AMPLITUD DE MAREAS (MAREOMOTRIZ)

Tamaño: px
Comenzar la demostración a partir de la página:

Download "AMPLITUD DE MAREAS (MAREOMOTRIZ)"

Transcripción

1 (MAREOMOTRIZ) Características Sobre las costas, el nivel del mar aumenta y disminuye de manera periódica Además del movimiento vertical, se produce un movimiento horizontal (corrientes de marea) caracterizado por un cambio de velocidad y sentido. El agua de los mares se mantiene en contacto con la superficie terrestre por efecto de la fuerza de gravedad local. La fuerza de atracción gravitatoria entre Tierra-Luna y Tierra-Sol, y su movimiento relativo, introduce una perturbación que da origen al movimiento de los océanos (mareas). Pese a su tamaño relativamente pequeño, la proximidad de la Luna tiene un mayor efecto que el Sol. La relación entre la marea y el movimiento de la Luna se conoce muy bien, sin embargo el fenómeno de las mareas en un determinado lugar es 1 complejo (fricción y resonancias).

2 Causa de las mareas La Tierra y la Luna orbitan un baricentro común (indicado con O). La masa de la Tierra es 81 veces mayor a la de la Luna, por lo que el movimiento de Luna en torno a O es más evidente. M L M L L D L L M M M D Revolution El balance entre las fuerzas de atracción gravitatoria entre ambos cuerpos y las fuerzas inerciales mantiene la separación 2 2 M L M L G M M D 2 G = Nm 2 /kg 2 constante gravitacional 2

3 Causa de las mareas (cont.) Marea semidiurna Un elemento de masa m en la superficie de la Tierra ubicado en Y tiene una menor fuerza gravitatoria que en el punto X (mayor distancia). La fuerza resultante (suma vectorial de la fuerza gravitatoria y la inercial), en X apunta hacia la luna, y en Y en sentido opuesto. Las magnitudes de ambas son similares. El líquido de la superficie se mueve a causa de esta fuerza. Si la Luna estuviera en el plano ecuatorial de la Tierra, X e Y tendrían los picos al mismo tiempo, y cada punto del mar tendría dos picos diarios de igual amplitud. La pleamar (nivel máximo) se produciría sobre el meridiano por el cual está pasando la luna y en el opuesto. 3

4 Causa de las mareas (cont.) Marea semidiurna (cont.) El Sol ejerce una fuerza de atracción que se superpone a la de la Luna., introduciendo una diferencia en la amplitud de las mareas. En conjunción u oposición, las pleamares y bajamares son más amplias. Se denomina sicigia o marea viva (spring tide) y se dan en Luna nueva o llena. En cuadratura (cuartos) las pleamares y bajamares son menos pronunciadas. 4

5 Marea semidiurna (cont.) Período Es de 12h 25min (en un lugar dado, el nivel se eleva durante 6h 12,5min y desciende 6h 12,5min) Rango Es la diferencia entre los niveles de pleamar y bajamar. Varía durante el mes lunar (29.53 días). Máximo: en luna llena y nueva (conjunción). Mínimo en cuarto creciente y menguante (cuadratura). 5

6 Efectos adicionales El movimiento de las mareas se ve modificado por El movimiento inducido por la luna al pasar por un meridiano está retrasado respecto a ésta y cada océano tiene su patrón específico. Aparecen otras componentes frecuenciales porque la luna en general no se encuentra sobre el plano ecuatorial de la tierra, o la distancia a la tierra varía. Resonancias cerca de las costas. Dependiendo de la geografía el rango puede superar los 10m. 6

7 Lugares propicios En algunos lugares el rango puede alcanzar los 6 a 10 metros. Bahía de Fundy (Canadá) Estuario del río Severn (Inglaterra) Costa Patagónica (Argentina) Bahía de Kislaya (Rusia) La Rance (Francia) Costa del Mar de Okhost (Japón) 7

8 Sistemas de aprovechamiento De pileta simple Unidireccional Se llena el reservorio mientras la marea sube. Una vez que alcanza el nivel de pleamar, se cierran las compuertas de ingreso. Las compuertas de la turbina se abren cuando baja la marea baja lo suficiente como para tener una presión hidrostática adecuada para generar con la turbina. Bidireccional Se genera en ambas direcciones, cuando se llena el reservorio y cuando se vacía. Se requieren turbinas reversibles (requieren mayor presión hidrostática, es decir mayores rangos). 8

9 Sistemas de aprovechamiento De pileta simple (cont.) Máxima potencia media teórica con operación bidireccional (se genera dos veces por cada marea, T=6.2h) P A P g 2 2 R W/m 2T A R R W/m

10 Sistemas de aprovechamiento De pileta simple (cont.) Características La potencia real es del 25-30% de la máxima teórica. Debido a las pérdidas por fricción y al rendimiento de las turbinas/generadores Si el tiempo de generación se hace muy corto para aprovechar la máxima diferencia de presiones (rango) el conjunto turbinagenerador es muy grande y se utiliza en intervalos de tiempo muy cortos. Los picos de generación se van corriendo de un día a otro. Aunque son periódicos, no coinciden con los picos de demanda. 10

11 Sistemas de aprovechamiento De pileta simple modulada Corrige parcialmente las deficiencias de la pileta simple aprox. lineal y ar 1 C: compuerta cerrada G: compuerta abierta E-F: compuerta abierta, turbina con bypass 11

12 Sistemas de aprovechamiento De pileta simple modulada (cont.) 2 2 cos1 cos2 a 2 1 P R W/m, A -1 a h Características La potencia es significativamente menor que con pileta simple pero genera de manera más uniforme y con menor presión hidrostática. La altura promedio es menor y como la potencia es proporcional al cuadrado de ésta, el conjunto turbina-generador es más pequeño pero funcionan más tiempo. 12

