UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Santa Fe



Documentos relacionados
DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN POR CARBONATACIÓN. INFLUENCIA DEL ESPESOR Y CALIDAD DEL RECUBRIMIENTO

EVALUACIÓN DE LAS PROPIEDADES FÍSICAS Y MECÁNICAS DE HORMIGONES ELABORADOS CON DISTINTOS TIPOS DE AGREGADOS PARA SU EMPLEO EN CALZADA DE HORMIGÓN

7. ANALISIS DE RESULTADO. En ente capítulo se incluye un análisis de los resultados promedio obtenidos a partir de los

CÓMO EVITAR LAS FISURAS EN EL HORMIGÓN

ANFAH - Comité Técnico

En Krystaline Waterproofing Technology fabricamos una solución innovadora de la que todavía no ha oído hablar.

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

Estudio de la evaporación

ENSAYOS MECÁNICOS II: TRACCIÓN

EXPANSIÓN POR HUMEDAD DE LAS PIEZAS CERÁMICAS

Contracción por secado del concreto

CAPÍTULO 2 COLUMNAS CORTAS BAJO CARGA AXIAL SIMPLE

Como resultado del ensayo se dará el valor individual de la succión de cada uno de los ladrillos y el valor medio de los seis.

A continuación se presenta los resultados obtenidos en las pruebas realizadas en

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

LAS BASES PERMEABLES AYUDAN A RESOLVER LOS PROBLEMAS DE DRENAJE DE LOS PAVIMENTOS

ENSAYOS DE AGREGADOS PARA HORMIGONES

Práctica 2B Ensayo Edométrico Prácticas de Laboratorio

Montalbán y Rodríguez, S.A. Prefabricados de hormigón.

ESPECIFICACIONES TÉCNICAS FIBRA DE POLIPROPILENO

INFORME TECNICO RETRACCION PLASTICA REDTECNICA GRUPO POLPAICO

Para base y subbase se harán los ensayos definidos en la especificación correspondiente.

DURABILIDAD DE LAS ESTRUCTURAS: CORROSIÓN INDUCIDA POR EL IÓN CLORURO

T R A C C I Ó N periodo de proporcionalidad o elástico. limite elástico o aparente o superior de fluencia.

Ensayos de hormigón endurecido: determinación de la resistencia a compresión de probetas.

Aditivo para concretos sin o de baja contracción.

NORMATIVIDAD ASOCIADA: NTC 6, 121, 161, 174, 321, 673, 1299, 1393, 2289; ANSI/AWS D I.4; ASTM A48, A438, C39, E10, E 18 y E 140; NEGC 800.

Cualidades Físicas y Mecánicas de los Agregados Reciclados de Concreto. Aplicación en Concretos

DURABILIDAD DEL HORMIGÓN RECICLADO

HOJA INFORMATIVA DE HORTICULTURA

PATOLOGÍAS DE ORIGEN TÉRMICO EN ESTRUCTURAS

El suelo contaminado fue lavado con el surfactante no iónico nonil fenol poe 10,

EL FONDO DE MANIOBRA Y LAS NECESIDADES OPERATIVAS DE FONDOS

2.1. CONCEPTOS BÁSICOS.

Práctica 1A Ensayo de Granulometría Prácticas de Laboratorio

TÉCNICAS DE MEJORA DE TERRENOS

DEFECTOS EN REVESTIMIENTOS CONTINUOS

La importancia de dimensionar correctamente los sistemas de frenado en aerogeneradores residenciales.

CARRETERAS Y PAVIMENTOS DE CONCRETO

Capítulo 5 CONCLUSIONES

CAPITULO 5. PROCESO DE SECADO. El secado se describe como un proceso de eliminación de substancias volátiles (humedad)

Contracciones y deformaciones en las piezas de plástico

MÓDULO 3 CURVAS DE INFILTRACIÓN

UNIDAD 2. Contenido de Humedad del Agua en el Suelo

Recomendaciones generales del cemento

Física de los Procesos Biológicos Curso 2005/6

Del total de agua dulce que hay en la Tierra, casi el 80 % está en forma de hielo. Bajo forma líquida, cerca de un 1 % se considera superficial, y de

1.1. DETERMINACIÓN DEL CONTENIDO DE HUMEDAD.

Técnicas de valor presente para calcular el valor en uso

Requisitos del semillero

No hay resorte que oscile cien años...

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

LÍNEAS DEL DIAGRAMA DE MOLLIER

Covarianza y coeficiente de correlación

Tema 11 Endurecimiento por deformación plástica en frío. Recuperación, Recristalización y Crecimiento del grano.

3.1. ENSAYO COMPRESION NO CONFINADA (CNC).

ANÁLISIS DE DATOS CONTROL DE CALIDAD. Ing. Carlos Brunatti

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

TRANSDUCTORES CAPACITIVOS

Capítulo 6. Valoración respiratoria

SEGURIDAD ESTRUCTURAL en obras de FÁBRICA DE BLOQUES DE HORMIGÓN a través de 13 cuestiones.

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. Potter [10], ha demostrado en una planta piloto que materiales sensibles a la

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD

OBTENCIÓN DE VALORES DEL TERRENO ENSAYOS DE LABORATORIO

RESISTENCIA A LA FLEXIÓN DE MORTEROS DE CEMENTO HIDRÁULICO MTC E

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Gestión de la Configuración

Capítulo 7 Conclusiones y futuras líneas de trabajo 7.1. Conclusiones

SolucionesEspeciales.Net

Bolilla 7: Propiedades de los Líquidos

LA RELACIÓN AGUA CEMENTO 1

CONCEPTOS DE LA FUERZA

CONCEPTOS BÁSICOS DE PREPARACIÓN MECÁNICA DE MINERALES

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

Circuito RL, Respuesta a la frecuencia.

Base Teórica del Ensayo de Tracción

CAPITULO 4 FLUIDIZACIÓN EMPLEANDO VAPOR SOBRECALENTADO. 4.1 Comparación del proceso de sacado con vapor sobrecalentado y aire.

Facultad de Ingeniería y Arquitectura PROPIEDADES HIDRÁULICAS DE LOS SUELOS

Tema 3. Medidas de tendencia central Introducción. Contenido

Costeo Directo Concepto

ESTADOS DE AGREGACIÓN DE LA MATERIA

PARTE 3 - REQUISITOS CONSTRUCTIVOS

Contenidos Didácticos

Determinación del equivalente eléctrico del calor

Rec. UIT-R P RECOMENDACIÓN UIT-R P * CARACTERÍSTICAS ELÉCTRICAS DE LA SUPERFICIE DE LA TIERRA

6 CONCLUSIONES Y RECOMENDACIONES

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Caída de Presión en Tubos de Diferente Diámetro

LA ADICIÓN DE PARTÍCULAS DE NEUMÁTICOS RECICLADOS EN EL CONCRETO

Resistencia al corte de los Suelos

BROCHURE EBI_05.FH11 Thu Mar 17 12:21: Page 1. Composite

Tema 2. Propiedades físicas del suelo.

