Variables y Componentes de los Sistemas de Control Automático

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Variables y Componentes de los Sistemas de Control Automático"

Transcripción

1 Variables y Componentes de los Sistemas de Control Automático Introducción: El control automático ha desempeñado una función vital en el avance de la ingeniería y la ciencia, es una parte importante e integral de los procesos modernos industriales y de manufactura. Prácticamente, cada aspecto de las actividades de nuestra vida diaria está afectado por algún tipo de sistema de control. Los sistemas de control se encuentran en gran cantidad en todos los sectores de la industria tales como control de calidad de los productos manufacturados, líneas de ensamble automático, control de máquina-herramienta, sistemas de transporte, sistemas de potencia, robótica, etc., aún el control de inventarios y los sistemas económicos y sociales se pueden analizar a través de la teoría de control automático. Debido a que los avances de la teoría y la práctica del control automático aportan los medios para obtener un desempeño óptimo de los sistemas dinámicos, tales como mejorar la productividad y eliminar muchas de las operaciones repetitivas y rutinarias, los ingenieros y científicos deben tener un buen conocimiento de este campo. Importancia: Los sistemas de control han sido de gran impacto para el desarrollo de nuestra sociedad ya que han permitido: - Automatizar tareas humanas repetitivas, tediosas y/o peligrosas. - Trabajar con tolerancias (margen de errores) mucho menores, mejorando la calidad de los productos. - Disminuir costos de producción en mano de obra e insumos. - Mejorar la seguridad de operación de las máquinas y procesos. Campos de aplicación: Los sistemas de control tienen vastas áreas de aplicación en: Industrias del transporte, incluyendo la aeroespacial; procesos químicos y biológicos; sistemas mecánicos, eléctricos y electromecánicos; agroindustria, industrias de procesos y de manufactura; sistemas económicos, políticos y sociales. Se encuentran en nuestra cotidianidad: Desde el refrigerador hasta el sistema de control de combustión electrónica de los automóviles y así como en nuestro propio cuerpo: control de la temperatura corporal, presión arterial, equilibrio, etc. El simple acto de señalar con el dedo es un sistema de control. Ahora bien, su aplicación requiere de varias tecnologías como la informática, la eléctrica, la electrónica y las comunicaciones; también exige buena fundamentación matemática y conocimientos del proceso a controlar. De lo anterior se deriva que los sistemas de control sean un área multidisciplinar y transversal a las ingenierías y a otras ciencias. Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 1

2 Objetivos de la aplicación de control automático de procesos El objetivo del control automático de procesos es mantener en determinado valor de operación las variables del proceso tales como: temperaturas, presiones, flujos y compuestos. Todos los procesos son de naturaleza dinámica, en ellos siempre ocurren cambios y si no se emprenden las acciones pertinentes, las variables importantes del proceso, es decir, aquellas que se relacionan con la seguridad, la calidad del producto y los índices de producción, no cumplirán con las condiciones de diseño. El sistema de control de procesos Para comprender completamente las ideas asociadas a un sistema de control, considérese un intercambiador de calor en el cual la corriente en proceso se calienta mediante vapor de condensación, como se ilustra en la siguiente figura: Vapor Corriente que se procesa Corriente que se procesa, después de calentamiento T i (t), C T(t), C q(t), m3 s Ilustración 1, Intercambiador de calor El propósito de la unidad es calentar el fluido que se procesa, de una temperatura dada de entrada T i (t), a cierta temperatura de salida, T(t), que se desea. Como se dijo, el medio de calentamiento es vapor de condensación y la energía que gana el fluido en proceso es igual al calor que libera el vapor, siempre y cuando no haya pérdidas de calor en el entorno, esto es, el intercambiador de calor y la tubería tienen un aislamiento perfecto; en este caso, el calor que se libera es el calor latente de la condensación del vapor. En este proceso existen muchas variables que pueden cambiar, lo cual ocasiona que la temperatura de salida se desvíe del valor deseado, si esto llega a suceder, se deben emprender algunas acciones para corregir la desviación, esto es, el objetivo es controlar la temperatura de salida del proceso para mantenerla en el valor que se desea. Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 2

3 Una manera de lograr este objetivo es primero, medir la temperatura T(t), después comparar ésta con el valor que se desea y, con base en la comparación, decidir qué se debe hacer para corregir cualquier desviación. Se puede usar el flujo del vapor para corregir la desviación, es decir, si la temperatura está por arriba del valor deseado, entonces se puede cerrar la válvula de vapor para cortar el flujo del mismo (energía) hacia el intercambiador de calor. Si la temperatura está por abajo del valor que se desea, entonces se puede abrir un poco más la válvula de vapor para aumentar el flujo de vapor (energía) hacia el intercambiador. Todo esto lo puede hacer manualmente el operador y puesto que el proceso es bastante sencillo no debe representar ningún problema. Sin embargo, en la mayoría de las plantas de proceso existen cientos de variables que se deben mantener en algún valor determinado y con este procedimiento de corrección se requeriría una cantidad tremenda de operarios, por ello, sería preferible realizar el control de manera automática, es decir, contar con instrumentos que controlen la variables sin necesidad de que intervenga el operador. Esto es lo que significa el control automático de proceso. Para lograr este objetivo se debe diseñar e implementar un sistema de control, a continuación, se muestra un sistema de control y sus componentes básicos: Elemento Final de Control Señal T i (t), C T(t), C q(t), m3 s Ilustración 2, Sistema de control del intercambiador de calor El primer paso es medir la temperatura de salida de la corriente del proceso, esto se hace mediante un sensor (termopar, dispositivo de resistencia térmica, termómetros de sistemas lleno, termistores, etc.). El sensor se conecta físicamente al transmisor, el cual capta la salida del sensor y la convierte en una señal lo suficientemente intensa como para transmitirla al controlador. El controlador recibe la señal, que está en relación con la temperatura, la compara con el valor que se desea y, según el resultado de la comparación, decide qué hacer para mantener la temperatura en el valor deseado. Con base en la decisión, el controlador envía otra señal al elemento final de control, el cual, a su vez, maneja el flujo de vapor. Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 3