13 Sistemas de aprovechamiento Pileta doble Las turbinas se ubican en el dique B. El tamaño de las piletas debe ser relativamente grande para que al vaciarla no cambie significativamente la altura hidrostática. Turbinas más pequeñas y generación sostenida. Obras civiles muy importantes impactos elevados. 13

14 Centrales en operación La Rance (St. Malo, Francia) Fue por mucho tiempo la mayor planta este tipo en el mundo. 240 MW instalados 600 GWh/año Funciona desde El rango de mareas es de los más grandes del mundo (máximo de 13.5 m). Reservorio de 22 km 2 capaz de contener 180x10 6 m 3 de agua. En los períodos de pico pasan m 3 /s de agua. 14

15 Centrales en operación La Rance (cont.) Obras civiles Se bloqueó del estuario con una estructura de 750m de largo y 13m de alto. Demandó 25 años de estudio y 6 años de construcción. 15

16 Centrales en operación La Rance (cont.) Turbinas De tipo bulbo, operan en ambas direcciones. El conjunto turbinagenerador está herméticamente protegido dentro del bulbo. Tiene 24 conjuntos de 5.3 m de diámetro, 470 ton, y 10 MW. Para incrementar el tiempo de operación también funcionan como bombas. Cuando el mar alcanza el nivel del reservorio se bombea agua para incrementar el nivel y generar por más tiempo. 16

17 Centrales en operación La Rance (cont.) Turbinas 17

18 Centrales en operación Sihwa (Corea del Sur) 254MW, 10 turbinas de bulbo unidireccionales de 25.4MW Inaugurado en agosto de 2011, utiliza una barrera de 12.5km construida en 1994 para mitigar inundaciones. 552 GWh anuales Reservorio de 30km 2 18

19 Centrales en operación Annapolis (Nueva Escocia, Canadá) 20MW y MWh dependiendo del rango Rango promedio de 7m. No es el mayor de la región (Bahía de Fundy) Proyecto piloto construido entre 1980 y 1984 Con todas las compuertas abiertas circulan 400 m3/s 19

20 Centrales en operación Annapolis (cont.) Turbina unidireccional de 7.6m de diámetro y 148 tn, se genera sólo en la dirección que vacía el reservorio (10 hs diarias, 5 hs por marea) 20

21 Otros tipos de turbinas Turbina Rim El eje del generador está en el interior del dique, a 90º de la turbina Turbina tubular El generador está en el interior del dique, gran longitud del eje, ubicación inclinada. 21

22 Evaluación del recurso en Argentina La amplitud de mareas en la Patagonia es de las más grandes del mundo. Alcanza cerca un máximo de 12 m en la Bahía Grande (Sta. Cruz). Las alturas de marea disminuyen hacia el norte, pero en los golfos de San José y Nuevo (Pla. Valdéz), los máximos son más elevados. Además se da un fenómeno de origen topográfico que produce un desfase horario constante entre las alturas de mareas de ambos golfos. 22

23 Proyectos en Argentina Trabajos del Cap. José A. Oca Balda Estudios del Dr. Damianovich y del Ing. Besio Moreno El Pres. Alvear designa una Comisión Honoraria Estudio del Ing. Juan Carlos Erramouspe. Estudio de Grupo Francés de Ingeniería (*) Informe del Ing. José Richterich (*) Estudios de la firma Sogreah (*) Propuesta del Ing. Loschakoff Propuesta del Ing. Miguel Rodríguez Estudio del Ing. Fenteloff Ley , Prop. por Agua y Energía(*) Estudio de los Ings. Aiskis y Zynglermaris (*): estudios que involucraban vincular los golfos 23 Fuente: M.R. Chingotto, Energía Mareomotriz. Sí? Dónde? No? Por qué? Conclusiones, Boletín del Centro Naval, No. 813, pp , enero/abril 2006

24 CORRIENTES DE MAREAS Características Cerca de las costas y entre islas cercanas, las mareas pueden producir fuertes corrientes. Se intercala un dispositivo para convertir la energía cinética del agua (hidrocinética) en energía eléctrica (similar a una turbina eólica). Ventajas La velocidad del agua es predecible. Por lo tanto se puede predecir la potencia generada. La densidad del agua es 1000 veces mayor que la del aire. No requieren construir una represa, ni bloquear el curso de agua. Desventajas Velocidades de las corrientes menores que las del viento. Trabajan en un ambiente marino. Aumentan los problemas relacionados con el mantenimiento, la resistencia y confiabilidad de los materiales, y la transmisión de la energía generada. 24

25 CORRIENTES DE MAREAS Densidad de potencia Siguiendo un razonamiento similar al viento, la densidad de potencia de la corriente de agua es P 1 A 2 v W/m 3 2 Para marea semidiurna, la velocidad varía en el tiempo de acuerdo a Suponiendo que se genera en ambos sentidos, la densidad de potencia media (ρ = 1025 kg/m 3 ) resulta v v sen 2 t max 12h 25min P A v t dt v v 2 / / max sen 2 / max max W/m 0 Debe agregarse el rendimiento de la conversión a potencia mecánica (Cp) y a eléctrica (generador). 25

26 CORRIENTES DE MAREAS Densidad de potencia (cont.) Comparación de las densidades de potencia y diámetros de rotores Viento Para viento con distribución de Raileigh: Para marea semidiurna: Relación de diámetros para tener la misma potencia Agua P A c P A 1 2 agua v 0.42 W/m 3 2 max 3 3/ 2 3 c med aire med c med w agua max max w max A v v D v A v v D v Relación diámetros para igual potencia 2 v 1.91 W/m w aire med V med [m/s] P med /A w [W/m2] V max [m/s] P med /A c [W/m2] D c /D w (v med =8m/s) (~1/3) 0.21 (~1/5) (~1/6)