UNIDAD DE TRABAJO Nº5 CONCEPTO DE SOLDABILIDAD

SECADO DE EMBUTIDOS. es una fuente propicia para el desarrollo de bacterias y mohos.

FASES GASEOSA. Es una fase muy importante para la respiración de los organismos y es responsable de las reacciones de oxidación.

1. Definición. 2. Proceso Productivo

CATÁLOGO FIBRAS DE ACERO PARA EL REFUERZO DEL HORMIGÓN

Fig 4-7 Curva característica de un inversor real

El concreto es el resultado de mezclar arena (agregado fino), grava (agregado grueso), agua y un agente cementante, por lo regular cemento portland o

Transcripción:

UNIVERSIDAD TECNOLOGICA NACIONAL Facultad Regional Santa Fe Cátedra: Tecnología del Hormigón - Ingeniería Civil Profesor: Ing. Ma. Fernanda Carrasco UNIDAD 7. PROPIEDADES DEL HORMIGÓN ENDURECIDO El hormigón presenta características favorables en el estado endurecido que le permiten ser un material de uso masivo en las construcciones civiles. La más importante de las propiedades de este material en ese estado, es la durabilidad. Aunque siempre se hace hincapié en la resistencia, tal vez por que es más fácil de evaluar y resulta muy útil a los proyectistas para el cálculo y diseño de una estructura de hormigón armado. Los procesos de deterioro del hormigón y del acero de refuerzo generalmente se discuten en un ámbito que no incluye a los calculistas. La durabilidad del material en sí mismo es un punto importante, pero debemos realizar estructuras que resulten durables. Este concepto es más amplio y no sólo debemos analizar las características del medio ambiente y de los componentes del hormigón, sino que debemos proyectar las etapas de colocación, compactación y curado, que unidas a la elección de recubrimiento y. disposición de armaduras adecuados, nos permitirá asegurar la durabilidad de la obra. Una durabilidad deficiente implicará incrementar los costos de mantenimiento y reparación de la estructura. Los reglamentos de construcción de estructuras de hormigón especifican relaciones a/c máximas, contenido y tipo de cemento, uso de aditivos, características de los agregados, etc., para obtener una estructura durable. Pero, hasta el momento no existe un reglamento que permita asegurar una definida vida en servicio de la misma. Este es un criterio moderno de diseño por durabilidad. Esto involucra definir o adoptar algún parámetro del material relacionado con el coeficiente de difusión para diferentes especies (por ejemplo cloruros) y revalorizar la función del hormigón de recubrimiento. UNIFORMIDAD DEL HORMIGÓN EN ESTADO ENDURECIDO En todas las etapas del proceso de construcción se debe mantener la uniformidad del material, de manera de lograr que el mismo se encuentre controlado. La falta de uniformidad en el hormigón implica diferencias entre distintos puntos de un elemento estructural, en su capacidad de deformarse, en los niveles de resistencia, en su durabilidad y en su densidad. La uniformidad depende del grado de, control empleado en la elaboración, colocación y curado, etapas previas a la puesta en servicio. Es necesario controlar la granulometría del agregado fino, el tamaño máximo del agregado grueso, las características del cemento, el grado de humedad de los agregados, la medición en peso de los materiales, la exudación y la segregación, el vibrado y el curado. DURABILIDAD Se define como durabilidad a la habilidad del material para resistir la acción de la intemperie, los ataques químicos, abrasivos y cualquier otro proceso de deterioro. Es indispensable que el hormigón mantenga su forma original, su calidad y serviciabilidad cuando esta expuesto al Tecnología del hormigón Página 1/25

medio ambiente, tal cual ha sido proyectado. Cuando esto ocurre se afirma que el hormigón es durable. Los factores que alteran esta propiedad pueden ser externos o internos. Las primeras causas pueden ser originadas por condiciones atmosféricas desfavorables, temperaturas extremas, abrasión, ataques por líquidos o gases. Las causas internas son la reacción álcali-agregado, cambios volumétricos y, sobre todo, la permeabilidad del hormigón. Este factor determina en gran medida la vulnerabilidad del hormigón a los agentes externos y, por ello, un hormigón durable deberá ser relativamente impermeable. Permeabilidad La penetración de iones en solución puede afectar adversamente la durabilidad del hormigón; por lixiviación del Ca(OH) 2, ataque a las armaduras de refuerzo, por reacciones deletéreas o cristalización de sales. Este ingreso depende de la permeabilidad del hormigón y está determinado por la facilidad con que el hormigón puede saturarse de agua, por lo tanto, la permeabilidad se asocia directamente con la vulnerabilidad del hormigón. La permeabilidad es una propiedad que se debe acotar en los hormigones para estructuras que contienen líquidos: presas y reservorios de agua. El ingreso de líquidos al interior del hormigón se puede originar por dos mecanismos: Absorción: es la capacidad de un material de retener agua en su masa. Permeabilidad: es la propiedad de permitir la circulación de agua a través de él. La absorción valora la porosidad del material, y la permeabilidad da un índice de la cantidad tamaño de vacíos que dicho material posee, del grado y tipo de interconexión que existe entre ellos. Para el hormigón elaborado con agregado de peso normal, la permeabilidad es controlada por la porosidad de la pasta de cemento, pero la relación no es tan simple como la distribución del tamaño del poro, que es un factor. Por ejemplo, aunque la porosidad del gel del cemento es de 28 %, su permeabilidad es muy baja (7 x 10-6 m/s), por la textura del gel extremadamente fina y el tamaño pequeño de los poros del gel. La permeabilidad de la pasta de cemento hidratada es mayor por la presencia de poros capilares más grandes y, de hecho, su permeabilidad es generalmente una función de la porosidad capilar (Figura 1). Como la porosidad capilar es controlada por la relación a/c y por el grado de hidratación, también la permeabilidad de la pasta de cemento depende principalmente de esos parámetros. En la figura 2 se muestra que, para un grado determinado de hidratación, la permeabilidad es más baja para pastas con menores relaciones de a/c, especialmente cuando es inferior a 0.6, en la cual los capilares llegan a ser segmentados o discontinuos. Para una relación a/c dada, la permeabilidad disminuye al continuar el cemento hidratándose y llenando algunos de los espacios de agua originales; en estos casos la reducción en permeabilidad es más rápida mientras más baja es la relación a/c. La gran influencia de la segmentación de capilares sobre la permeabilidad ilustra el hecho de que la permeabilidad no es una simple función de porosidad. Es posible que dos cuerpos porosos tengan porosidades similares, pero permeabilidades diferentes, como se muestra en la figura 3. De hecho, sólo un gran paso que conecte a los poros capilares dará como resultado una gran permeabilidad, mientras que la porosidad permanecerá virtualmente sin cambio. Tecnología del hormigón Página 2/25

