio Sulfato de sodio Hidrógeno

UNIDAD I. TEMA III. ESTEQUIOMETRÍA

REACCIONES QUÍMICAS CONTENIDOS. CONCEPTO DE REACCIÓN QUÍMICA.

Reacciones Químicas Problemas Resueltos

REACCIONES QUÍMICAS CO H 2 O

QUÍMICA PRE UNIVERSITARIA

TRANSFERENCIA DE ELECTRONES AJUSTE DE REACCIONES REDOX

Las ecuaciones químicas son el modo de representar a las reacciones químicas.

PRACTICA DE LABORATORIO 2016 SEMANA 5 REACCIONES DE OXIDO REDUCCION O REDOX Elaborado por: Isabel Fratti de Del Cid

Tema 7 : Reacciones Químicas

Reacciones Químicas. Cambia, todo cambia

PRÁCTICA 9. REACTIVO LIMITANTE

GUIA DE ESTUDIO Nº 7: Equilibrio Químico

I. TEORÍA ATÓMICO-MOLECULAR

CuO (s) + H 2 SO 4(aq) CuSO 4(aq) +H 2 O (aq)

Colegio Piamarta Oración y trabajo Depto. De Ciencias Prof. Nancy González

1. Estequiometría. 1.Estequiometría

LAS REACCIONES QUÍMICAS.

ANDALUCÍA / JUNIO 2000 LOGSE / QUÍMICA / OPCIÓN A /EXAMEN COMPLETO OPCIÓN A

6.2.- Reacciones de oxidación reducción

Transcripción:

PRÁCTICA 8. REACCIONES QUÍMICAS Y ESTEQUIOMETRÍA DE REACCIONES 1.1 FUNDAMENTO TEÓRICO 1.1.1 Reacciones químicas En los procesos físicos las sustancias no cambian su naturaleza, por el contrario, en los procesos químicos aparecen sustancias nuevas, distintas de las que había al principio. Estos procesos en los que una o más sustancias, denominadas reactivos, se transforman en otra u otras sustancias, denominadas productos, se conocen como reacciones químicas. En una reacción química se rompen los enlaces que hay en las moléculas que constituyen los reactivos, los átomos se reorganizan y se forman nuevos enlaces para formar los productos. Las reacciones químicas se representan mediante ecuaciones químicas. En una ecuación química se escriben las fórmulas de los reactivos separadas por un signo de adición, a continuación una flecha que indica el sentido en el que se produce la reacción y por último las fórmulas de los productos separadas también por el signo de adición. También se puede incluir en una reacción química la información acerca de los estados de agregación de los reactivos y los productos. Esto se realiza mediante el uso de una inicial (la cual puede ser s para sólidos, l para líquidos, g para gases o ac para sustancias que se encuentran en soluciones acuosas) que se coloca dentro de un paréntesis. La reacción CH4(g) + O2(g) CO2(g) + H2O(g) Se lee: el CH4 (metano) en estado gaseoso reacciona con el O2 (oxígeno molecular) en estado gaseoso para producir CO2 (dióxido de carbono) en estado gaseoso y H2O (agua) también en estado gaseoso. 1.1.2 Balance de ecuaciones químicas En los procesos químicos los átomos que constituyen los reactivos se reorganizan para formar los productos, pero no se transforman ni desaparecen, por lo tanto, el número de átomos de cada elemento que aparezca en los reactivos debe ser igual al número de átomos del mismo en los productos. Cuando se produce esta situación se dice que la ecuación está balanceada. Lo primero que debe hacerse antes de realizar algún cálculo a partir de una ecuación química es balancearla. Para ello se coloca delante de la fórmula de cada compuesto o sustancia un coeficiente apropiado. Estos coeficientes que se añaden delante de las sustancias que intervienen en la reacción para que ésta quede balanceada se denominan coeficientes estequiométricos. La ecuación CH4(g) + O2(g) CO2(g) + H2O(g) no está ajustada, puesto que el número de átomos de hidrógeno (4) y de oxígeno (2) en los reactivos es distinto al de los productos (2 y 3 respectivamente). En cambio, si se escribe de la siguiente forma: CH4(g) + 2O2(g) CO2(g) + 2H2O(g) los números coinciden y la ecuación está, por lo tanto, balanceada. Se debe tener en cuenta que no se puede modificar los subíndices de los elementos en las fórmulas para balancear una ecuación química. Frecuentemente se obtiene los coeficientes adecuados para el balance de la reacción por tanteo. No existe ninguna norma acerca de cómo proceder para balancear una ecuación química por tanteo, sin embargo, un consejo generalmente útil es empezar a balancear los elementos que sólo aparecen en una sustancia en cada miembro de la reacción. Si no se consigue el balance por tanteo, se puede emplear algún procedimiento matemático que facilite su cálculo como por ejemplo el método de los coeficientes indeterminados, el cual se describe a continuación.