Energía de la mareas

Energía de la mareas Energía de la mareas Antecedentes Históricos Molinos de Agua. (Inglaterra) Ministerio de Transporte 1920 Comisión Brabazon 1925 Reportes en 1933 y 1944 Varias propuestas 60 s y 70 s La Rance 1961-1967

Más detalles

Energía del mar. Las turbinas sumergidas bajo el mar, giran gracias a la fuerza de las mareas. La rotación de las hélices produce energía

Energía del mar. Las turbinas sumergidas bajo el mar, giran gracias a la fuerza de las mareas. La rotación de las hélices produce energía ENERGÍA DEL MAR Energía del mar La energía mareomotriz es la que se obtiene aprovechando las mareas, se puede utilizar el sistema para la generación de electricidad, transformando así la energía mareomotriz

Más detalles

ENERGÍA DE LAS MAREAS

ENERGÍA DE LAS MAREAS Origen (1) Las mareas son movimientos oscilatorios del nivel del mar, debido a las fuerzas de atracción gravitacional que la Luna y el Sol ejercen sobre las partículas líquidas de los océanos El comportamiento

Más detalles

CORRIENTES DE MAREAS. Tecnologías de conversión. Existen numerosos dispositivos de conversión que pueden clasificarse en dos grandes grupos

CORRIENTES DE MAREAS. Tecnologías de conversión. Existen numerosos dispositivos de conversión que pueden clasificarse en dos grandes grupos CORRIENTES DE MAREAS Tecnologías de conversión Existen numerosos dispositivos de conversión que pueden clasificarse en dos grandes grupos Turbinas Eje horizontal Eje vertical Eje trasversal Venturi Vortex

Más detalles

Mareas extraordinarias

Mareas extraordinarias Mareas extraordinarias Las variaciones en el nivel del mar de las mareas están asociadas a varios fenómenos, el más común y predecible es el astronómico, producto de la fuerza causada por la atracción

Más detalles

Línea de Costa o Ribera (shoreline): es el límite entre el cuerpo de agua y la playa expuesta.

Línea de Costa o Ribera (shoreline): es el límite entre el cuerpo de agua y la playa expuesta. Olas y mareas Costa: es zona emergida afectada por procesos marinos (o lacustres) sumada a la zona marina afectada por acumulación aluvial y costera (por lo tanto incluye deltas, playas, islas barrera,

Más detalles

MAREAS EXTRAORDINARIAS

MAREAS EXTRAORDINARIAS MAREAS EXTRAORDINARIAS Las variaciones en el nivel del mar las mareas, están asociadas a varios fenómenos; el más común y predecible es el astronómico, producto de la fuerza causada por la atracción gravitacional

Más detalles

Aprovechamientos Hidráulicos Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE

Aprovechamientos Hidráulicos Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE Turbinas Hidráulicas Aprovechamientos Hidráulicos Prof. Jesús DE ANDRADE Prof. Miguel ASUAJE La Energía Hidráulica La Energía Hidráulica Escurrimiento Superficie s1 2 s Curso natural: Río Aprovechamiento

Más detalles

UNIVERSIDAD NACIONAL DE TUCUMÁN. Facultad de Ciencias Exactas y Tecnología

UNIVERSIDAD NACIONAL DE TUCUMÁN. Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMÁN Facultad de Ciencias Exactas y Tecnología CENTRALES ELÉCTRICAS TRABAJO PRÁCTICO Nº 9 Energías Renovables ALUMNO: AÑO 017 INTRODUCCIÓN: La energía renovable se define generalmente

Más detalles

Las energías marinas LAS ENERGÍAS MARINAS LA ENERGÍA MAREMOTRIZ CENTRALES MAREMOTRICES REALIDADES Y POSIBILIDADES DE LA ENERGÍA MAREMO- TRIZ

Las energías marinas LAS ENERGÍAS MARINAS LA ENERGÍA MAREMOTRIZ CENTRALES MAREMOTRICES REALIDADES Y POSIBILIDADES DE LA ENERGÍA MAREMO- TRIZ LAS ENERGÍAS MARINAS FUENTES ENERGÉTICAS DE ORIGEN MARINO LA ENERGÍA MAREMOTRIZ CENTRALES MAREMOTRICES REALIDADES Y POSIBILIDADES DE LA ENERGÍA MAREMO- TRIZ LA ENERGÍA MAREMOTÉRMICA CENTRALES MAREMOTÉRMICAS

Más detalles

y mareas Línea de Costa o Ribera (shoreline): es el límite entre el cuerpo de agua y la playa expuesta.

y mareas Línea de Costa o Ribera (shoreline): es el límite entre el cuerpo de agua y la playa expuesta. Costas, olas y mareas Costa: es zona emergida afectada por procesos marinos (o lacustres) sumada a la zona marina afectada por acumulación aluvial y costera (por lo tanto incluye deltas, playas, islas

Más detalles

Diego Pablo Ruiz Padillo Dpto. Física Aplicada Facultad de Ciencias Universidad de Granada

Diego Pablo Ruiz Padillo Dpto. Física Aplicada Facultad de Ciencias Universidad de Granada LA ENERGÍA EÓLICA Diego Pablo Ruiz Padillo Dpto. Física Aplicada Facultad de Ciencias Universidad de Granada 1 Tipos actuales de turbinas eólicas Pequeña turbina Hogar & Granjas Aplicaciones Remotas 5,000-50,000+