Figura 1: Relación entre porosidad y permeabilidad de la pasta de cemento (Neville) Figura 2: relación entre el grado de hidratación y razón a/c con la permeabilidad de la pasta de cemento (AATH) Figura 3: Representación esquemática de materiales de porosidad similar: a) permeabilidad alta y poros capilares interconectados; b) permeabilidad baja y poros capilares segmentados (Neville) Ensayo de Permeabilidad (IRAM 1554:1983) Se utilizan probetas de sección cuadrada o circular de diámetros o lados de 15, 20 o 30 cm y con un espesor mínimo de 15 cm, asegurando en todos los casos que las dimensiones sean mayores al triple del tamaño máximo del agregado grueso. La superficie de estas probetas que no está afectada al ensayo se sella mediante dos capas de pasta de agua y cemento con una razón a/c de 0.4. Posteriormente, se aplica agua a presión: 0.1 MPa durante las primeras 48 hs, 0.3 MPa las siguientes 24 hs y 0.7 MPa las últimas 24 hs. (Figura 4) Una vez cumplido el ciclo de aplicación de agua a presión, se dividirá la probeta en dos mitades (aplicando carga con una prensa), determinado sobre cada superficie la penetración máxima de agua en el hormigón. Tecnología del hormigón Página 3/25

Figura 4: Esquema de ensayo de permeabilidad (IRAM) Succión capilar La succión capilar puede explicarse como un proceso mediante el cual el exceso de energía de la superficie de los poros del hormigón, debido a la falta de enlace con las moléculas cercanas, tiende a compensarse adsorbiendo moléculas de agua sobre dichas superficies. La tendencia del material a absorber agua crea una succión capilar que es función de la tensión superficial del líquido, y de la geometría y dimensiones de los poros. La capacidad y la velocidad de succión del hormigón y particularmente del hormigón de recubrimiento es un parámetro asociado con la durabilidad de las estructuras de hormigón. Este comportamiento se ajusta a la siguiente expresión: I= C+ S t 1/2 donde I es la cantidad acumulada de agua absorbida, S la tasa de succión, t el tiempo de inmersión y C una constante que tiene en cuenta la perturbación inicial provocada por las condiciones de ensayo y que depende de la terminación de la superficie. El ensayo de succión capilar se representa en forma gráfica como la cantidad de agua absorbida por unidad de área en función de la raíz cuadrada del tiempo como puede observarse en la Figura 5, en la misma el valor final indica la cantidad total de agua absorbida por el material. Algunos autores afirman que en los primeros instantes del ensayo los poros capilares dominan el proceso de succión y luego la tasa de flujo es limitada por los poros del gel. En consecuencia, la parte de esta curva comprendida entre 0 y 1 hora representa la cantidad de agua necesaria para llenar los poros grandes y se denomina succión inicial (S O ); en tanto que, la segunda parte de la curva es la cantidad de agua necesaria para llenar los poros más finos. En esta última es posible determinar mediante un análisis de regresión la velocidad de succión de los hormigones como la pendiente de la curva en dicha zona. Figura 5: representación resultados de ensayo de succión capilar (Menéndez et. Al) Tecnología del hormigón Página 4/25

Ensayo de succión capilar (IRAM 1871:2004) El método consiste en registrar el incremento de masa de una muestra, constituida por una probeta o testigo de hormigón endurecido, sometido a la acción del contacto con agua en una de sus bases. Las muestras de ensayo están constituidas por probetas y/o testigos calados de hormigón endurecido sobre los cuales se realiza un primer aserrado a 3 cm del extremo correspondiente a la base de contacto de la probeta con el molde, se descarta el corte realizado y se reitera el aserrado de la probeta a una distancia de 50 mm ± 2 mm, esta sección conforma la probeta de ensayo (figura 6). Se sella con pintura impermeabilizante toda la superficie lateral de las probetas o testigos para evitar la absorción en ese sector no contemplado en los cálculos y se secan en estufa a 50 C ± 2 C hasta masa constante. Las probetas se introducen en un recipiente cerrado, sobre la base de apoyo, con una altura de agua respecto de la base de absorción de 2 mm ± 1 mm y a una temperatura de 20 C ± 2 C (figura 7). Este instante se registra como el tiempo inicial del ensayo (t=0) y luego, periódicamente, se retira cuidadosamente cada probeta o testigo, se enjuga con un paño la base de absorción y la superficie lateral y se determina la masa húmeda. Figuras 6: obtención de probetas (IRAM) Figura 7: esquema de ensayo de succión (Menéndez et. Al) ESTABILIDAD VOLUMÉTRICA El hormigón es inestable volumétricamente y específicamente la pasta es la responsable de los cambios que sufre el material, cuando se modifica el grado de humedad o se halla sometido a un esfuerzo permanente. Un buen hormigón puede tener variaciones de 150 a 200 µm/m, y cuando existe un exceso de agua de mezclado puede alcanzar los 400 ó 500 µm/m. Estas dilataciones y contracciones que sufre el hormigón generan tensiones de compresión y de tracción, respectivamente, si los vínculos (fundación, capa de hormigón de mayor edad) se las restringen. Los esfuerzos de compresión no crean problemas, pero si los de tracción, debido a la poca capacidad que tiene el hormigón para resistir este tipo de esfuerzos. El agua, al ingresar al hormigón provoca un incremento de volumen por la presión que genera, luego, al evaporarse el efecto es contrario, el material se contrae. Tecnología del hormigón Página 5/25

Factores que Influyen sobre la Contracción y el Creep De la Pasta Porosidad de la pasta (Edad, relación a/g y grado de hidratación) Temperatura de curado Composición del cemento Contenido de humedad Aditivos presentes Del Hormigón Rigidez del agregado Contenido de agregado (contenido de cemento) Relación Volumen/superficie Densidad Del Medio Ambiente Humedad relativa Velocidad de secado Tiempo de secado Carga aplicada (solo para creep) Duración de la carga (solo para creep) Contracción por secado Las variaciones de humedad en el hormigón endurecido están indefectiblemente acompañadas por variaciones volumétricas. La reducción de volumen que se produce durante el secado se denomina contracción por secado y el aumento de volumen, como resultado de un rehumedecimiento, hinchamiento o expansión. Parte de esta deformación es irreversible y debe distinguirse de la parte reversible, llamada movimiento por humedad. Cuando el hormigón se seca, en primera instancia se pierde el agua libre, es decir, el agua contenida en los poros capilares que no está químicamente combinada. Este proceso induce gradientes de humedad en la pasta de cemento, de modo que, con el tiempo las moléculas de agua se transfieren de la superficie del C-S-H hacia los capilares vacíos y luego fuera del hormigón y como consecuencia, la pasta de cemento se contrae. Sin embargo, la reducción de volumen que experimenta la pasta no es equivalente al volumen de agua perdida, ya que existen restricciones impuestas a la consolidación de la estructura del C-S-H y al hecho de que la salida del agua libre no causa contracciones volumétricas significativas de la pasta. Contracción por carbonatación Además de la contracción por secado, en el hormigón endurecido se produce una contracción por carbonatación. Muchos datos experimentales incluyen ambos tipos de contracción, pero sus mecanismos son diferentes. Cabe puntualizar que, por carbonatación se entiende a la reacción del CO 2, proveniente del medio ambiente, con el cemento hidratado. El gas CO 2 está presente en la atmósfera (aproximadamente 0.03 % en el aire rural; 0.1 % en laboratorios no ventilados y generalmente más de 0.3 % en ciudades) y en proporciones suficientes para causar una reacción considerable con la pasta de cemento, a largo plazo. En presencia de humedad, el CO 2 forma ácido carbónico que reacciona con el Ca(OH) 2 para formar CaCO 3 ; además, otros compuestos del cemento también se descomponen y forman sílice hidratada, alúmina y óxido férrico. Tecnología del hormigón Página 6/25