4 En el párrafo anterior se encuentran presente los cuatro componentes básicos de todo sistema de control, éstos son: 1. Sensor, que también se conoce como elemento primario. 2. Transmisor, el cual se conoce como elemento secundario. 3. Controlador, que es el cerebro del sistema de control. 4. Elemento final de control, frecuentemente se trata de una válvula de control aunque no siempre. Otros elementos finales de control comúnmente utilizados son las bombas de velocidad variable, los transportadores y los motores eléctricos. La importancia de estos componentes está en que realizan las tres operaciones básicas que deben estar presentes en todo sistema de control; estas operaciones son: 1. Medición (M): La medición de la variable que se controla se hace generalmente mediante la combinación de sensor y transmisor. 2. Decisión (D): Con base en la medición, el controlador decide qué hacer para mantener la variable en el valor que se desea. 3. Acción (A): Como resultado de la decisión del controlador se debe efectuar una acción en el sistema, generalmente ésta es realizada por el elemento final de control. Estas tres operaciones detalladas anteriormente, M, D y A son obligatorias para todo sistema de control. En algunos sistemas, la toma de decisión es sencilla, mientras que en otros es más compleja. El ingeniero que diseñe un sistema de control debe asegurarse que las acciones que se emprendan tengan su efecto en la variable controlada, es decir, que la acción emprendida repercuta en el valor que se mide; de lo contrario el sistema no controla y puede ocasionar más perjuicio que beneficio. Términos importantes y objetivo del control automático de proceso Es importante definir algunos de los términos que se usan en el campo del control automático de proceso, éstos son: Variable controlada: es la cantidad o condición que se debe mantener o controlar dentro de algún valor deseado. En el ejemplo precedente la variable controlada es la temperatura de salida del proceso T(t). Variable manipulada: es la variable que se utiliza para mantener a la variable controlada en el punto de control (punto de fijación o de régimen); en el ejemplo la variable manipulada es el flujo de vapor. Planta: Una planta puede ser una parte de un equipo, tal vez un conjunto de las partes de una máquina que funcionan juntas, con el propósito de ejecutar una operación particular. Para efectos de estudio, planta es cualquier objeto físico que se va a controlar (tal como un dispositivo mecánico, un horno de calefacción, un reactor químico o una nave espacial). Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 4

5 Proceso: se define proceso como una operación o un desarrollo natural progresivamente continuo, marcado por una serie de cambios graduales que se suceden uno al otro en una forma relativamente fija y que conducen a un resultado o propósito determinado, es decir, proceso es cualquier operación que se va a controlar. Algunos ejemplos son los procesos químicos, económicos y biológicos. Sistema: es una combinación de componentes que actúan juntos y realizan un objetivo determinado. Un sistema no necesariamente es físico. El concepto de sistema es amplio, se aplica a fenómenos abstractos y dinámicos, tales como los que se encuentran en la economía. Por tanto, la palabra sistema debe interpretarse como una implicación de sistemas físicos, biológicos, económicos y similares. Perturbación: se considera perturbación o trastorno a cualquier variable que ocasiona que la variable de control se desvíe del punto de consigna (valor deseado). En la mayoría de los procesos existe una cantidad de perturbaciones diferentes, por ejemplo, las posibles perturbaciones del intercambiador de calor son: temperatura de entrada en el proceso [T i (t)], el flujo del proceso [q(t)], la calidad de la energía de vapor, las condiciones ambientales, la composición del fluido que se procesa, la contaminación, etc. Aquí lo importante es comprender que en la industria de procesos, estas perturbaciones son la causa más común de que se requiera en control automático de proceso; si no hubiera alteraciones, prevalecerían las condiciones de operación del diseño y no se necesitaría supervisar continuamente el proceso. Es importante mencionar que una perturbación es una señal que tiende a afectar negativamente el valor de la salida de un sistema. Si la perturbación se genera dentro del sistema se denomina interna, en tanto que una perturbación externa se produce fuera del sistema y es una entrada. Sistemas de control realimentados: un sistema que mantiene una relación prescrita entre la salida y la entrada de referencia, comparándolas y usando la diferencia como medio de control se denomina sistema de control realimentado. Aquí sólo se especifican con este término las perturbaciones impredecibles, dado que las perturbaciones predecibles o conocidas siempre pueden compensarse dentro del sistema. Un ejemplo sería el sistema de control de temperatura de una habitación. Midiendo la temperatura real y comparándola con la temperatura de referencia (la temperatura deseada), el termostato activa o desactiva el equipo de calefacción o de enfriamiento para asegurar que la temperatura de la habitación se conserve en un nivel cómodo sin considerar las condiciones externas. Los sistemas de control realimentados no se limitan a la ingeniería, sino que también se encuentran en diversos campos ajenos a ella. Por ejemplo, el cuerpo humano es un sistema de control realimentado muy avanzado. Tanto la temperatura corporal como la presión sanguínea se conservan constantes mediante una realimentación fisiológica. De hecho, la realimentación realiza una función vital: vuelve el cuerpo humano relativamente insensible a las perturbaciones externas, por lo cual lo habilita para funcionar en forma adecuada en un ambiente cambiante. Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 5

6 Circuito cerrado o sistemas de control en lazo cerrado: los sistemas de control realimentados se denominan también sistemas de control en lazo cerrado. En la práctica, los términos control realimentado y control en lazo cerrado se usan indistintamente. En un sistema de control en lazo cerrado, se alimenta al controlador la señal de error de actuación, que es la diferencia entre la señal de entrada y la señal de realimentación (que puede ser la señal de salida misma o una función de la señal de salida y sus derivadas y/o integrales), a fin de reducir el error y llevar la salida del sistema a un valor conveniente. El término control en lazo cerrado siempre implica el uso de una acción de control realimentado para reducir el error del sistema. Circuito abierto o sistemas de control en lazo abierto: los sistemas en los cuales la salida no afecta la acción de control se denominan sistemas de control en lazo abierto. En otras palabras en un sistema de control en lazo abierto no se mide la salida ni se realimenta para compararla con la entrada. Un ejemplo práctico es una lavadora. El remojo, el lavado y el enjuague en la lavadora operan con una base de tiempo. La máquina no mide la señal de salida, que es la limpieza de la ropa. En cualquier sistema de control en lazo abierto, la salida no se compara con la entrada de referencia. Por tanto, a cada entrada de referencia le corresponde una condición operativa fija; como resultado, la precisión del sistema depende de la calibración. Ante la presencia de perturbaciones, un sistema de control en lazo abierto no realiza la tarea deseada. En la práctica, el control en lazo abierto sólo se usa si se conoce la relación entre la entrada y la salida y si no hay perturbaciones internas ni externas. Es evidente que estos sistemas no son de control realimentado. Observe que cualquier sistema de control que opere con una base de tiempo es en lazo abierto. El control del tránsito mediante señales operadas con una base de tiempo es otro ejemplo de control en lazo abierto. Prof. José Cantillana Gallardo Miguel Villalobos Opazo Página 6

Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado.