Más detalles

Algunas experiencias mexicanas en el desarrollo de sistemas basados en la energía del oleaje. Rodolfo Silva Casarín

Algunas experiencias mexicanas en el desarrollo de sistemas basados en la energía del oleaje. Rodolfo Silva Casarín Algunas experiencias mexicanas en el desarrollo de sistemas basados en la energía del oleaje Rodolfo Silva Casarín Organización de la presentación Introducción Desarrollos internacionales Experiencia mexicana

Más detalles

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria

FÍSICA 2º Bachillerato Ejercicios: Interacción gravitatoria 1(9) Ejercicio 1 Un bloque de 50 Kg de masa asciende una distancia de 6 m por un plano inclinado 37 º y que presenta un coeficiente de rozamiento de 0 2, aplicándole una fuerza constante de 490 N paralela

Más detalles

ENERGÍA MAREOMOTRIZ. 1. Las Mareas. 2. Funcionamiento de las centrales mareomotrices.

ENERGÍA MAREOMOTRIZ. 1. Las Mareas. 2. Funcionamiento de las centrales mareomotrices. ENERGÍA MAREOMOTRIZ La energía mareomotriz se produce gracias al movimiento generado por las mareas, esta energía es aprovechada por turbinas, las cuales a su vez mueven la mecánica de un alternador que

Más detalles

L A A D DI IN N Á Á M MI IC C A A O O C C E E Á Á N NI IC C A

L A A D DI IN N Á Á M MI IC C A A O O C C E E Á Á N NI IC C A LA LA DINÁMICA DINÁMICA OCEÁNICA OCEÁNICA OLAS, OLAS, MAREAS MAREAS Y Y CORRIENTES CORRIENTES MARINAS MARINAS 1.- 1.-El El ambiente ambiente marino marino 2.- 2.-Mares y y océanos océanos 3.- 3.-Movimientos

Más detalles

Aprovechamiento de la Energía Undimotriz

Aprovechamiento de la Energía Undimotriz Aprovechamiento de la Energía Undimotriz Ing. Mario Pelissero - Mg. Ing. Alejandro Haim Prof. Roberto Tula Tipos de energías marinas Mareomotriz Corrientes Marinas Térmica Oceánica Undimotriz Osmótica

Más detalles

CINEMÁTICA. El periodo de un péndulo sólo depende de la longitud de la cuerda ( l ) y la aceleración de la gravedad ( g ).

CINEMÁTICA. El periodo de un péndulo sólo depende de la longitud de la cuerda ( l ) y la aceleración de la gravedad ( g ). CINEMÁTICA Es la rama de la mecánica que estudia el movimiento de los cuerpos sin tomar en cuenta las causas. Distancia: es una magnitud escalar que mide la separación entre dos cuerpos o entre dos lugares.

Más detalles

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA

DE SÓLIDOS I UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA UNIVERSIDAD NACIONAL DEL CALLAO FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA ESCUELA PROFESIONAL DE INGENIERÍA ELÉCTRICA CURSO: MECÁNICA DE SÓLIDOS I PROFESOR: ING. JORGE A. MONTAÑO PISFIL I. MECÁNICA

Más detalles

Guía de Problemas. Hidrostática.

Guía de Problemas. Hidrostática. Guía de Problemas. Hidrostática. 1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m),

Más detalles

67.18 Mecánica de Fluidos

67.18 Mecánica de Fluidos Ejercicio 2.1. Un tanque cerrado está parcialmente lleno con glicerina. Si la presión del aire dentro del tanque es de 6 psi (41,37 kpa) y el nivel de glicerina es de 10 ft (3,05 m), cual será la presión

Más detalles

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance?

1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto de balance? Física de PSI - movimiento armónico simple (M.A.S.) Preguntas de múltiple opción 1. Se aplica un M.A.S. a una determinada masa sobre un resorte. Cómo se denomina el máximo desplazamiento desde el punto

Más detalles

ENERGÍA MAREOMOTRIZ. Motrico (Guipúzcoa,España)

ENERGÍA MAREOMOTRIZ. Motrico (Guipúzcoa,España) ENERGÍA MAREOMOTRIZ Motrico (Guipúzcoa,España) ÍNDICE 1. Qué es la energía mareomotriz?...pág.2 2. Cómo obtenemos la energía mareomotriz?...págs.2-3 2.1.Generador de la corriente de marea...pág.2 2.2.Presa

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010

SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS SEGUNDA EVALUACIÓN DE FÍSICA NIVEL 0B Curso de Nivel Cero - Invierno del 2010 VERSIÓN 0 NOMBRE: Este examen consta de 25 preguntas,

Más detalles

Universidad de Atacama. Física 1. Dr. David Jones. 12 Mayo 2014

Universidad de Atacama. Física 1. Dr. David Jones. 12 Mayo 2014 Universidad de Atacama Física 1 Dr. David Jones 12 Mayo 2014 Fuerzas La fuerza se puede definir como una magnitud vectorial capaz de deformar los cuerpos (efecto estático) y modificar su velocidad (o ponerlos

Más detalles

PRUEBA ESPECÍFICA PRUEBA 201

PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA SOLUCIONARIO Aclaraciones previas Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada pregunta

Más detalles

Pablo Mansilla Salinero. Magallanes Renovables SL

Pablo Mansilla Salinero. Magallanes Renovables SL Pablo Mansilla Salinero Magallanes Renovables SL www.magallanesrenovables.com ENERGÍAS DE CORRIENTES Energías de corrientes La Agencia Internacional de la Energía (IAE) estima un potencial global de 5TW

Más detalles

Quinta Lección. Mirando el vuelo de las aves a la luz de la física..