Figura 8. Comportamiento típico del hormigón sometido a secado y rehumedecimiento. [adaptado de Mindes] Figura 9. Relación entre la contracción por fraguado y el tiempo para hormigones almacenados a diferente humedad relativa. Tiempo calculado desde el final del curado húmedo a la edad de 28 días [Neville] El hormigón expuesto a la carbonatación pierde agua y se comporta como si hubiera sido secado a una humedad relativa inferior de aquella a la que fue sometido realmente. Además, la contracción por carbonatación es totalmente irreversible. Uno de los mecanismos propuestos corresponde a Powers quien atribuye la contracción a la disolución del hidróxido de calcio mientras los cristales están sometidos a presión. Según este modelo esta disolución incrementa temporariamente las tensiones en los sólidos remanentes de la pasta, provocando la contracción y el depósito del carbonato de calcio resultante no produce cambios de volumen porque se produce en espacios que no están sujetos a presión alguna. En la figura 10 se observa que la carbonatación aumenta la contracción en niveles intermedios de humedad relativa, pero no para el 100 % o 25 %. La explicación para este Tecnología del hormigón Página 7/25

fenómeno radica en que en el último caso, no hay cantidad suficiente de agua en los poros de la pasta de cemento para formar el ácido carbónico y para una humedad relativa muy elevada, los poros están llenos de agua y la difusión del CO 2 resulta muy lenta. Figura 10. Contracción por secado y por carbonatación de morteros a diferente humedad relativa. [Neville] Ensayo contracción por secado (IRAM 1597:1992) En Argentina, la norma IRAM 1597:1992 establece la metodología para evaluar los cambios de longitud de probetas de mortero y hormigón. En este documento no se establecen dosificaciones de los materiales componentes de las mezclas, pero se requieren consistencias a través de la exigencia de índices de fluidez entre 100 y 115 % para los morteros y de un asentamiento, medidos con el tronco de cono, de 7,5 ± 1,5 cm para el hormigón. Las probetas utilizadas son de sección cuadrada de 25 mm de lado y 250 mm de longitud efectiva para el caso de los morteros y de 100 mm de lado en el caso de los hormigones. En este caso se define a la longitud efectiva como la distancia entre las caras internas de los puntos de referencia que se colocan en los extremos de las piezas. Las probetas se desmoldan una vez transcurridas 24 horas, durante las que se mantienen a 23 ± 2 C y no menos de 90 % de humedad relativa. En ese momento se toma la lectura inicial y se las mantiene luego, hasta completar el período de 28 días, en una cámara con 100 % de humedad relativa o sumergidas en una solución saturada de hidróxido de calcio a 23 ± 1 C. La norma permite variar la duración de este período de curado cuando sea necesario. Una vez concluido el período de curado se registra nuevamente la longitud de las probetas y se almacenan en una cámara que mantiene una humedad relativa del 50 ± 2 % y una temperatura de 23 ± 2 C, a menos que se establezcan condiciones diferentes. Las lecturas posteriores de la longitud de las probetas se realizan a las edades de 3; 7; 28 y 56 días y de 3; 6; 9; y 12 meses a partir de la finalización del curado húmedo. Tecnología del hormigón Página 8/25

Contracción restringida y fisuración Desde un punto de vista práctico, lo que resulta relevante no es la ocurrencia de la contracción en sí, sino la fisuración que ésta provoca. Como las tensiones y las deformaciones ocurren en forma simultánea, cualquier restricción al movimiento induce una tensión correspondiente a la deformación restringida, que resulta de la diferencia entre la deformación libre y la efectivamente medida. Si estas tensiones y deformaciones restringidas se desarrollan hasta exceder la capacidad resistente o de deformación del hormigón, es de esperar que se produzca la fisuración del material. Estas restricciones pueden inducir tanto tensiones de tracción como de compresión, pero en la mayoría de los casos es la tracción la que causa inconvenientes. Además, las restricciones pueden ser de carácter externo o interno. Las restricciones externas se presentan cuando el movimiento de una pieza de hormigón está total o parcialmente impedido por vínculos externos y las internas se producen cuando existen gradientes de humedad en la sección de la pieza o debido a la presencia de los agregados, ya que la contracción es una propiedad de la pasta de cemento y que los agregados limitan los cambios volumétricos que se producen en la pasta. Por lo tanto, si una sección delgada de hormigón se restringe externamente de modo que se evite la deformación debida a la contracción, las tensiones elásticas inducidas son atenuadas por los efectos de la fluencia lenta o creep del hormigón. Figura 11. Patrón esquemático de desarrollo de una grieta cuando el esfuerzo a tracción debido a la contracción restringida es aliviado por la fluencia lenta. [Neville] En el caso de pieza gruesas, sin restricciones externas pero con presencia de gradientes de humedad en su sección, la contracción de las capas superficiales se verá impedida por la zona interior y se desarrollarán tensiones de tracción en el exterior y de compresión en el interior (Figura 12). La fluencia lenta nuevamente atenuará las tensiones, pero si estas exceden la capacidad resistente del hormigón, se producirá la fisuración. Tecnología del hormigón Página 9/25

Figura 12: Variación de la contracción con la distancia a la superficie de una pieza (UNCPBA) Ensayo contracción restringida Es conocido el hecho de que cuando las estructuras y elementos de hormigón se encuentran restringidos, las deformaciones por contracción originan fisuras anteriores a la puesta en servicio. Por este motivo, los ensayos de contracción libre no son suficientes para brindar una idea acabada de la resistencia del material a la fisuración inducida por contracción. El desarrollo de fisuras en el tiempo depende de factores tales como la magnitud de la contracción libre, la relajación producida por efectos de fluencia lenta (creep), el módulo de elasticidad del material, la resistencia a tensiones de tracción y la tenacidad a la fractura, razón por la cual el fenómeno de fisuración del hormigón está más relacionado con la energía de fractura que con la resistencia a la tracción del material. El ensayo del anillo provoca un alto y constante grado de restricción de las deformaciones y permite alcanzar resultados representativos, tanto cuando se trata de pastas, como de morteros y hormigones. En este último tipo de ensayo la probeta de hormigón se moldea alrededor de un aro de acero que provee la restricción a la contracción producida por efecto del secado y además funciona como un dinamómetro que evalúa las tensiones inducidas en el hormigón mediante la medición de las deformaciones en el acero a través de strain gauges, tal como se muestra en la figura 13. Para asegurar un secado unidireccional, una vez concluido el período de curado, se sella la superficie superior de las probetas utilizando un sellador siliconado que impida la evaporación del agua y se estaciona en una atmósfera seca. A partir de este método, algunos autores han evaluado, no sólo la edad de aparición de la primera fisura, sino su distribución, y la evolución de las aberturas en función del tiempo. Tecnología del hormigón Página 10/25