Se escribe un coeficiente indeterminado (con las primeras letras del abecedario) delante de cada uno de los compuestos que aparecen en la ecuación. ach4(g) + bo2(g) cco2(g) + dh2o(g) Se escribe la ecuación de ajuste para cada uno de los elementos que intervienen en la reacción (la relación que debe cumplirse para que ese elemento aparezca en igual cantidad en reactivos y productos). Para el carbono a = c Para el hidrógeno 4a = 2d Para el oxígeno 2b = 2c + d Se asigna un valor arbitrario a uno de los coeficientes y se calcula el valor de los otros resolviendo las ecuaciones. Si se asigna al coeficiente a el valor 1, se puede deducir el valor de c de la primera ecuación 1 = c. En la segunda ecuación, al sustituir el valor de a se obtiene el coeficiente d, 4 = 2d; d = 2. Sustituyendo en la tercera ecuación los valores de c y d se determina el valor del coeficiente b, 2b = 2 + 2; b =2. Si los coeficientes obtenidos no son enteros, se multiplican todos ellos por un mismo número (el m.c.m. de los denominadores) para transformarlos en enteros. De igual manera, si todos los coeficientes son divisibles por un mismo número deben dividirse para conseguir el conjunto de coeficientes enteros más pequeños posible. Se sustituyen los coeficientes indeterminados por los números obtenidos al resolver las ecuaciones y se comprueba que el ajuste se cumple para todos elementos. CH4(g) + 2O2(g) CO2(g) + 2H2O(g) Para el carbono 1 en los reactivos y 1 en los productos, para el hidrógeno 4 en los reactivos y 4 (2 2) los productos, para el oxígeno 4 en los reactivos (2 2) y 4 en los productos (2 + 2 1). La ecuación balanceada puede leerse de la siguiente manera: 1 molécula de CH4 (metano) reacciona con 2 moléculas de O2 (oxígeno) para producir 1 molécula de CO2 (dióxido de carbono) y 2 moléculas de H2O (agua). Del concepto de mol se deduce que los números relativos de moles son idénticos a los números relativos de moléculas y, por lo tanto, la ecuación se puede leer también así: 1 mol de CH4 (metano) reacciona con dos moles de O2 (oxígeno molecular) para producir 1 mol de CO2 (dióxido de carbono) y 2 moles de H2O (agua). (Aunque en este ejemplo coinciden, el número de moles totales de reactivos y productos no tiene por qué coincidir). 1.1.3 Cálculos estequiométricos La ley de conservación de la masa, de Lavoisier, establece que la masa total de los productos de una reacción química es igual a la masa total de los reactivos, de modo que la masa permanece constante durante la reacción. Esto es bastante obvio puesto que se sabe que durante una reacción química no se crean ni se destruyen átomos sino que estos simplemente se reorganizan. En una ecuación química balanceada la suma de las masas de los reactivos debe ser igual a la de los productos. La estequiometría es la parte de la química que estudia las relaciones cuantitativas entre las sustancias que intervienen en una reacción química (reactivos y productos). Los cálculos estequiométricos deben hacerse siempre a partir de la ecuación balanceada. Los coeficientes que se anteponen a cada una de las sustancias para ajustar la ecuación se conocen como coeficientes estequiométricos e indican la proporción de moles que reaccionan de cada reactivo y la proporción de moles que se forman de cada producto. Con esta información y las masas moleculares de los reactivos y productos se puede realizar cualquier cálculo estequiométrico. Independientemente de las unidades utilizadas para expresar la cantidad de los reactivos o productos (moles, gramos, litros u otras unidades) para calcular la cantidad de sustancias reactivas o producidas en una reacción se utilizan moles. Este método se denomina método del mol, lo cual significa que los coeficientes estequiométricos en una reacción química se pueden interpretar como el número de moles de cada sustancia. Recuerde que un mol equivale a 6.022 X 10 23 unidades elementales, las cuales pueden ser átomos, iones, moléculas, unidades fórmula, radicales, electrones entre otras. 1