Quinta Lección. Mirando el vuelo de las aves a la luz de la física.. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Quinta Lección. Mirando el vuelo de las aves a la luz

Más detalles

Guía para oportunidades extraordinarias de Física 2

Guía para oportunidades extraordinarias de Física 2 Guía para oportunidades extraordinarias de Física 2 Capitulo 1 Vectores a) Introducción b) Cantidades vectoriales c) Métodos analíticos Capitulo 2 Dinámica a) Fuerza b) Leyes de Newton sobre el movimiento

Más detalles

wave energy ENERGÍAS RENOVABLES CENTRO DE INVESTIGACION DE ENERGIA Arq. Carlos Campo Garrido C.

wave energy ENERGÍAS RENOVABLES CENTRO DE INVESTIGACION DE ENERGIA Arq. Carlos Campo Garrido C. wave energy ENERGÍAS RENOVABLES CENTRO DE INVESTIGACION DE ENERGIA Arq. Carlos Campo Garrido C. intro ducción Conceptos que datan de hace 200 años. 1970 emergen los primeros esquemas en islas aisladas

Más detalles

Examen de Ubicación. Física del Nivel Cero Enero / 2009

Examen de Ubicación. Física del Nivel Cero Enero / 2009 Examen de Ubicación DE Física del Nivel Cero Enero / 2009 NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 100 puntos, consta de 30 preguntas de opción múltiple con cinco posibles

Más detalles

PRACTICA Nº 1 PROBLEMA 1. PROBLEMA 3.

PRACTICA Nº 1 PROBLEMA 1. PROBLEMA 3. PRACTICA Nº 1 Página 1 de 5 PRACTICA Nº 1 PROBLEMA 1. Un eje vertical rota dentro de un rodamiento. Se supone que el eje es concéntrico con el cojinete del rodamiento. Una película de aceite de espesor

Más detalles

ACTIVIDADES DEL CURSO DE FÍSICA I

ACTIVIDADES DEL CURSO DE FÍSICA I SESIÓN 16 13 SEPTIEMBRE 1. Primer Examen 2. Investigación 6. Tema: Leyes de Newton. Contenido: Biografía de Isaac Newton Primera Ley de Newton Segunda Ley de Newton Tercera Ley de Newton Entrega: Sesión

Más detalles

EL SOL COMO FUENTE DE ENERGÍA

EL SOL COMO FUENTE DE ENERGÍA MINISTERIO DE ENERGÍA Y MINAS República de Guatemala Central Solar Fotovoltaica SIBO ENERGÍA SOLAR EN GUATEMALA Puntos de Interés: Planta Fotovoltaica de 50 MW (HORUS I) Guatemala se encuentra en una posición

Más detalles

PPronóstico de Mareas de Nicaragua

PPronóstico de Mareas de Nicaragua Instituto Nicaragüense de Estudios Territoriales (INETER) PPronóstico de Mareas de Nicaragua Año 2019 Dirección General de Recursos Hídricos Dirección de Hidrografía Managua, Nicaragua. 140 Pronóstico

Más detalles

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide:

en una región del espacio en que coexisten un campo magnético B 0,2k T, se pide: CAMPO MAGNÉTICO. SEPTIEMBRE 1997: 1.- Una partícula cargada se introduce con velocidad v vi en una región del espacio en que coexisten un campo magnético B 0,2k T y un campo eléctrico E 100 j N/C. Calcular

Más detalles

Perí odo orbital de la tierra = 365'25 dí as

Perí odo orbital de la tierra = 365'25 dí as PAU MADRID SEPTIEMBRE 2004 Cuestión 1.- La luz solar tarda 8'31 minutos e llegar a la Tierra y 6'01 minutos en llegar a Venus. Suponiendo que las órbitas de los planetas son circulares, determine el perí

Más detalles

EJERCICIOS ONDAS PAU

EJERCICIOS ONDAS PAU EJERCICIOS ONDAS PAU 1 Una masa m oscila en el extremo de un resorte vertical con una frecuencia de 1 Hz y una amplitud de 5 cm. Cuando se añade otra masa, de 300 g, la frecuencia de oscilación es de 0,5

Más detalles

5- La aceleración máxima que adquiere cierto automóvil es de 4m/s2. Esta aceleración en km/h 2 es de: a) 14,4 b) 1,1 c) 0,07 d) 240 e)

5- La aceleración máxima que adquiere cierto automóvil es de 4m/s2. Esta aceleración en km/h 2 es de: a) 14,4 b) 1,1 c) 0,07 d) 240 e) Fila 1 1- Un automóvil viajando a una velocidad de 72km/h comienza a frenar y logra detenerse a los 5 segundos. Entonces podemos decir que hasta los 3 segundos el automóvil se desplazó aproximadamente:

Más detalles

Trabajo de una Fuerza

Trabajo de una Fuerza rabajo y Energía.- Introducción.- rabajo de una uerza 3.- Energía cinética de una partícula. eorema del trabajo y la energía 4.- Potencia 5.- Energía potencial 6.- uerzas conservativas 7.- Conservación

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico

UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico UNIDAD 9: TRABAJO Y ENERGÍA MECÁNICA 1. Trabajo mecánico a) Indica en los siguientes casos si se realiza o no trabajo mecánico: Un cuerpo en caída libre (fuerza de gravedad Un cuerpo apoyado en una meda

Más detalles

Apellidos: Nombre: 1- Cómo se define la frecuencia de un movimiento oscilatorio armónico?