Control. Controlar. variable controlada variable manipulada Control realimentado. Sistema. Sistemas de control realimentado. Clase 1 Definir: Control. Poder o dominio que una persona u objeto ejerce sobre alguien o algo (En ingeniería: Conjunto de mecanismos y dispositivos que regulan el funcionamiento de una máquina, un aparato

Más detalles

Introducción. l- l. EL SISTEMA DE CONTROL DE PROCESOS

Introducción. l- l. EL SISTEMA DE CONTROL DE PROCESOS Introducción El propósito principal de este capítulo es demostrar al lector la necesidad del control mático de procesos y despertar su interés para que lo estudie. El objetivo del control automático de

Más detalles

1. GENERALIDADES. Control automático

1. GENERALIDADES. Control automático 1. GENERALIDADES Control automático El control automático ha desempeñado una función vital en el avance de la ingeniería y la ciencia. Además de su extrema importancia en los sistemas de vehículos espaciales,

Más detalles

Unidad I Análisis de Sistemas Realimentados

Unidad I Análisis de Sistemas Realimentados Prof. Gerardo Torres - gerardotorres@ula.ve - Cubículo 003 Departamento de Circuitos y Medidas de la Escuela de Ingeniería Eléctrica de la Universidad de Los Andes Unidad I Análisis de Sistemas Realimentados

Más detalles

FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1

FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 FUNDAMENTOS Y MODELOS MATEMÁTICOS DE LOS SISTEMAS DE CONTROL UNIDAD 1 Contenido El concepto de realimentación. Establecimiento de las ecuaciones diferenciales que rigen a un sistema. Función de transferencia.

Más detalles

UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL

UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL UNIDAD 1: INTRODUCCIÓN A LOS SISTEMAS DE CONTROL CONCEPTOS FUNDAMENTALES EN SISTEMAS DE CONTROL: La Ingeniería de Control surge por la necesidad del hombre de mejorar su estándar de vida y de que algunas

Más detalles

Introducción a los Sistemas de Control

Introducción a los Sistemas de Control Introducción a los Sistemas de Control Ingeniería de Sistemas I Índice TEMA Introducción a los Sistemas de Control 1. Introducción 2. Revisión histórica 3. Definiciones 3.1 Descripción de los sistemas

Más detalles

Teoría de Control. Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm. ELC-33103 Teoría de Control

Teoría de Control. Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm. ELC-33103 Teoría de Control ELC-33103 Teoría de Control a la Teoría de Control Prof. Francisco M. Gonzalez-Longatt fglongatt@ieee.org http://www.giaelec.org/fglongatt/controli.htm 1. Si se considera que la Ingeniería es una actividad

Más detalles

Lectura 1: Introducción a los Sistemas de Control Automático

Lectura 1: Introducción a los Sistemas de Control Automático Lectura 1: Introducción a los Sistemas de Control Automático 1 Lecturas recomendadas Cap. 1, pags. 1-11, 15-17, Sistemas de Control Automático, KUO Benjamín, Séptima Edición. Cap. 1, pags. 1-8, Ingeniería

Más detalles

Lic. Elizabeth Delgadillo Camacho

Lic. Elizabeth Delgadillo Camacho TEMA 1. FUNDAMENTOS DE INGENIERÍA DE CONTROL 1.1. Introducción Cuando un estudiante comienza los estudios de ingeniería con clara vocación por lo que será su profesión, debe considerar que esta comprende

Más detalles

INTRODUCCIÓN. Panorama

INTRODUCCIÓN. Panorama ll INTRODUCCIÓN El control automático ha desempeñado una función en el avance de la ingenierfa y la ciencia. Ademas de su extrema importancia en los sistemas de espaciales, de guiado de misiles, robóticos

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 4 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.

Más detalles

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN ASIGNATURA: SISTEMAS DE CONTROL PROFESORA: ING.

UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN ASIGNATURA: SISTEMAS DE CONTROL PROFESORA: ING. CREADO POR PROFESOR: ING. GERARDO LEAL UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE INGENIERÍA ESCUELA DE COMPUTACIÓN ASIGNATURA: SISTEMAS DE CONTROL PROFESORA: ING. NELSYMAR MILLÁN CONCEPTOS FUNDAMENTALES

Más detalles

SISTEMA DE CONTROL, ADQUISICIÓN DE DATOS DATOS Y SUPERVICIÓN DE EQUIPOS. Ingeniería en Control. John Edisson Mosquera Varón, Año, 2011

SISTEMA DE CONTROL, ADQUISICIÓN DE DATOS DATOS Y SUPERVICIÓN DE EQUIPOS. Ingeniería en Control. John Edisson Mosquera Varón, Año, 2011 SISTEMA DE CONTROL, ADQUISICIÓN DE DATOS Y SUPERVICIÓN DE EQUIPOS Ingeniería en Control John Edisson Mosquera Varón Seminario de Investigación Universidad Distrital Francisco José de Caldas Facultad Tecnológica

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO

UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO UNIVERSIDAD NACIONAL EXPERIMENTAL POLITÉCNICA DE LA FUERZA ARMADA BOLIVARIANA SISTEMAS DE CONTROL DE LAZO ABIERTO Y SISTEMA DE CONTROL LAZO CERRADO Prof. Gloria M. Botina B Contenido Sistema Clasificación

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Universidad Gran Mariscal de Ayacucho Facultad de Ingeniería Departamento de Informática Introducción a los sistemas de control Prof. OSMAR LUNAR Qué es control? Es la acción o el efecto de poder decidir

Más detalles

AUTOMATISMOS: Sistemas Automáticos y de Control Prof. QUINTANA D.