Para ejemplificar el uso del método del mol en una ecuación química se estudiará el caso del NH3 (amoniaco), el cual puede sintetizarse a partir del hidrógeno y el nitrógeno de la siguiente manera: N2(g) + 3H2(g) 2NH3(g) Los coeficientes estequiométricos muestran que una molécula de N2 reacciona con tres moléculas de H2 para formar dos moléculas de NH3. De aquí se desprende que los números relativos de los moles son los mismos que el numero relativo de las moléculas: N2(g) + 3H2(g) 2NH3(g) 1 molécula 3 moléculas 2 moléculas 6.022 X 10 23 moléculas 3(6.022 X 10 23 moléculas) 2(6.022 X 10 23 moléculas) 1 mol 3 moles 2 moles Por tanto, esta ecuación también se lee como 1 mol de gas N2 se combina con 3 moles de gas H2 para formar 2 moles de gas NH3. En cálculos estequiométricos, se dice que tres moles de H2 equivalen a dos moles de NH3, es decir,3 moles de H2 2 moles de NH3, donde el símbolo significa estequiométricamente equivalente a, es decir 3 moles de H2 estequiométricamente equivale a 2 moles de NH3, lo anterior puede escribirse en forma de relación o razón de la siguiente manera (Recuerde que esta expresión matemática también es un factor unitario o factor de conversión, es decir una fracción en la que en el numerador y denominador se encuentran dos cantidades que guardan una relación de proporcionalidad directa entre sí. Las dos cantidades tienen unidades distintas y/o se refieren a sustancias distintas). Al plantear el supuesto que 16.0 g de H2 reaccionan completamente con N2 para formar NH3, y se cuestiona cuántos gramos de NH3 se formarán?, entonces para realizar este cálculo es necesario observar que la relación existente entre H2 y NH3 es la razón molar de la ecuación balanceada. Así que primero se necesita convertir gramos de H2 a moles de H2, después a moles de NH3 y finalmente a gramos de NH3. Los pasos de conversión son gramos de H2 moles de H2 moles de NH3 gramos de NH3 El cálculo estequiómetrico según el esquema planteado anteriormente es Esto quiere decir que 16 g de H2 reaccionarán completamente con N2 para producir 89.93 g de NH3. El mismo procedimiento puede aplicarse si se desea conocer cuántos gramos de N2 se necesitará para que reaccione completamente 16 g de H2? Como puede observarse el método empleado para resolver problemas de estequiometría consiste en ir multiplicando una determinada cantidad inicial por sucesivos factores de conversión, de tal forma que se simplifique matemáticamente unidades y compuestos químicos que no son de interés, hasta obtener la solución deseada. El método para resolver problemas estequiométricos puede resumirse entonces de la siguiente manera: Se escribe y se balancea la reacción química. Se escribe el dato inicial e incógnita debajo de los compuestos respectivos. Se calcula la masa molar (masa molecular en gramos) del dato inicial y de la incógnita. Se transforma el dato inicial a moles (se utiliza un factor de conversión). Se transforma los moles del dato inicial a moles de la incógnita (debe utilizarse los coeficientes estequiométricos de dato e incógnita de la ecuación balanceada en el factor de conversión) Se transforma los moles de la incógnita a las unidades que pide el problema (se utiliza un factor de conversión). 2