Apellidos: Nombre: 1- Cómo se define la frecuencia de un movimiento oscilatorio armónico? Ondas Oceánicas Parcial grado 2012 Apellidos: Nombre: NORMAS DEL EXAMEN Test (responder en los primeros 30 minutos): Cada pregunta tiene una sola respuesta correcta. Tacha la letra de la respuesta válida

Más detalles

Tecnologías para generación eléctrica usando la energía del mar

Tecnologías para generación eléctrica usando la energía del mar 4ta Reunión C.A. Energía AUGM Fortaleza Septiembre 2008 Tecnologías para generación eléctrica usando la energía del mar Miguel Arias Universidad de Santiago de Chile 1 Contenidos 1. Las mareas 2. Gradientes

Más detalles

SEMINARIO INTERACCIÓN GRAVITATORIA

SEMINARIO INTERACCIÓN GRAVITATORIA Capítulo 1 SEMINARIO INTERACCIÓN GRAVITATORIA 1. La masa de la Luna es 0,012 veces la masa de la Tierra, el radio lunar es 0,27 veces el radio de la Tierra y la distancia media entre sus centros es 60,3

Más detalles

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII: UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento

Más detalles

Trabajo Práctico n 2. Estática de los Fluidos

Trabajo Práctico n 2. Estática de los Fluidos Trabajo Práctico n 2 Estática de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - Determinar la variación de la presión en un fluido en reposo - Calcular las fuerzas que ejerce un fluido

Más detalles

AP Física B de PSI Gravitación Universal

AP Física B de PSI Gravitación Universal AP Física B de PSI Gravitación Universal Preguntas de Multiopción 1. La fuerza gravitacional entre dos objetos es proporcional a A) la distancia entre los dos objetos. B) el cuadrado de la distancia entre

Más detalles

Caja de herramientas. Teoría. Calefacción. Teoría básica de bombas Bucles de mezcla. Teoría básica

Caja de herramientas. Teoría. Calefacción. Teoría básica de bombas Bucles de mezcla. Teoría básica básica de bombas Bucles de mezcla Calefacción básica TEORÍA BÁSICA DE BOMBAS CURVA Q X H La curva característica de la bomba está indicada en el diagrama, donde Q (caudal) es el eje X y H (altura) o p

Más detalles

TEMA 12: UN MUNDO EN MOVIMIENTO

TEMA 12: UN MUNDO EN MOVIMIENTO TEMA 12: UN MUNDO EN MOVIMIENTO 1- MOVIMIENTO El movimiento de un cuerpo es el cambio de posición respecto a otros objetos que sirven como sistema de referencia. Llamamos trayectoria del movimiento de

Más detalles

Índice Capítulo 1 Generalidades Capítulo 2 Biomasa Capítulo 3 Eólica

Índice Capítulo 1 Generalidades Capítulo 2 Biomasa Capítulo 3 Eólica Índice Capítulo 1 Generalidades 1.1 Generalidades... 13 1.2 Antecedentes... 16 1.3 Emisiones de gases... 17 1.4 Energías no renovables... 22 1.5 Energías renovables... 25 1.6 Opiniones diversas sobre el

Más detalles

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia:

En el caso de ondas electromagnéticas (luz) el campo eléctrico E y el campo magnético B varían de forma oscilatoria con el tiempo y la distancia: y : posición vertical www.clasesalacarta.com 1 Concepto de Onda ema 8.- Movimiento Ondulatorio. Ondas Mecánicas Onda es una forma de transmisión de la energía. Es la propagación de una perturbación en

Más detalles

Ing. Oscar Ferreño Gerente de Generación UTE (Administración Nacional de Usinas y Transmisiones Eléctricas) 1

Ing. Oscar Ferreño Gerente de Generación UTE (Administración Nacional de Usinas y Transmisiones Eléctricas) 1 Matriz Eléctrica Uruguaya con gran participación de Energías Renovables Potencial para el desarrollo de Usinas de Acumulación por bombeo en Uruguay Ing. Oscar Ferreño Gerente de Generación UTE (Administración

Más detalles

Hay tres componentes del viento que determinan la potencia disponible de un Sistema de Conversión de Energía Eólica (S.C.E.E.):

Hay tres componentes del viento que determinan la potencia disponible de un Sistema de Conversión de Energía Eólica (S.C.E.E.): 4. RECURSO EÓLICO 4. LA NATURALEZA DEL VIENTO L a energía cinética del viento, es una forma secundaria de energía solar; la cual está disponible en todo el mundo, teniendo significantes diferencias espaciales

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

TRAAJO Y ENERGÍA TRAAJO Y ENERGÍA 1.- En el gráfico de la figura se representa en ordenadas la fuerza que se ejerce sobre una partícula de masa 1 kg y en abcisas la posición que ocupa ésta en el eje x.

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

U N I D A D 1 - P A R T E 4

U N I D A D 1 - P A R T E 4 E N E R G Í A S R E N O V A B L E S U N I D A D 1 - P A R T E 4 E N E R G Í A H I D R A U L I C A La energía que poseen los cursos de agua puede ser aprovechada de distintas formas, una de ellas es mediante

Más detalles

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS

OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS OLIMPIADA DE FÍSICA 2009 FASE LOCAL PRINCIPADO DE ASTURIAS CUESTIONES (40 puntos). Se marcará con una cruz la casilla que se considere acertada (sólo hay una) en la hoja de respuestas (no en el cuestionario).

Más detalles

Necesidad de facilitar las labores mas comunes o diarias. Molinos de maíz utilizados en Gran Bretaña y Francia en la edad media. La idea de explotar

Necesidad de facilitar las labores mas comunes o diarias. Molinos de maíz utilizados en Gran Bretaña y Francia en la edad media. La idea de explotar Necesidad de facilitar las labores mas comunes o diarias. Molinos de maíz utilizados en Gran Bretaña y Francia en la edad media. La idea de explotar la potencia para generar energía eléctrica es muy reciente.