AUTOMATISMOS: Sistemas Automáticos y de Control Prof. QUINTANA D. AUTOMATISMOS: Sistemas Automáticos y de Control Prof. QUINTANA D. Un sistema automático de control es un conjunto de elementos físicos relacionados entre sí, de tal forma que son capaces de gobernar su

Más detalles

RESUMEN Nº1: CONTROL EN CASCADA.

RESUMEN Nº1: CONTROL EN CASCADA. RESUMEN Nº1: CONTROL EN CASCADA. En éste informe se tiene como objetivo presentar una de las técnicas que se han desarrollado, y frecuentemente utilizado, con el fin de mejorar el desempeño del control

Más detalles

Glosario de Términos de Control

Glosario de Términos de Control Glosario de Términos de Control Unifiquemos términos a fin de utilizar un lenguaje común en este aspecto de la tecnología. Siempre teniendo en cuenta que nuestro objeto de estudio serán los sistemas de

Más detalles

2Procesos. Definición. Evolución. Clasificación. Control y automatización.

2Procesos. Definición. Evolución. Clasificación. Control y automatización. AUTOATIZACIÓN Y CONTROL DE S INDUSTRIALES FIEE - UNAC VÍCTOR GUTIÉRREZ TOCAS 2Procesos. Definición. Evolución. Clasificación. y automatización. El sistema es un conjunto elementos, interrelacionados entre

Más detalles

DEPARTAMENTO DE INGENIERÍA MECÁNICA. DOCENTE: Prof. Ing. Mec. Marcos A. Golato GENERALIDADES. Cátedra: Sistemas de Control TEO

DEPARTAMENTO DE INGENIERÍA MECÁNICA. DOCENTE: Prof. Ing. Mec. Marcos A. Golato GENERALIDADES. Cátedra: Sistemas de Control TEO CÁTEDRA: SISTEMAS DE CONTROL (PLAN 2004) DOCENTE: Prof. Ing. Mec. Marcos A. Golato GENERALIDADES 1 Cátedra: Sistemas de Control Prof. o. Responsable: sabe: Ing. Jorge R. Pisa Prof. Adjunto: Ing. Marcos

Más detalles

AUTOMATIZACIÓN Y CONTROL DE PROCESOS INDUSTRIALES FIEE - UNAC VÍCTOR GUTIÉRREZ TOCAS

AUTOMATIZACIÓN Y CONTROL DE PROCESOS INDUSTRIALES FIEE - UNAC VÍCTOR GUTIÉRREZ TOCAS AUTOMATIZACIÓN Y CONTROL DE PROCESOS INDUSTRIALES FIEE - UNAC VÍCTOR GUTIÉRREZ TOCAS 3Variables del proceso.- Características dinámicas. Estrategias de control. Tal como se manifestó anteriormente, el

Más detalles

CONTROL BASICO DE UN PROCESO ENERGETICO

CONTROL BASICO DE UN PROCESO ENERGETICO UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA CONTROL AUTOMATICO CONTROL BASICO DE UN PROCESO ENERGETICO (SEMANA 12-17/12/2012) PROFESOR : ING. CESAR L. LOPEZ AGUILAR 1. DEFINICIONES

Más detalles

Teoría de Control. Silvia Marcaida, Ion Zaballa

Teoría de Control. Silvia Marcaida, Ion Zaballa Teoría de Control Silvia Marcaida, Ion Zaballa Departamento de Matemática Aplicada y Estadística e Investigación Operativa Euskal Herriko Unibertsitatea 2 Nota importante : Estas notas son una versión

Más detalles

TEMA N 1 INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS

TEMA N 1 INTRODUCCIÓN AL CONTROL AUTOMÁTICO DE PROCESOS UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS TEMA N 1

Más detalles

IES MACIA ABELA DEPARTAMENTO DE TECNOLOGÍA

IES MACIA ABELA DEPARTAMENTO DE TECNOLOGÍA 1. Evolución de las formas de trabajo. CONTROL Y ROBÓTICA Durante milenios el hombre ha creado herramientas, que con un largo proceso de perfeccionamiento se han ido modificando hasta obtener herramientas

Más detalles

Nº Nombre Ejercicios a realizar Nota obtenida

Nº Nombre Ejercicios a realizar Nota obtenida Clasificación de los ejercicios por temas explicados en clase Tema 12 1-a, 2-bc, 3, 4-b, 5-a, 6-b, 7-b (igual a 15-b), 9-a, 10-b, 11, 12, 13-b, 19, 22, 23-a, 25-b, 26-a, 27, 28 Tema 13 21. Tema 14 1-b,

Más detalles

CONTROL DE PROCESOS QUÍMICOS

CONTROL DE PROCESOS QUÍMICOS UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA CONTROL DE PROCESOS QUÍMICOS Prof: Ing. (MSc). Juan Enrique Rodríguez

Más detalles

Instrumentación de Campo

Instrumentación de Campo Instrumentación de Campo Sesión: Conceptos Generales Ing. Elmer E. Mendoza Trujillo emendoza@tecsup.edu.pe La instrumentación y control están formados por dispositivos que permiten: Capturar variables

Más detalles

Unidad V Respuesta de los sistemas de control

Unidad V Respuesta de los sistemas de control Unidad V Respuesta de los sistemas de control MC Nicolás Quiroz Hernández Un controlador automático compara el valor real de la salida de una planta con la entrada de referencia (el valor deseado), determina

Más detalles

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE INSTRUMENTACION

TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE INSTRUMENTACION TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ECATEPEC DIVISIÓN DE INGENIERÍA ELECTRÓNICA Y TELEMÁTICA PRÁCTICAS DE INSTRUMENTACION ASIGNATURA: INSTRUMENTACION REALIZÓ: ARACELI DEL VALLE REYES SEPTIEMBRE 2009.