Figura 13. a y b) Configuración de probetas para ensayos de tendencia a la fisuración. c) distribución de tensiones internas [Tazawa et. al. ] Predicción de la contracción por secado De acuerdo a lo expuesto en los puntos anteriores, si no se preven deformaciones por contracción en el diseño de la estructura, puede ocurrir una fisuración no deseada. Consecuentemente, se han desarrollado algunas ecuaciones para predecir la magnitud de estas deformaciones, siendo las propuestas por el American Concrete Institute (ACI) las más difundidas. Se recomienda un grupo de ecuaciones empíricas que permiten estimar la contracción como una función del tiempo de secado y la humedad relativa ambiente. La contracción para un determinado tiempo (e sh ) t, posterior a los 7 días de curado húmedo del hormigón está dada por la siguiente ecuación, donde (e sh ) ult es la contracción para un tiempo infinito para un secado a 40 % de humedad relativa y t es el tiempo de secado: t 35 + t ( e sh ) t = ( e sh ) ult El efecto de la humedad relativa ambiente (H) se considera en las siguientes correcciones: Sobre 80 % H.R. Debajo de 80 % H.R. (C.F.) H = 3.00 0.03 H (C.F.) H = 1.40 0.01 H Se debe considerar que hay que adoptar un valor de contracción para tiempo infinito (e sh ) ult. Para la mayoría de los hormigones este valor estará entre 415 y 1070 µm/m, y ACI recomienda adoptar 730 µm/m cuando no existen resultados experimentales. Fluencia Lenta o Creep La reología en el hormigón endurecido comprende el estudio de la relación entre la deformación, tensión del hormigón y tiempo. El hormigón como todo cuerpo sólido sometido Tecnología del hormigón Página 11/25

a la acción de cargas se deforma, y estas deformaciones pueden ser elásticas o plásticas. Si la carga se mantiene constante durante un determinado tiempo, el material sigue deformándose a temperatura ambiente (fluencia lenta o creep). El hormigón aún sin estar cargado sufre variaciones dimensionales: contracción plástica y contracción por secado. La fluencia lenta y la contracción tienen un comportamiento similar y están afectadas por los mismos parámetros. La relajación del acero y la fluencia del hormigón provocan en estructuras pretensadas un incremento en las deformaciones y en las tensiones de tracción y en consecuencia la disminución del grado de seguridad. El origen del creep está en la pasta hidratada de cemento, la cual no permanece dimensionalmente estable cuando se expone a ambientes con humedad menor que la de saturación. Cuando la pasta se somete a un esfuerzo sostenido, dependiendo de la magnitud y la duración de la carga, el silicato de calcio hidratado pierde agua físicamente adsorbida y la pasta sufre una deformación por creep. Esta es la principal causa del creep, aunque otros factores también inciden. El proceso consta de una parte reversible y de otra irreversible, (figura 14). Al dejar de actuar la carga aparece una recuperación instantánea y, otra diferida, formando ambas el creep reversible. Esta parte del creep puede atribuirse a la deformación elástica del agregado, la cual es completamente recuperable. El contenido de agregado influye sobre el creep. Figura 14: Curva de creep en compresión uniaxial (UNCPBA) Predicción de la fluencia lenta o creep Si bien existen desacuerdos importantes entre las diferentes formulaciones propuestas para la estimación de la deformación por creep, se presenta a continuación las fórmulas dadas por el American Concrete Institute (ACI). La ecuación básica de creep es: 0.6 t = B + t Ct C 0. 6 ult donde C t es el coeficiente de creep para un tiempo t, C ult es el coeficiente de creep para un tiempo infinito y B es una constante (igual a 10 cuando el hormigón tiene más de 7 días al ser aplicada la carga). El coeficiente de creep es la deformación diferida (e cr ) divida por la deformación instantánea (e e ): Tecnología del hormigón Página 12/25

C t e = e Tal como en el caso de la predicción de la contracción por secado, el problema reside en la selección de un valor adecuado de C ult. Cuando el hormigón se seca bajo la aplicación de carga a 40 % de humedad relativa, C ult varía entre 1.30 y 4.15, y ACI recomienda adoptar un valor de 2.35 si no existen datos experimentales. Los factores de corrección por humedad relativa ambiente y edad de curado son: (C.F.) H = 1.27 0.0067 H, H 40 % cr (C.F.) tc = 1.25 tc 0.118 donde H es la humedad relativa ambiente, y t c es el tiempo de aplicación de carga en días. e MECANISMOS DE ROTURA EN HORMIGÓN El proceso de rotura El mecanismo de falla del hormigón, tanto bajo cargas de compresión como de tracción, involucra un proceso progresivo de deterioro interno del material. Este daño interno, se caracteriza por un incremento y propagación de micro y macrofisuras que en términos de balance energético reconocen dos estados: uno de crecimiento estable, donde la energía necesaria para que se produzca la propagación de las fisuras debe ser suministrada al material a través de un incremento de la solicitación externa y otro de crecimiento inestable, donde el nivel energético alcanzado resulta suficiente para que la fisura se propague por sí sola sin mayor demanda de energía. El estudio del inicio y propagación de fisuras en un material, y de las variables que los gobiernan, constituye un tema de análisis de significativa importancia. Hemos analizado anteriormente la estructura del hormigón concluyendo que nos encontramos en presencia de un material multifásico tanto a nivel visual como microscópico. Para estudiar su mecanismo de rotura debemos situarnos en el mesonivel en el cual es posible distinguir una fase continua porosa (el mortero), inclusiones (los agregados gruesos) y las zonas de transición entre la matriz y agregados (interfaces). Además hemos observado que en el hormigón aparecen microfisuras entre agregados y mortero aún antes de ser cargado. Cuando el material es solicitado, las fisuras, poros e interfaces actúan como focos de concentración de tensiones, acumulando en su entorno energía de deformación. Cuando esta energía alcanza un valor mínimo (que dependerá de la geometría de la discontinuidad y de la energía de la superficie del medio) la fisura comienza a propagarse. En su crecimiento la fisura puede interceptar zonas más resistentes o poros que disminuyen el nivel de concentración de tensiones; ambos efectos actúan como freno a dicho crecimiento. El mecanismo de iniciación y propagación de fisuras se diferencia conforme el tipo de solicitación aplicada, pudiendo ser modificado en cada caso por diversas variables como el nivel de resistencia, el tamaño de los agregados, etc. Analicemos en primer lugar el caso de tracción. Aunque el hormigón se usa fundamentalmente para sobrellevar solicitaciones de compresión sabemos que aún en tal caso la rotura se origina en realidad por fuerzas de tracción. El estudio de las curvas tensión deformación permite evaluar en forma indirecta el desarrollo de fisuras dentro del material. A escala microscópica se ha observado que la desviación de la linealidad de la curva se encuentra asociada al crecimiento de fisuras de interfaz preexistentes. Tecnología del hormigón Página 13/25