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICAS

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICAS UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: MATEMATICA TECNICA CICLO I/008 GUIA DE EJERCICIOS : FUNCIONES OBJETIVOS: Que el estudiante: Dada la gráfica, determine si es función utilizando

Más detalles

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1

a) La pulsación o frecuencia angular, será: K = mω 2 = 0,2(8π) 2 = 126,3 N m b) Conocida la constante, se obtiene la amplitud: 2Em 2 KA2 A = 50 = 1 OPCIÓN A Cuestión 1.- Un sistema elástico, constituido por un cuerpo de masa 00 g unido a un muelle, realiza un movimiento armónico simple con un periodo de 0,5 s. Si la energía total del sistema es 8

Más detalles

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones.

1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, 2 y 3 dimensiones. Ondas. Función de onda 1) Dé ejemplos de ondas que pueden considerarse que se propagan en 1, y 3 dimensiones. ) Indique cómo pueden generarse ondas transversales y longitudinales en una varilla metálica.

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje

INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS. Prof. Jesús De Andrade Prof. Miguel Asuaje INTRODUCCIÓN A LAS MÁQUINAS HIDRÁULICAS Prof. Jesús De Andrade Prof. Miguel Asuaje Enero 2010 Contenido PARTE I Introducción Definiciones Generales Clasificación de las Turbomáquinas Bombas Centrífugas

Más detalles

ENERGÍA Año de Publicación: 2003

ENERGÍA Año de Publicación: 2003 ENERGÍA Año de Publicación: 2003 Título original de la obra: Conceptos sobre Energía Copyright (C) 2003 Secretaría de Energía República Argentina Secretaría de Energía - República Argentina Página 1 ENERGÍA

Más detalles

LA ENERGÍA DE LAS OLAS

LA ENERGÍA DE LAS OLAS LA ENERGÍA DE LAS OLAS POR: PABLO JIMÉNEZ AGUILAR CLASE: 1º BACHILLERATO-C Qué son las olas? INTRODUCCIÓN Las olas son ondas que se desplazan por la superficie de océanos, mares, ríos canales, lagos y

Más detalles

1 La fuerza gravitacional entre dos objetos es proporcional a

1 La fuerza gravitacional entre dos objetos es proporcional a Slide 1 / 43 1 La fuerza gravitacional entre dos objetos es proporcional a la distancia entre los dos objetos. el cuadrado de la distancia entre los dos objetos. el producto de los dos objetos. el cuadrado

Más detalles

Slide 1 / 43. Slide 2 / 43. Slide 3 / 43. se cuádrupla. 1 La fuerza gravitacional entre dos objetos es proporcional a

Slide 1 / 43. Slide 2 / 43. Slide 3 / 43. se cuádrupla. 1 La fuerza gravitacional entre dos objetos es proporcional a 1 La fuerza gravitacional entre dos objetos es proporcional a Slide 1 / 43 la distancia entre los dos objetos. el cuadrado de la distancia entre los dos objetos. el producto de los dos objetos. el cuadrado

Más detalles

v m 2 d 4 m d 4 FA FCP m k m m m m m r

v m 2 d 4 m d 4 FA FCP m k m m m m m r Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

OLIMPIADA DE FÍSICA. FASE LOCAL UNIVERSIDAD DE JAÉN 15 DE MARZO CUESTIONES

OLIMPIADA DE FÍSICA. FASE LOCAL UNIVERSIDAD DE JAÉN 15 DE MARZO CUESTIONES PRIMERA CUESTIÓN 15 DE MARZO 013. CUESTIONES En una montaña rusa, como la de la figura, la vagoneta arranca sin velocidad inicial de O, desciende por la pista indicada, y tras superar el punto E se frena

Más detalles

Bárbara Cánovas Conesa. Concepto de Onda

Bárbara Cánovas Conesa. Concepto de Onda Bárbara Cánovas Conesa 637 720 113 www.clasesalacarta.com 1 Movimientos Armónicos. El Oscilador Armónico Concepto de Onda Una onda es una forma de transmisión de la energía. Es la propagación de una perturbación

Más detalles

CAMPO GRAVITATORIO º bachillerato FÍSICA

CAMPO GRAVITATORIO º bachillerato FÍSICA Ejercicio 1. Modelo 2.014 La masa del Sol es 333183 veces mayor que la de la Tierra y la distancia que separa sus centros es de 1,5 10 8 km. Determine si existe algún punto a lo largo de la línea que los

Más detalles

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m]

K m = 20,0[N m 1 ] =6,32 rad/s 0,500[kg] 0,050 = 0,050 sen (ω 0+ φ 0 ) φ 0 = arc sen 1 = π / 2. x = 0,050 sen (6,32 t + 1,57) [m] Física º Bach. Examen de Setiembre de 005 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: [1½ PUNTOS / UNO] X 1. El cuerpo de la figura tiene masa m = 500 g, está apoyado sobre una superficie horizontal

Más detalles

PRUEBA ESPECÍFICA PRUEBA 201

PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 201 PRUEBA SOLUCIONARIO Aclaraciones previas: Tiempo de duración de la prueba: 1 hora Contesta 4 de los 5 ejercicios propuestos (Cada

Más detalles

Tema 4* Dinámica de la partícula

Tema 4* Dinámica de la partícula Tema 4* Dinámica de la partícula Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dra. Ana Mª Marco Ramírez 1 Índice Introducción. Primer principio de la dinámica:

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23 PORTAFOLIO DE EVIDENCIAS PARA EXAMEN EXTRAORDINARIO DE FÍSICA II Nombre del Alumno: Grupo INSTRUCCIONES: El siguiente portafolio deberá de entregarse antes de recibir el examen extraordinario y cumplir

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

Potencia y energía electromagnética.