Más detalles

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción

Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción Automatización de Procesos/Sistemas de Control Ing. Biomédica e Ing. Electrónica Capitulo I Introducción D.U. Campos-Delgado Facultad de Ciencias UASLP Enero-Junio/2014 1 CONTENIDO Conceptos Básicos Propiedades

Más detalles

CONTROL ON - OFF (TODO O NADA)

CONTROL ON - OFF (TODO O NADA) UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA DEPARTAMENTO DE INGENIERIA ELECTRONICA NUCLEO DE INSTRUMENTACION CONTROL Y SEÑALES LABORATORIO DE INSTRUMENTACION Y CONTROL CONTROL ON - OFF (TODO O NADA)

Más detalles

PRINCIPIOS DE SERVOSISTEMAS

PRINCIPIOS DE SERVOSISTEMAS PRINCIPIOS DE SERVOSISTEMAS Hoy en día los sistemas de control constituyen la base de todo proceso industrial y automatización en general, siendo su finalidad proporcionar una respuesta adecuada a un estímulo

Más detalles

TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL

TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL 1.-INTRODUCCIÓN: Un sistema de control es un conjunto de componentes físicos conectados o relacionados entre sí, de manera que regulen o dirijan una acción por

Más detalles

Capítulo 0: Estudio de los ciclos de la vida como sistemas de control automático naturales.

Capítulo 0: Estudio de los ciclos de la vida como sistemas de control automático naturales. Capítulo 0: Estudio de los ciclos de la vida como sistemas de control automático naturales. 1. Introducción Los sistemas naturales son controlados, o cíclicos, de manera que los subproductos de un paso

Más detalles

RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL

RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL RESUMEN TEMA 12: SISTEMAS AUTOMÁTICOS Y DE CONTROL 1.-INTRODUCCIÓN: Un sistema de control es un conjunto de componentes físicos conectados o relacionados entre sí, de manera que regulen o dirijan una acción

Más detalles

CÁTEDRA: SISTEMAS DE CONTROL Asignatura: Sistemas de Control p/ingeniería Mecánica (Plan 2004). Asignatura: Automatización y aparatos de control

CÁTEDRA: SISTEMAS DE CONTROL Asignatura: Sistemas de Control p/ingeniería Mecánica (Plan 2004). Asignatura: Automatización y aparatos de control DEPARTAMENTO DE INGENIERÍA MECÁNICA FACULTAD DE CIENCAS EXACTAS Y TECNOLOGIA 1 CÁTEDRA: SISTEMAS DE CONTROL Asignatura: Sistemas de Control p/ingeniería Mecánica (Plan 2004). Asignatura: Automatización

Más detalles

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa Reconocimiento y transferencia de créditos desde los grados de la Escuela Técnica Superior de Ingenieros y de Telecomunicación al Grado en Ingeniería en Tecnologías 1. Destino: a. Origen: Grado en Ingeniería

Más detalles

Selección del Controlador. Características del Proceso

Selección del Controlador. Características del Proceso Selección del Controlador Características del Proceso 1 Selección de la Accion del Controlador Dependiendo de la acción del actuador, un incremento en la medida puede requerir incrementos o disminuciones

Más detalles

Introducción a los sistemas de control

Introducción a los sistemas de control Introducción a los sistemas de control 1-1 Introducción Las teorías de control que se utilizan habitualmente son la teoría de control clásica (también denominada teoría de control convencional), la teoría

Más detalles

Valvulas De Control 1. TERMINOLOGÍA Y SIMBOLOGIA EN INGENIERIA DE CONTROL.

Valvulas De Control 1. TERMINOLOGÍA Y SIMBOLOGIA EN INGENIERIA DE CONTROL. Valvulas De Control 1. TERMINOLOGÍA Y SIMBOLOGIA EN INGENIERIA DE CONTROL. La planeación, diseño y puesta a punto de sistemas de control requiere una clara comunicación entre las partes involucradas. Por

Más detalles

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 Teoría de Control Máster en Modelización e Investigación Matemática, Estadística y Computación Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 1 silvia.marcaida@ehu.eus, 2 ion.zaballa@ehu.eus Curso

Más detalles

CONCEPTOS. Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera.

CONCEPTOS. Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera. CONCEPTOS Concepto de Sistema. Arreglo de elementos conectados o relacionados entre sí de tal manera que forman y/o actúen como una unidad entera. Concepto de Sistema de Control. Interacción de componentes

Más detalles

NORMAS ISA. República Bolivariana de Venezuela Universidad Simón Bolívar Departamento de Procesos y Sistemas Sistemas de control II PS-2316

NORMAS ISA. República Bolivariana de Venezuela Universidad Simón Bolívar Departamento de Procesos y Sistemas Sistemas de control II PS-2316 República Bolivariana de Venezuela Universidad Simón Bolívar Departamento de Procesos y Sistemas Sistemas de control II PS-2316 NORMAS ISA Gerardo Santana 05-38927 Pedro Silva 05-38953 Sartenejas, 4 de

Más detalles

3. CONTROL EN CASCADA

3. CONTROL EN CASCADA 3. CONTROL EN CASCADA El control en cascada es una estrategia que mejora significativamente, en algunas aplicaciones, el desempeño que muestra un control por retroalimentación y que ha sido conocida desde

Más detalles

Dinámica y Control de Procesos Repartido 5

Dinámica y Control de Procesos Repartido 5 Dinámica y Control de Procesos Repartido 5 5.1 El horno mostrado en la figura se utiliza para calentar el aire que se suministra a un regenerador catalítico. El transmisor de temperatura se calibra a 300-500

Más detalles

Asignaturas GIE Convalidación Asignaturas GIERM. Estadística e Investigación Operativa Estadística e Investigación Operativa Física II Física II

Asignaturas GIE Convalidación Asignaturas GIERM. Estadística e Investigación Operativa Estadística e Investigación Operativa Física II Física II Grado en Ingeniería de la Energía (GIE) y el Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Asignaturas GIE Convalidación Asignaturas GIERM Matemáticas I Matemáticas I Estadística e Investigación