Los factores de conversión empleados dependerán del dato inicial dado y del valor final solicitado. El esquema siguiente ilustra los casos más comunes: Moles de dato Moles de incógnita Masa de dato Moles de dato Moles de incógnita Masa de dato Moles de dato Moles de incógnita Masa de incógnita Cada flecha indica el uso del factor de conversión adecuado para pasar de un valor al otro. En el caso específico de esta práctica se estudiará la reacción siguiente CuSO4*5H2O(s) CuSO4(s) + 5H2O(g) De esta ecuación se puede abstraer la siguiente información: Reactivo: 1 mol de sulfato cúprico pentahidratado en estado sólido, cuya fórmula es CuSO4*5H2O. Productos: 1 mol de sulfato cúprico sólido (CuSO4) y 5 moles de vapor de agua (H2O). Observaciones: Esta reacción se clasifica como de descomposición mediante calentamiento (el símbolo que se utiliza para representar calentamiento es el triángulo que se observa sobre la flecha). Antes de comenzar cualquier cálculo debe asegurarse que la ecuación esté balanceada. La ecuación de este ejemplo se encuentra ya balanceada. Ahora se plantea la pregunta de Cuánto gramos de CuSO4 se producirán a partir del calentamiento de 1.5 gramos de CuSO4*5H2O? Para responder a esta pregunta se hace uso del método para resolver problemas estequiométricos descrito anteriormente a partir de la ecuación balanceada. a. Se escribe la ecuación y se balancea. CuSO4*5H2O(s) CuSO4(s) + 5H2O(g) b. Se define el dato inicial conocido y la incógnita. CuSO4*5H2O(s) CuSO4(s) + 5H2O(g) 2.5 g x c. Se calcula la masa de un mol de la sustancia conocida o dato inicial y la masa de un mol de la sustancia incógnita. La masa de un mol de CuSO4*5H2O se calcula mediante el siguiente principio básico: 1 mol de CuSO4*5H2O está conformado por 1 mol de Cu, 1 mol de S, 9 moles de O y 10 moles de H, esta información se obtiene de la fórmula del compuesto. La información de las masas de un mol de cada elemento se encuentra en la tabla periódica. 1 mol de CuSO4*5H2O está conformado por La masa es gramos de 1 mol de CuSO4*5H2O se determina al sumar cada una de estas masas. La masa en gramos de 1 mol de CuSO4*5H2O = 63.54 g decu + 32.064 g de S + 143.991 g de O + 10.079 g de H. La masa en gramos de 1 mol de CuSO4*5H2O = 249.674 g. Ahora la masa molar de CuSO4 se calcula de la misma forma. La masa en gramos de 1 mol de CuSO4 = 159.600 g. 3