Potencia y energía electromagnética. Potencia y energía electromagnética. Importancia. Existen muchos dispositivos de interés práctico para los ingenieros electrónicos y eléctricos que se basan en la transmisión o conversión de energía electromagnética.

Más detalles

Factor de Capacidad de Turbinas Eólicas en Argentina

Factor de Capacidad de Turbinas Eólicas en Argentina Factor de Capacidad de Turbinas Eólicas en Argentina ALEJANDRO JURADO, EDGARDO VINSON, BIBIANA CERNE *, PABLO GILL, FERNANDO NICCHI GRUPO ENERGÍA Y AMBIENTE (GEA), DEPARTAMENTO DE ELECTROTECNIA FACULTAD

Más detalles

b) Intensidad del campo gravitatorio generado en el punto P por las tres masas. (1punto)

b) Intensidad del campo gravitatorio generado en el punto P por las tres masas. (1punto) EXAMEN DE FÍSICA E22A_1415 OPCIÓN A 10.03.2015 ORIENTACIONES: Comente sus planteamientos de tal modo que demuestre que entiende lo que hace. Tenga en cuenta que la extensión de sus respuestas está limitada

Más detalles

TEMA: MOVIMIENTO ONDULATORIO

TEMA: MOVIMIENTO ONDULATORIO TEMA: MOVIMIENTO ONDULATORIO C-J-0 Escriba la expresión matemática de una onda armónica unidimensional como una función de x (distancia) y t (tiempo) y que contenga las magnitudes indicadas en cada uno

Más detalles

INDICE. Estado del Mar... A. Índices de Mareas del año. B. Predicción de Mareas. C. Mareas Extremas del año. Astronomía.. A. Cambios de estación

INDICE. Estado del Mar... A. Índices de Mareas del año. B. Predicción de Mareas. C. Mareas Extremas del año. Astronomía.. A. Cambios de estación INDICE Detalle Pág. Estado del Mar... 3 A. Índices de Mareas del año I. B. Predicción de Mareas C. Mareas Extremas del año Astronomía.. 63 A. Cambios de estación II. B. Eclipses C. Fases Lunares D. Apogeo

Más detalles

Cuestionario sobre las Leyes de Newton

Cuestionario sobre las Leyes de Newton Cuestionario sobre las Leyes de Newton 1. Enuncie las leyes de Newton y represente gráficamente o por medio de una ilustración Primera Ley: La primera ley de Newton, conocida también como Ley de inercia,

Más detalles

a) En 1 b) En 2 c) En 3 d) En todas es el mismo. e) Depende del rozamiento del aire.

a) En 1 b) En 2 c) En 3 d) En todas es el mismo. e) Depende del rozamiento del aire. 1. Se desea llevar un objeto de masa M desde el punto A hasta el punto B, siguiendo 3 trayectorias diferentes, en un medio que presenta rozamiento, determine en cuál de las trayectorias el trabajo realizado

Más detalles

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23

UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Preparatoria No. 23 FÍSICA 2 Portafolio de Física 2 Valor del Portafolio: 40 puntos SEGUNDA OPORTUNIDAD Período: Agosto Diciembre 2017 Coordinador: ING. JESUS DANIEL GARCIA GARCIA Alumno: Matrícula: Santa Catarina, Nuevo

Más detalles

Trabajo Práctico n 2. Estática de los Fluidos

Trabajo Práctico n 2. Estática de los Fluidos Trabajo Práctico n 2 Estática de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - Determinar la variación de la presión en un fluido en reposo - Calcular las fuerzas que ejerce un fluido

Más detalles

Fluidos. Repaso. Problemas.

Fluidos. Repaso. Problemas. Fluidos. Repaso. Problemas. Resumen: Fluidos. 1. La presión en un fluido es la fuerza por unidad de área que un fluido ejerce sobre un superficie. Se mide: 1 pascal = 1 newton /metro 2 2. La presión en

Más detalles

UNIVERSIDAD NACIONAL DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE. Examen Extraordinario Física I Periodo EA ALUMNO

UNIVERSIDAD NACIONAL DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE. Examen Extraordinario Física I Periodo EA ALUMNO Examen Extraordinario Física I Periodo EA-20141 ALUMNO Número de cuenta Instrucciones: Lee cuidadosamente cada una de las preguntas y contesta correctamente Total de puntos: 40 Primera Unidad. Acerca de

Más detalles

1. El oscilador armónico

1. El oscilador armónico Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

Relación de Problemas de Selectividad: Campo Gravitatorio

Relación de Problemas de Selectividad: Campo Gravitatorio Año 2008 Relación de Problemas de Selectividad: Campo Gravitatorio -2008 1).Los satélites meteorológicos son un medio para obtener información sobre el estado del tiempo atmosférico. Uno de estos satélites,

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

Tecnologías de Aprovechamiento de Energía con Fuentes Renovables

Tecnologías de Aprovechamiento de Energía con Fuentes Renovables CENTRO DE CONSERVACIÓN DE ENERGÍA Y DEL AMBIENTE Tecnologías de Aprovechamiento de Energía con Fuentes Renovables Ing. José Aguilar Bardales Especialista en Eficiencia Energética jaguilar@cenergia.org.pe

Más detalles

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación

fig. 1 sobre un objeto, es igual al cambio en su energía cinética, y esto se representa mediante la siguiente ecuación C U R S O: FÍSICA MENCIÓN MATERIAL: FM-14 ENERGÍA II ENERGÍA CINÉTICA, POTENCIAL GRAVITATORIA Y MECÁNICA Aunque no existe una definición formal de energía, a este nivel la podemos entender simplemente

Más detalles