La rotura por tracción del hormigón se caracteriza por la formación de una superficie perpendicular a la dirección de la carga. En hormigones convencionales (resistencias de hasta aproximadamente 30 MPa) la fisura se propaga a través de la matriz y/o de las interfaces. A medida que se incrementa el nivel de resistencia o en el caso de agregados de menor resistencia (por ej. agregados livianos) puede producirse su propagación a través de los agregados. Las fisuras en los materiales cementíceos se desarrollan en forma tortuosa. Aún en observaciones sobre pastas de cemento portland se ha verificado este hecho. A diferencia de lo que ocurre en un material frágil ideal en el que una única fisura se propaga rápidamente, el hormigón muestra fisuración múltiple. En morteros y hormigones, la presencia de los agregados generan mecanismos de control del crecimiento de fisuras dando lugar a ramificaciones y desvíos. En la vecindad de la superficie de fractura aparecen numerosas microfisuras por lo que la superficie real de fisuración es mayor que la aparente. Algunos autores han estimado las siguientes relaciones (superficie real/ superficie aparente): pasta de cemento 1-2 : 1 ; mortero 5-10: 1 y hormigón 15-20 : 1. Analizaremos ahora el comportamiento tensión deformación de una probeta cuando se le aplica una carga de compresión uniaxial (Figura 15). Figura 15. Curva tensión deformación de una probeta de hormigón bajo una carga de compresión uniaxial. Desarrollo de la fisuración. Es posible observar que el hormigón presenta un comportamiento prácticamente lineal hasta una tensión relativa del 30 al 50% de la carga última. Durante esta etapa las fisuras preexistentes permanecen estables o presentan un crecimiento poco significativo. Por encima del 50% de la carga de rotura las fisuras comienzan a propagarse en las interfaces matriz agregado y a internarse dentro del mortero. Las curvas se apartan de la linealidad y la relación entre las deformaciones transversales y longitudinales (coeficiente de Poisson) comienza a crecer. La tensión a la cual ocurre este comportamiento se la denomina tensión de iniciación. Para una tensión relativa del orden del 70 al 85% se desarrolla el crecimiento rápido de fisuras y el sistema se vuelve inestable. En este período es posible detectar un mínimo en la curva de deformaciones volumétricas, el volumen aparente de la probeta no continúa decreciendo sino que, debido a una extensa fisuración interna, comienza a crecer. La tensión para la cual se produce este cambio en la variación del volumen aparente, se denomina tensión crítica y como fuera dicho corresponde al inicio de una propagación inestable de las fisuras a través de la matriz (Figura 16). Tecnología del hormigón Página 14/25

Figura 16. Comportamiento tensión deformación del hormigón bajo una carga de compresión uniaxial El mecanismo descripto de formación y propagación de fisuras está fuertemente influenciado por las características de los agregados, su tamaño, forma y textura, rigidez, resistencia relativa respecto a la de la matriz, etc. además de los fenómenos que se vinculen con la mayor o menor adherencia en las interfaces. La presencia de los agregados afecta el mecanismo descripto a través de dos fenómenos de efecto contrapuesto. Por un lado introduce discontinuidades o zonas de mayor debilidad dentro del material en las que se inician las fisuras y por otro controla la propagación de las mismas a lo largo de la matriz generando ramificaciones, bifurcaciones, etc. que pueden incrementar la capacidad de carga y las deformaciones inelásticas del material. La magnitud de tales fenómenos varía conforme el nivel de resistencia relativa entre el mortero y los agregados, el tipo de solicitación y, por supuesto, el agregado empleado. En base a lo expuesto, compararemos los mecanismos de rotura de diferentes hormigones (Figura 17). La Figura 17a esquematiza el desarrollo de la fisuración en un hormigón convencional. Las fisuras se originan en las interfaces, crecen en tamaño, algunas se internan en la matriz para luego interconectarse con otras fisuras, para finalmente propagarse dentro de la matriz bordeando los agregados formando una red mucho más extensa hasta alcanzar un nivel en el que se produce la falla. En el hormigón convencional la resistencia propia de los agregados es en general muy superior a la de la matriz, por eso desvían, y ramifican las fisuras e incluso pueden detener el crecimiento de algunas de ellas. Todo esto conduce a que se incremente la energía consumida en el proceso. Según sea su forma, tamaño y textura se acentuará el efecto de control impuesto por los agregados. En la superficie de fractura expuesta aparecen entonces numerosas fallas de interfaces, matriz y muy pocos agregados partidos. Sin embargo, si las resistencias relativas de matriz y agregados se asemejan pueden surgir alternativas diferentes. En el caso de un hormigón de alta resistencia (Figura 17b), el proceso se inicia de igual forma que en el hormigón convencional, pero ahora al ser mucho mayor la resistencia de la matriz el efecto de control de crecimiento de fisuras impuesto por los agregados disminuye. Entonces la propagación de las fisuras a través de los agregados puede resultar la forma más fácil de crecimiento. De este modo, en la superficie de fractura expuesta aparecen fallas de interfaces, matriz y agregados. Si en el primer caso, el hormigón convencional hubiera sido elaborado con agregados livianos (por ejemplo arcillas expandidas), el camino de fisuras también se hubiera modificado substancialmente (Figura 17c). Las fisuras se inician nuevamente en las zonas más débiles; aunque ahora éstas no necesariamente coinciden con las interfaces dado que la adherencia puede haber mejorado notablemente (la porosidad del agregado hace que la pasta pueda penetrar en el mismo). Se propagan a través de la matriz y es muy frecuente observar que al encontrar un agregado en su camino en lugar de bordearlo lo atraviesan. La Tecnología del hormigón Página 15/25

fractura se produce en una forma más abrupta con superficies planas constituidas prácticamente en su totalidad por matriz y agregados. A medida que adquiere mayor peso el mecanismo de control de crecimiento de fisuras de los agregados las curvas tensión deformación se apartan cada vez más de la linealidad y las superficies de fractura son más tortuosas. Al mismo tiempo aumenta la tenacidad relativa del hormigón. También se debe destacar que existen factores externos al material que modifican en forma significativa el proceso de iniciación y control de propagación de fisuras. El mecanismo de control de fisuras desarrollado en el hormigón normal se incrementa cuando aparecen tensiones de confinamiento, extendiendo el período de crecimiento de fisuras, y conduciendo a una mayor tensión última. Este fenómeno se hace más importante a medida que se incrementa el tamaño máximo del agregado, ya que éste impone mayores restricciones a la propagación de las fisuras. Figura 17. Esquema del desarrollo de l a fisuración en distintos tipos de hormigones a. hormigón convencional, b. Hormigón de alta resistencia, c. hormigón liviano Tecnología del hormigón Página 16/25