Más detalles

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2

Teoría de Control. Máster en Modelización e Investigación Matemática, Estadística y Computación. Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 Teoría de Control Máster en Modelización e Investigación Matemática, Estadística y Computación Silvia Marcaida (UPV/EHU) 1 Ion Zaballa (UPV/EHU) 2 1 silvia.marcaida@ehu.eus, 2 ion.zaballa@ehu.eus Curso

Más detalles

CAPÍTULO 3. Conceptos y esquemas de control

CAPÍTULO 3. Conceptos y esquemas de control CAPÍTULO 3 Conceptos y esquemas de control 3 Conceptos y esquemas de control En este capítulo se presentan los diferentes esquemas de control aplicados a la planta piloto. Para ello se describe primero

Más detalles

Pablo Ramírez López 1

Pablo Ramírez López 1 1. Esquema. 1. Generalidades. 2. Sistemas de control automático: conceptos. 2.1. Representación de los sistemas de control. Diagrama de bloques. 3. Tipos de sistemas de control. 3.1. Sistemas de control

Más detalles

Código Asignatura ECTS Código Asignatura ECTS

Código Asignatura ECTS Código Asignatura ECTS Origen: Grado en Ingeniería Informática 240101 Matemáticas I 6 251101 Matemáticas I 6 240103 Informática 6 251202 Informática 6 240106 Empresa 6 251104 Empresa 6 240201 Estadística 6 251205 Estadística

Más detalles

CONTROL APLICADO Marcela Vallejo Valencia tableroalparque.weebly.com

CONTROL APLICADO Marcela Vallejo Valencia tableroalparque.weebly.com CONTROL APLICADO Marcela Vallejo Valencia profemarcelavallejo@gmail.com tableroalparque.weebly.com SISTEMA DE CONTROL VARIABLE CONTROLADA VARIABLE MANIPULADA PUNTO DE CONTROL PERTURBACIÓN Fuente : Controla

Más detalles

Cursos de Capacitación Técnica

Cursos de Capacitación Técnica Cursos de Capacitación Técnica Hidráulica Neumática Índice HIB Hidráulica Básica 3 HIA Hidráulica Avanzada 4 TFH Tecnología de Filtración Hidráulica 5 IEH Introducción a la Electrohidráulica 6 NEB Neumática

Más detalles

APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS.

APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS. QUE ES UN CALORIMETRO? APARATO UTILIZADO PARA DETERMINAR EL CALOR ESPECIFICO DE UN CUERPO, ASI COMO PARA MEDIR LAS CANTIDADES DE CALOR QUE LIBERAN O ABSORBEN LOS CUERPOS. CARACTERISTICAS UN CALORIMETRO

Más detalles

INTRODUCCION AL CONTROL AUTOMATICO

INTRODUCCION AL CONTROL AUTOMATICO MSc. Edgar Carrera Automatización Industrial Pagina: 1 de 8 INTRODUCCION AL CONTROL AUTOMATICO El control automático industrial que también se llama tecnología de instrumentación de procesos, robótica

Más detalles

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar

TALLER DE Nº 2 CONTROL AVANZADO. No se educa cuando se imponen caminos, sino cuando se enseña a caminar TALLER DE Nº 2 CONTROL AVANZADO No se educa cuando se imponen caminos, sino cuando se enseña a caminar 1. La función de transferencia de cierto proceso es: Gp(S) = 1 5S + 1 El proceso está en serie con

Más detalles

MT 221 Introducción a la realimentación y control. Elizabeth Villota

MT 221 Introducción a la realimentación y control. Elizabeth Villota MT 221 Introducción a la realimentación y control Elizabeth Villota Objetivos Proveer información general acerca de MT 221 - describir la estructura del curso, método de evaluación, aspectos administrativos,

Más detalles

UNIDAD I.- CONCEPTOS BÁSICOS DE LA INSTRUMENTACIÓN

UNIDAD I.- CONCEPTOS BÁSICOS DE LA INSTRUMENTACIÓN UNIDAD I.- CONCEPTOS BÁSICOS DE LA INSTRUMENTACIÓN 1.1.-DEFENICIONES Y CONCEPTOS Instrumentación: es el grupo de elementos que sirven para medir, controlar o registrar variables de un proceso con el fin

Más detalles

Maquinas: sistemas de control. Tecnología 3 ESO

Maquinas: sistemas de control. Tecnología 3 ESO Maquinas: sistemas de control Tecnología 3 ESO La necesidad de controlar La necesidad de controlar La necesidad de controlar Los agricultores necesitan controlar un proceso de riego. Cuando encender el

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

Universidad nacional de ingeniería. Recinto universitario Pedro Arauz palacios. Facultad de tecnología de la industria. Ingeniería mecánica

Universidad nacional de ingeniería. Recinto universitario Pedro Arauz palacios. Facultad de tecnología de la industria. Ingeniería mecánica Universidad nacional de ingeniería Recinto universitario Pedro Arauz palacios Facultad de tecnología de la industria Ingeniería mecánica DEPARTAMENTO DE energética REFRIGERACIÓN Y AIRE ACONDICIONADO Tema:

Más detalles

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR

F - INGENIERÍA TÉRMICA Y TRANSFERENCIA DE CALOR IT 03.2 - TRANSMISIÓN DE CALOR POR CONVECCIÓN NATURAL Y FORZADA (pag. F - 1) TC 01.1 - ALIMENTADOR PARA INTERCAMBIADORES DE CALOR (pag. F - 3) TC 01.2 - INTERCAMBIADOR DE CALOR DE PLACAS (pag. F - 5) TC

Más detalles

Plan. Educación en Ingeniería. Ing. de Sistemas. Ingeniería de Sistemas. Opción Control y Automatización

Plan. Educación en Ingeniería. Ing. de Sistemas. Ingeniería de Sistemas. Opción Control y Automatización Ingeniería de Sistemas Opción Control y Automatización Prof. Pablo Lischinsky Dpto. de Sistemas de Control EISULA pablo@ula.ve webdelprofesor.ula.ve/ingenieria/pablo Plan Ing. de Sistemas Ing. de Control

Más detalles

MODELO DE RESPUESTAS

MODELO DE RESPUESTAS 1/7 MODELO DE RESPUESTAS ASIGNATURA: PROCESOS DE MANUFACTURA CÓDIGO: 202 MOMENTO: Segunda Integral VERSIÓN: 1 FECHA DE APLICACIÓN: 16/05/2009 Prof. Responsable: Ing. Ana María Alvarez Coordinador: Ing.