d. Se calcula la incógnita mediante el siguiente esquema: gramos de sustancia dato mol de sustancia dato mol de sustancia incógnita gramos de sustancia incógnita. En teoría, según los cálculos efectuados, al calentar 1.5 gramos de CuSO4*5H2O se producirá 0.956 gramos de CuSO4. Recuerde que para convertir de gramos a moles, ya sea del dato o de la incógnita, debe utilizarse en el factor la relación de gramos para 1 mol de la sustancia mientras que para convertir mol de dato a mol de incógnita debe utilizarse en el factor los coeficientes estequiométricos de dato e incógnita de la ecuación balanceada. La ley de Avogadro dice que un mol de cualquier gas en las mismas condiciones de presión y temperatura ocupa el mismo volumen, independientemente del tipo de gas. En condiciones normales (0ºC y 1 atm), un mol de cualquier gas ocupa un volumen de 22.4 litros. Esta información se puede utilizar para calcular también volúmenes de gases utilizando factores de conversión. También se puede hacer cálculos utilizando la ecuación del gas ideal (pv = nrt) una vez que se han calculado el número de moles. Dentro de los cálculos estequiométricos que pueden realizarse también se encuentra la determinación del reactivo limitante y el rendimiento de una reacción. Cuando se tiene una reacción química en la cual se necesite dos o más reactivos, lo más probable es que no se consuman ambos completamente. En cuanto uno de ellos se agote, la reacción finalizará, sobrando parte de cada uno de los otros. Ese reactivo que se agota en primer lugar se denomina reactivo limitante, y debe identificarse, pues de éste depende la reacción y por lo tanto cualquier otro cálculo estequiométrico principalmente de productos. Cuando de uno de los reactivos se tiene toda la cantidad necesaria (y de sobra) para completar la reacción, a éste se le denomina reactivo en exceso. En teoría, una reacción química irreversible se da al 100%, es decir, el reactivo limitante reacciona completamente. Sin embargo, en la práctica, es posible que parte del reactivo quede sin reaccionar. El rendimiento de la reacción indica qué porcentaje del reactivo es el que realmente reacciona (y, por tanto, qué porcentaje de productos se forman, respecto a la cantidad teórica). El rendimiento de la reacción es, lógicamente, menor que el 100%. 1.1.4 Energía y reacciones químicas Las moléculas almacenan energía en los enlaces que se forman entre los átomos que la componen. Esta energía almacenada en los enlaces de las moléculas se conoce como energía química. Cuando en una reacción química la energía almacenada en los enlaces de los reactivos es mayor que la de los productos, al producirse la reacción se desprenderá energía. Estas reacciones en las que se desprende energía se denominan exotérmicas. En la representación de una reacción exotérmica la energía aparecerá entre los productos de la reacción: CH4 + 2 O2 CO2 + 2 H2O + Energía Reacción exotérmica 4

Cuando en una reacción química la energía almacenada en los enlaces de los reactivos es menor que la de los productos, al producirse la reacción se absorberá energía. Estas reacciones en las que se absorbe energía se denominan endotérmicas. En la representación de una reacción exotérmica la energía aparecerá entre los reactivos 2 H2O + Energía 2 H2 + O2 Reacción endotérmica 1.1.5 Tipos de reacciones químicas Las reacciones se pueden clasificar en: combinación o síntesis, descomposición, de desplazamiento sencillo, de desplazamiento doble y redox (óxido reducción). Las reacciones de combinación son aquellas en las que dos o más sustancias se combinan para formar un solo producto. Una reacción de descomposición es la ruptura de un compuesto en dos o más componentes. En una reacción de desplazamiento sencillo, un ión o átomo de un compuesto se reemplaza por un ión o átomo de otro elemento. En la reacción de doble desplazamiento se produce dos desplazamientos, un átomo o ión de un compuesto se reemplaza por un ión o átomo de otro compuesto. Una reacción rédox o de óxido reducción es aquella donde se dan cambios en los números de oxidación de los elementos como resultado de ganancia y pérdida de electrones. Cuando un elemento se oxida, éste aumenta su número de oxidación como resultado de una pérdida de electrones. Cuando una sustancia se reduce, ésta disminuye su número de oxidación como consecuencia de la ganancia de electrones. A la sustancia que se oxida se le da el nombre de agente reductor debido a que hace que otra sustancia se reduzca y la que se reduce se le da el nombre de agente oxidante. 1.2 OBJETIVOS DE LA PRÁCTICA Clasificar las reacciones que se realicen en: reacciones de síntesis, de descomposición, de desplazamiento sencillo y de doble desplazamiento. Identificar reacciones de óxido-reducción utilizando criterios químicos. Identificar el agente oxidante y el agente reductor en una reacción redox. Calcular el porcentaje de rendimiento de una reacción. 5