Resistencia a compresión Es una de las propiedades más valiosas del hormigón, a pesar que en algunos casos prácticos otras características, corno la durabilidad o permeabilidad, pueden resultar más importantes. No obstante, la resistencia ofrece un panorama general de la calidad del hormigón, porque esta relacionada directamente con la estructura de la pasta endurecida de cemento. Parámetros que influyen en la resistencia Relación agua/cemento La ley de Abrams que expresa: para un determinado conjunto cemento-agregados, y para las mismas condiciones de mezclado, curado y ensayo, la resistencia (f c ) de un hormigón de consistencia plástica debidamente colocado, depende principalmente de la razón entre la cantidad neta de agua y la cantidad de cemento contenidos en la mezcla, está indicando el grado de dilución de la pasta, y la mayor o menor porosidad de la misma y, por lo tanto, del hormigón de la que es parte (figura 18). Aunque la ley se refiere a las mezclas plásticas, también es válida para las mezclas de bajo asentamiento, siempre que una vez colocadas formen una masa compacta, sin vacíos provocados por una inadecuada compactación. f c Ê K = Á Ë K donde K 1 y K 2 son constantes empíricas. La relación a/c determina la porosidad de la pasta de cemento endurecido en cualquier etapa de la hidratación, de ahí que la relación a/c y el grado de compactación afecten al volumen de huecos del hormigón. Por lo tanto, la resistencia decrece con el incremento de poros, y en un sentido estricto, del volumen total de huecos que incluye: aire atrapado, poros capilares, poros de gel, y aire intencionalmente incorporado (figura 19) 1 2 ˆ a c Figura 18: Relación entre la resistencia y la razón a/c (UNCPBA) Figura 19: Relación entre resistencia, razón a/c y compactación (UNCPBA) La resistencia del hormigón depende de las resistencias de la pasta y del agregado y además, de las características de la adherencia entre estas dos fases (interfaz). La Tecnología del hormigón Página 17/25

resistencia del hormigón es menor que la del agregado y de la pasta, siendo la relación tensión-deformación de éstos últimos casi lineal. En el hormigón no existe linealidad debido a la interfaz agregado-mortero (figura 20). Figura 20: Relación tensión-deformación para pasta, agregado y hormigón (UNCPBA) García Balado establece curvas resistencia-a/c-edad para hormigones de piedra partida, y aconseja que para emplearla en la dosificación de hormigones de canto rodado se deben restar 30 kg/cm 2 a la resistencia a 28 días. Esta, disminución de la resistencia, para igual a/c, se debe a la menor adherencia que ofrece el canto rodado por su superficie lisa y su forma regular. El hormigón de piedra partida será más resistente, a igual relación a/c, pero en el estado fresco la mezcla será menos trabajable. Cantidad de agua Una mayor cantidad de agua empleada en la elaboración de un hormigón produce una pasta de cemento mas porosa, más débil y en consecuencia el hormigón será menos resistente. Una parte importante del agua de mezclado no se combina con el cemento y al evaporarse deja vacíos que incrementan la permeabilidad del material. El agua necesaria para hidratar al cemento es un 40 % del peso de cemento (a/c=0,40), a pesar que se combina sólo un 25 % aproximadamente. Agregado grueso En la resistencia del hormigón influye el tamaño máximo del agregado grueso, la textura superficial, la naturaleza del mismo, la resistencia, y la proporción en que interviene en la mezcla. A mayor tamaño máximo se reduce el requerimiento del agua de mezclado, de manera que, para una trabajabilidad determinada, se puede lograr una menor relación a/c con el incremento de la resistencia. Este comportamiento se ha verificado experimentalmente con los agregados con hasta de 1,5 (38,1 mm) de tamaño máximo y también se suele suponer para tamaños mayores. No obstante algunas experiencias indican que al sobrepasar el tamaño máximo de 1,5, el aumento en resistencia derivado de la reducción de agua se ve compensado por los efectos nocivos de la menor adherencia y las discontinuidades introducidas por las partículas más grandes, en consecuencia el hormigón se vuelve muy heterogéneo y disminuye su resistencia. Tecnología del hormigón Página 18/25

Edad El desarrollo de la resistencia del hormigón depende del desarrollo de la resistencia del cemento. En general, se mide la resistencia a los 28 días, ya que a esa edad se alcanza el 80 % de la resistencia al año. Cuando se utilizan cementos de menor velocidad de hidratación o adiciones minerales activas y también en obras que entrarán en servicio en un plazo suficientemente grande, la edad de diseño es superior a 28 días. En otros casos, por problemas de producción y plazos de ejecución esta edad se puede reducir. Influencia del Curado Se entiende por curado al proceso para promover la hidratación completa del cemento, y consiste en controlar la temperatura y los movimiento de humedad hacia adentro y fuera del hormigón. El objeto del curado es mantener al hormigón saturado hasta que los espacios de la pasta fresca de cemento, que originalmente estaban llenos de agua, se colmaten con los productos de hidratación del cemento. En la obra el curado activo termina mucho antes de que se haya producido la máxima hidratación posible. La necesidad de curado procede de que la hidratación del cemento se puede lograr sólo en capilares llenos de agua, por lo tanto, debe evitarse la pérdida de agua por evaporación. Más aún, el agua que se pierde internamente por desecación propia debe ser reemplazada con agua del exterior, es decir, debe hacerse posible el ingreso de agua en el hormigón. El curado consiste en cubrir al hormigón con arpilleras húmedas, arena húmeda, membranas con productos químicos, curado con vapor, etc. La temperatura de curado acelera los procesos de hidratación y esto afecta benéficamente la resistencia inicial del hormigón sin efectos contrarios en la resistencia posterior. Sin embargo, una temperatura muy alta durante la colocación y el fraguado, puede afectar adversamente la resistencia más allá de los 7 días. Esto se debe a que una rápida hidratación inicial forma productos de estructura física más pobre, probablemente más porosa, afectando adversamente la resistencia. Cuando la temperatura se acerca a 0 C los procesos de hidratación se detienen (7 u 8 C). La resistencia depende de la edad y de la temperatura a la cual estuvo sometido, se dice que la resistencia puede ser evaluada por el concepto de Madurez, el que se expresa como una función del tiempo y de la temperatura de curado. Ú ( T -T0 ) dt =  ( T -T ) D Madurez = a 0 t Los alemanes establecen T 0 igual a 10 C, por que se asume que a esa temperatura el M = Ta + 10 C Dt. Estas reglas hormigón no incrementa su resistencia, siendo entonces  ( ) se aplican convenientemente cuando la temperatura inicial del hormigón está entre 16 y 27 C y no hay pérdida de humedad por secado durante el período considerado. Se asume que dos hormigones de igual composición que endurezcan a temperaturas distintas alcanzan la misma resistencia cuando igualen su madurez. Esta herramienta resulta útil en el caso de que la temperatura ha sido menor que la prevista, y se necesita desencofrar una estructura. Con la fórmula dada se puede establecer la fecha para desencofrar, cuando el hormigón alcance la madurez de proyecto. Resistencia del Cemento El cemento es el responsable de la monolitización de la estructura granular de agregados, y la unión entre estos y la pasta será más resistente cuanto de mejor calidad sea el cemento. Tecnología del hormigón Página 19/25