Más detalles

CURSO: 2º BACHILLERATO MATERIA: TECNOLOGÍA INDUSTRIAL II

CURSO: 2º BACHILLERATO MATERIA: TECNOLOGÍA INDUSTRIAL II CURSO: ILLERATO MATERIA: TECNOLOGÍA INDUSTRIAL II BLOQUES DE CONTENIDO Bloque I Materiales partimos de los aprendizajes del curso anterior para continuar profundizando en la manera de determinar las propiedades

Más detalles

CAPÍTULO 5 PRESENTACIÓN Y DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL EXISTENTE

CAPÍTULO 5 PRESENTACIÓN Y DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL EXISTENTE CAPÍTULO 5 PRESENTACIÓN Y DESCRIPCIÓN DEL EQUIPO EXPERIMENTAL EXISTENTE 5.1 Introducción En este capítulo se hace una presentación y análisis del equipo experimental para desarrollar las pruebas, esto

Más detalles

CIDEAD. TECNOLOGÍA INDUSTRIAL II. Tema 6.- Sistemas automáticos

CIDEAD. TECNOLOGÍA INDUSTRIAL II. Tema 6.- Sistemas automáticos Desarrollo del tema.. Introducción.. Conceptos fundamentales. 3. Tipos de sistemas de control. 4. Estudio de la transformada de Laplace. -Tema 6.- Los Sistemas Automáticos . Introducción. Se define como

Más detalles

A puro. P b, kpa C A1 C A2. 3 m 4 5. Figura 1

A puro. P b, kpa C A1 C A2. 3 m 4 5. Figura 1 PROBLEMA. Considere el proceso mostrado en la figura. q, q en m 3 s C A, C A, C A3 en gma cc ρ en gm cc h, h, L en m q, ρ P a, kpa q, ρ A puro Reactor P b, kpa C A 3 h C A Tanque de Mezcla L h 3 m 4 5

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5

UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO 5 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECTRICISTA I. CONTENIDO 1.

Más detalles

SISTEMAS DE CONTROL. CÁTEDRA: SISTEMAS DE CONTROL DOCENTE: Prof. Ing. Marcos A. Golato DEPARTAMENTO DE INGENIERÍA MECÁNICA

SISTEMAS DE CONTROL. CÁTEDRA: SISTEMAS DE CONTROL DOCENTE: Prof. Ing. Marcos A. Golato DEPARTAMENTO DE INGENIERÍA MECÁNICA CÁTEDRA: SISTEMAS DE CONTROL DOCENTE: Prof. Ing. Marcos A. Golato SISTEMAS DE CONTROL AVANZADOS 1 Introducción FACULTAD DE CIENCAS EXACTAS Y TECNOLOGIA Los sistemas it convencionales (lazos simples de

Más detalles

Contenidos Control y Automatización

Contenidos Control y Automatización Tema 1: Conceptos básicos Susana Borromeo Juan Antonio Hernández- Tamames Curso 2014-2015 1 Contenidos Control y Automatización 1. Conceptos básicos. 2. Modelado matemático de sistemas Físicos. Linealización.

Más detalles

Control de Procesos Industriales 1. INTRODUCCIÓN

Control de Procesos Industriales 1. INTRODUCCIÓN Control de Procesos Industriales 1. INTRODUCCIÓN por Pascual Campoy Universidad Politécnica Madrid U.P.M.-DISAM P. Campoy Control de Procesos Industriales 1 Control de Procesos Industriales: Introducción

Más detalles

MT 227 Introducción a la realimentación y control. Elizabeth Villota

MT 227 Introducción a la realimentación y control. Elizabeth Villota MT 227 Introducción a la realimentación y control Elizabeth Villota Objetivos Proveer información general acerca de MT 227 - describir la estructura del curso, método de evaluación, aspectos administrativos,

Más detalles

Grado en Ingeniería en Tecnologías Industriales

Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería en Tecnologías Industriales CENTRO RESPONSABLE: ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION RAMA: Ingeniería y Arquitectura CRÉDITOS: 240,00 DISTRIBUCIÓN

Más detalles

Código Asignatura ECTS Código Asignatura ECTS

Código Asignatura ECTS Código Asignatura ECTS 3100 Pamplona Iruña Tel.: 948 1 9330 Fax: 948 1 9281 Origen: Grado en Ingeniería Informática 240101 Matemáticas I 244101 Matemáticas I 240103 Informática 244103 Informática 24010 Empresa 24410 Empresa

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

INSTITUTO TECNOLÓGICO DE SALINA CRUZ ASIGNATURA TALLER DE INVESTIGACIÓN I CLAVE: ACA-0909 DOCENTE: ROMÁN NÁJERA SUSANA MÓNICA UNIDAD II AVANCE IX

INSTITUTO TECNOLÓGICO DE SALINA CRUZ ASIGNATURA TALLER DE INVESTIGACIÓN I CLAVE: ACA-0909 DOCENTE: ROMÁN NÁJERA SUSANA MÓNICA UNIDAD II AVANCE IX INSTITUTO TECNOLÓGICO DE SALINA CRUZ ASIGNATURA TALLER DE INVESTIGACIÓN I CLAVE: ACA-0909 DOCENTE: ROMÁN NÁJERA SUSANA MÓNICA UNIDAD II AVANCE IX DISEÑO SISTEMA DE RIEGO AUTOMATIZADO PRESENTA EQUIPO 13:

Más detalles

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N 9

FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL PRÁCTICA N 9 FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL 1. TEMA PRÁCTICA N 9 VARIADOR DE VELOCIDAD 2. OBJETIVOS 2.1. Programar

Más detalles

Sistemas de control de un horno

Sistemas de control de un horno Sistemas de control de un horno En la figura se muestra el diagrama P&I correspondiente a un horno de una compañía petroquímica. En esta unidad se calienta un líquido aprovechando el calor liberado en