1.3 MATERIALES Materiales proporcionados por el laboratorio Cristalería Equipo Reactivos 1 probeta de 5mL 1 beacker de 50 ml. 10 tubos de ensayo 1 Balanza monoplato 1 cápsula de porcelana 1 estufa 1 gradilla de metal 1 espátula 1 pinza para cápsula. Goteros con soluciones Solución de NH3 Fe CuSO4*5H2O Solución de KI Solución de Pb(CH3COO)2 Solución de KMnO4 Solución de CuSO4 Solución de NaHSO3 Solución de H2SO4 Solución de NaOH 1.4 METODOLOGÍA 1.4.1 Cálculos estequiométricos: porcentaje de rendimiento a. Lave cuidadosamente la cápsula de porcelana y séquela. Cuide de no tocar la superficie de la cápsula. b. Si se observa humedad, coloque, utilizando las pinzas, la cápsula sobre la estufa y caliente durante 2 minutos. Luego deje enfriar la cápsula. c. Mida la masa de la cápsula de porcelana y anote el resultado en el cuadro 3 d. Agregue a la cápsula a la cual previamente se le ha determinado la masa, 2.5 gramos de sulfato de cobre pentahidratado (CuSO4*5H2O), y anote los valores en el cuadro 3. e. Con las pinzas, coloque la cápsula sobre la estufa y caliente durante 1 hora o bien hasta que la coloración azul del reactivo desaparezca. f. Suspender el calentamiento. Esperar que la cápsula enfríe. g. Determinar la masa de la cápsula y el sulfato de cobre anhidro y anotar el valor en el cuadro 3. h. Determine el porcentaje de rendimiento y anote el valor en el cuadro 4. 1.4.2 Clasificación de reacciones a. Tome 3 tubos de ensayo que se encuentren limpios. b. Agregue en un tubo diferente las siguientes combinaciones de reactivos. Tubo 1: Agregar con una probeta 5 ml de solución de sulfato cúprico (solución de CuSO4) luego 5 gotas de solución de amoníaco (solución de NH3). La solución de NH3 debe agregarse en la campana de extracción de gases. Observe y anote los cambios observados en el cuadro 2. Tubo 2: Agregar con una probeta 5 ml de solución de sulfato cúprico (solución de CuSO4), después 2 gotas de solución de ácido sulfúrico (solución de H2SO4) para acidificar la solución. La solución de H2SO4 debe agregarse en la campana de extracción de gases. Después mida 0.1 g de Fe (hierro) y deposítelos en el tubo donde se encuentra la solución. 6

Tubo 3: Agregar con una probeta 5 ml de solución de yoduro de potasio (solución de KI), después agregar con una probeta 5 ml de una solución de acetato plumboso (solución de Pb(CH3COO)2). c. Observar y anotar en el cuadro 1 los cambios que se han producido en cada una de las reacciones anteriores. 1.4.3 Reacciones de óxido reducción con permanganato de potasio (KMnO4) a. Lave 3 tubos de ensayo. Enumérelos del 1 al 3. b. En cada uno de ellos coloque 20 gotas de la solución de permanganato de potasio (solución de KMnO4) c. En el tubo de ensayo 1, agregue 20 gotas de solución de ácido sulfúrico (solución de H2SO4). A este tubo agregue con un gotero, gota a gota, la solución de bisulfito de sodio (solución de NaHSO3). El color púrpura de la solución desaparecerá. Anote las observaciones en el cuadro 5. d. Al tubo de ensayo 2 agregue gota a gota la solución de bisulfito de sodio. El color púrpura del permanganato de potasio cambiará y se formará una suspensión de color café. Anote las observaciones en el cuadro 5. e. Al tubo de ensayo 3 agregue con un gotero 20 gotas de solución de hidróxido de sodio (solución NaOH), agregue gota a gota la solución de bisulfito de sodio (solución de NaHSO3). El color púrpura del permanganato cambiará a verde oscuro. Tome en cuenta que en la mayor parte de ocasiones el color es difícil de determinar con exactitud debido a que el producto es muy oscuro. 7