Figura 21: Influencia del curado (S. H. Kosmatka et al) Figura 22: Influencia de la temperatura de curado (S. H. Kosmatka et al) Ensayo de compresión (IRAM 1546:1992) La más común de todas las pruebas de hormigón endurecido es la prueba de la resistencia a la compresión, lo cual en parte obedece a que es una prueba fácil de realizar, y en parte a que muchas de las características deseables del hormigón, aunque no todas, se relacionan cualitativamente con su resistencia; no obstante, la razón principal consiste en la importancia intrínseca que reviste la resistencia a compresión del hormigón en la construcción. Forma y Dimensiones de la Probeta En la Argentina se utilizan probetas cilíndricas de 15 cm de diámetro y 30 cm de altura. Cuando disminuye la esbeltez de la probeta la influencia del efecto de zunchado en los extremos es mayor. Este efecto crea un estado triaxial de compresión en los extremos, aumentando la resistencia de la probeta. El zunchado se debe a que la carga de ensayo origina una deformación menor en el plato de acero de la máquina que en el hormigón, por la diferencia entre los módulos de elasticidad de los dos materiales. La menor deformación del acero restringe la deformación del hormigón, originándose tensiones de compresión sobre este último. A medida que disminuye el tamaño de la probeta la resistencia se incrementa. Además, si la probeta en el ensayo está húmeda la resistencia es menor: el agua tiene afinidad con el silicato de calcio hidratado, incrementa el volumen de este gel, las láminas se separan, por lo tanto la resistencia disminuye. Resistencia cubo de 10 cm = 1,10 x Resistencia cubo de 20 cm Resistencia cubo de 30 cm = 0,90 x Resistencia cubo de 20 cm Resistencia cilíndrica 15x30 = 0,85-0,80 Resistencia cubo de 20 cm Resistencia prisma 15x15x45 = 0,83 x Resistencia cubo de 20 cm Velocidad de Aplicación de la Carga En los ensayos de resistencia del hormigón endurecido existen muchas variables que influyen sobre el resultados. Una de ellas es la velocidad de aplicación de la carga. Las normas acotan la velocidad a 0.4 MPa/s ± 0.2 MPa/s. Tecnología del hormigón Página 20/25

Figura 23: Relación entre resistencia y esbeltez (UNCPBA) Figura 24: Relación entre resistencia y diámetro (UNCPBA) Módulo de elasticidad Módulo de Elasticidad Estático: La deformación del hormigón no cumple la ley de Hooke. El diagrama tensión-deformación al comienzo de la carga es casi recto y el módulo de elasticidad tangente inicial no es un valor práctico debido a que el nivel de esfuerzo aplicado es muy bajo, debido a que en la estructura el hormigón trabajará en un rango superior. También se puede determinar el módulo de elasticidad secante, que esta dado por la recta que une el origen de coordenadas y un punto determinado en la curva. Tiene el inconveniente que el material al no ser lineal, este módulo dependerá del valor de carga elegido. El módulo de elasticidad en la rama de descarga es muy aproximado al tangente inicial (figura 25). Para superar el efecto de la falta de linealidad de la curva, los reglamentos proponen un método que consiste en aplicar un número de ciclos (10-14) de carga y descarga entre dos niveles de carga (1/20-1/3 de la carga de rotura), hasta que la curva se transforme en una recta. Si número de ciclos supera los valores indicados, la curvatura se invierte. El reglamento CIRSOC 201 establece una ecuación que relaciona la resistencia, f c en MPa, y el módulo de elasticidad (MPa): E c = 4700 f c para hormigones de densidad normal E c = w c 1.5 0.043 f c para hormigones de densidad w c entre 1500 y 2500 kg/m³ Figura 25: Curva tensióndeformación (UNCPBA) Figura 26: Cargas cíclicas de compresión (UNCPBA) Tecnología del hormigón Página 21/25

Módulo de Elasticidad Dinámico: Este módulo se obtiene por medio de un ensayo no destructivo y se lo utiliza para estudiar los cambios progresivos en la resistencia del hormigón sin tener que contar con un gran número de probetas. Sobre una sola probeta se pueden realizar todas las determinaciones a través del tiempo y detectar las modificaciones que se van produciendo. La resistencia está relacionada con el módulo de elasticidad dinámico, y se somete a la muestra de hormigón a una vibración longitudinal hasta su frecuencia natural, utilizando un excitador electro-magnético. Este ensayo no altera la probeta y permite volver a realizar nuevas determinaciones sobre ella. Este método es empleado en los ensayos de congelación y deshielo. Se calcula el módulo de elasticidad dinámico en función de la frecuencia fundamental (mínima), la densidad y las características geométricas de la probeta. Este valor es proporcional al módulo tangente inicial. Figura 27: Equipo para determinar módulo de elasticidad dinámico (UNCPBA) Figura 28: UNCPBA Factores que Influyen en el Módulo de Elasticidad Relación agua/cemento: al incrementar a/c la resistencia y el módulo de elasticidad (E) decrecen. Curado y condiciones de humedad: a mayor HR del curado, mayor E; por una mayor cantidad de productos de hidratación, y además, mayor resistencia. Humedad de la probeta durante el ensayo: a mayor humedad el valor de la resistencia es menor debido a que el agua separa los cristal es y también E disminuye. Características del agregado: influye la naturaleza, la forma, la textura y la proporción. Resistencia a la tracción Las resistencias a tracción y compresión están relacionadas, pero no en forma proporcional. A medida que la resistencia a compresión del hormigón aumenta la resistencia a tracción también se incrementa pero a una velocidad decreciente. Es decir, la relación traccióncompresión depende del nivel de resistencia, a mayor resistencia a compresión menor es dicha relación. La misma depende de la interfaz y de las características de la pasta. También la afectan la relación agua-cemento, el curado, el tipo de agregado y los aditivos presentes. La resistencia a la tracción se puede evaluar por tres métodos: tracción directa, tracción por compresión diametral y flexo-tracción. Los diferentes valores se pueden relacionar de acuerdo con la siguiente expresión: Resistencia a tracción = C x (Resistencia cúbica) 2/3 Tecnología del hormigón Página 22/25