Más detalles

Tema 1. Introducción al Control Automático

Tema 1. Introducción al Control Automático Tema 1. Introducción al Control Automático Automática 2º Curso del Grado en Ingeniería en Tecnología Industrial Contenido Tema 1.- Introducción al Control automático 1.1. Introducción. 1.2. Conceptos y

Más detalles

Grado en Ingeniería en Electrónica Industrial y Automática

Grado en Ingeniería en Electrónica Industrial y Automática Grado en Ingeniería en Electrónica Industrial y Automática CENTRO RESPONSABLE: ESCUELA TECNICA SUPERIOR DE INGENIEROS INDUSTRIALES Y DE TELECOMUNICACION RAMA: Ingeniería y Arquitectura CRÉDITOS: 240,00

Más detalles

Cuestionario unidad 2

Cuestionario unidad 2 Cuestionario unidad 2 1. Qué tareas se deben llevar a cabo para el desarrollo de un sistema mecatrónico? Modelado, análisis, diseño integrado, pruebas y mejoras 2. Menciona los elementos claves de los

Más detalles

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL

LABORATORIO DE INSTRUMENTACIÓN INDUSTRIAL ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Electrónica y Telecomunicaciones

Más detalles

Introducción a la Automatización Industrial

Introducción a la Automatización Industrial a la Automatización Industrial UPCO ICAI Departamento de Eletrónica y Automática 1 Qué es automatizar? PLANTA Agitador Conseguir que la PLANTA funcione de forma automática Reactivo ácido Reactivo alcalino

Más detalles

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES TABLA DE EQUIVALENCIA DE INGENIERÍA INDUSTRIAL A GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CÓDIGO ASIGNATURAS INGENIERO INDUSTRIAL 2001 (52) ASIGNATURAS

Más detalles

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa Reconocimiento y transferencia de créditos desde los grados de la Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación al Grado en Ingeniería Mecánica 1. Destino: a. Origen: Grado

Más detalles

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES

GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES TABLA DE EQUIVALENCIA DE INGENIERÍA INDUSTRIAL A GRADO EN INGENIERÍA EN TECNOLOGÍAS INDUSTRIALES CÓDIGO ASIGNATURAS INGENIERO INDUSTRIAL 2001 (52) ASIGNATURAS

Más detalles

9. Alarmar por magnitud una variable 4. Controlar una variable. 10. Interrumpir o permitir una secuencia dada 5. Indicar la magnitud de una variable

9. Alarmar por magnitud una variable 4. Controlar una variable. 10. Interrumpir o permitir una secuencia dada 5. Indicar la magnitud de una variable Introduccion Si analizamos nuestras actividades cotidianas, desde el momento que suena la alarma de un despertador y nos preparamos para desarrollar nuestras actividades diarias, así como encender un foco

Más detalles

Monitorización continua las 24 Horas del día Capacidad de operar en redes de área extensa, a través de diferentes vías de comunicación

Monitorización continua las 24 Horas del día Capacidad de operar en redes de área extensa, a través de diferentes vías de comunicación 1.0 Introducción Hoy en día es difícil imaginar una actividad productiva sin el apoyo de un computador o de una máquina, en la actualidad estas herramientas no sólo están al servicio de intereses económicos,

Más detalles

NEUMATICA E HIDRAULICA

NEUMATICA E HIDRAULICA 1. INTRODUCCIÓN NEUMATICA E HIDRAULICA A nuestro alrededor existen multitud de ejemplos en los que se emplean sistemas neumáticos o hidráulicos. Normalmente se usan en aquellas aplicaciones que requieren

Más detalles

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: INGENIERÍA APLICADA

UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: INGENIERÍA APLICADA UNIVERSIDAD MICHOACANA DE SAN NICOLÁS DE HIDALGO FACULTAD DE INGENIERÍA MECÁNICA ÁREA: INGENIERÍA APLICADA Programa de la asignatura de: Y AUDITORIA ENERGÉTICA CARRERA: INGENIERÍA MECÁNICA MODULO: OPTATIVO

Más detalles

Fig. 1.1 Proceso industrial típico

Fig. 1.1 Proceso industrial típico Simulaci n y control_01.qxp 31/07/2007 13:59 PÆgina 3 Capítulo 1 1.1 Generalidades Todo proceso industrial es controlado básicamente por tres tipos de elementos: el transmisor (TI), el controlador (TIC

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

Proyecto de Automatización

Proyecto de Automatización FACULTAD DE INGENIERÍA QUÍMICA Y TETIL Proyecto de Automatización Estrategia de control de una planta de gas natural Unidad de refrigeración simple Autores: - Gonzales Pajuelo, Matt - Malca Leandro, Iván

Más detalles

Robótica Mecanización, Automatización y Robotización Robótica y robots... 3

Robótica Mecanización, Automatización y Robotización Robótica y robots... 3 Robótica... 2 Mecanización, Automatización y Robotización... 2 Robótica y robots... 3 Definiciones de robot... 3 Funcionamiento de un robot... 4 Entradas o Sensores... 5 Salidas o actuadores... 6 Realimentación...

Más detalles

Descripción funcional del Sistema de Gas Natural Gas Natural Licuado ( GNL ),

Descripción funcional del Sistema de Gas Natural Gas Natural Licuado ( GNL ), Descripción funcional del Sistema de Gas Natural Actualmente el gas natural usado en la Central Nehuenco es Gas Natural Licuado ( GNL ), es gas natural que ha sido procesado para ser transportado en forma

Más detalles

Realizado: Versión: Páginas: Grupo SUPPRESS. Laboratorio Remoto de Automática (LRA-ULE) Universidad de León

Realizado: Versión: Páginas: Grupo SUPPRESS. Laboratorio Remoto de Automática (LRA-ULE) Universidad de León Realizado: Grupo SUPPRESS (Supervisión, Control y Automatización) Laboratorio Remoto de Automática (LRA-ULE) Universidad de León http://lra.unileon.es Versión: Páginas: 1.0 12 0. Introducción Para llevar

Más detalles