1.5 CUESTIONAMIENTOS Y OBSERVACIONES PARA INCLUIR EN EL INFORME a. Anote los cambios observados en los experimentos de clasificación de reacciones en el siguiente cuadro y complete la columna 3 con información bibliográfica Cuadro 1. Descripción de los cambios observados en las reacciones y discusión de los resultados obtenidos. Cambios observados (cambios de Fundamento químico teórico para explicar las Reacción color, formación de gas, formación observaciones ( Qué sucedió?) de precipitados, entre otros) ensayo 1 ensayo 2 ensayo 3 b. Complete el cuadro 2 con la información faltante y clasifique las reacciones. Cuadro 2. Clasificación de reacciones Reacción ensayo 1 Ecuación química con información faltante CuSO4 + NH3 [Cu(NH3)4]SO4 Ecuación química balanceada con la información completa (fórmulas de reactivos, productos, estados de agregación) Clasificación de la reacción (combinación, descomposición, desplazamiento sencillo, doble desplazamiento, redox) ensayo 2 ensayo 3 Fe + CuSO4 X + Y KI + Pb(CH3COO)2 X + Y 8

c. Complete el siguiente cuadro con la información referente al experimento de determinación de porcentaje de rendimiento Cuadro 3. Registro de la información referente a la determinación del porcentaje de rendimiento para la reacción Información Masa de la cápsula seca Masa de la cápsula + CuSO4*5H2O Masa de CuSO4*5H2O Masa de la cápsula + CuSO4 Masa de CuSO4 CuSO4*5H2O(s) CuSO4(s) + 5H2O(g) Masa (g) d. Complete el cuadro siguiente con los cálculos solicitados, algunos de los cuales se utilizarán para la determinación del porcentaje de rendimiento. Cuadro 4. Cálculos estequiométricos relacionados con la reacción CuSO4*5H2O(s) CuSO4(s) + 5H2O(g) Información solicitada (cálculo estequiométrico) Respuesta 1 Cuál es la masa molar de CuSO4 5H2O? 2 Cuál es la masa molar de CuSO4? 3 Cuántos moles de sulfato cúprico anhidro (CuSO4) se producen por cada mol de sulfato cúprico hidratado CuSO4 5H2O? 4 Cuántos moles de agua se producen por cada mol de sulfato cúprico pentahidratado CuSO4 5H2O? 5 Cuántos gramos de sulfato cúprico anhidro (CuSO4) se producen teóricamente por cada gramo de sulfato cúprico pentahidratado CuSO4 5H2O? 6 A cuántos moles de CuSO4 5H2O equivalen 2.5 gramos de CuSO4 5H2O? 7 Cuántos gramos de sulfato cúprico anhidro (CuSO4) se producen teóricamente al utilizar 2.5 gramos de sulfato de cobre pentahidratado CuSO4 5H2O? 8 Cuántos gramos de sulfato cúprico anhidro (CuSO4) se producen realmente en la práctica? 9 Determine el % de rendimiento de la reacción (divida el valor de la fila 8 entre el cálculo de la fila 7 y multiplíquelo por 100) 9

e. Complete el cuadro siguiente con la información respecto al experimento donde se ha utilizado KMnO4 en reacciones de óxido reducción. Cuadro 5. Descripción de cambios observados durante el experimento con KMnO4 Fundamento químico teórico Reacción Contenido del tubo Cambio observado para explicar las observaciones ensayo 1 KMnO4 + H2SO4 + NaHSO3 ensayo 2 KMnO4 + ensayo 3 KMnO4 + Se produce un cambio de color de morado a rosa pálido (casi incoloro) El manganeso es reducido de MnO - 4 a Mn 2+ casi incoloro (rosa pálido). f. Completar el siguiente cuadro con los nombres de los compuestos de interés en ésta práctica. Cuadro 6. Resumen de las fórmulas y nombres de los compuestos de interés en esta práctica. Fórmula Nombre químico Fórmula Nombre químico CuSO4*5H2O NH3 CuSO4 KI Pb(CH3COO)2 KMnO4 H2SO4 NaOH [Cu(NH3)4]SO4 Fe2(SO4)3 PbI2 H2O MnO2 NaHSO3 1.6 BIBLIOGRAFÍA Chag, R & Goldsby, KA. 2013. Química. Undécima edición. McGraw-Hill. China 2013. 1090 p Ebbing, D. 1997. Química General. Quinta edición. McGraw-Hill. México. 1086 p. Pérez Morales, RA. 2011. Manual de laboratorio de Introducción a la Química. Facultad de Agronomía. Universidad de San Carlos de Guatemala. Guatemala. 50 p. 10