CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. Cenidet

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. Cenidet"

Transcripción

1 S.E.P. S.E.I.T. S.N.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO Cenidet ESTUDIO DEL DESEMPEÑO DEL AMPLIFICADOR CLASE E CONMUTADO A VOLTAJE CERO, UTILIZANDO DIFEREN- TES DISPOSITIVOS SEMICONDUCTORES DE POTENCIA COMO INTERRUPTOR TESIS PARA OBTENER EL GRADO DE: MAESTRO EN CIENCIAS EN INGENIERÍA ELECTRÓNICA PRESENTA: ESTEBAN OSVALDO GUERRERO RAMÍREZ DIRECTOR DE TESIS DRA. MARÍA COTOROGEA PFEIFER CO-DIRECTOR DR. MARIO PONCE CUERNAVACA, MORELOS AGOSTO DEL 2004

2 Índice Índice... ii Lista de figuras... vi Lista de tablas... ix Simbología... x Introducción...xii 1. Estudio de los dispositivos semiconductores de potencia Introducción Características de los dispositivos semiconductores de potencia Dispositivos semiconductores de potencia clásicos Dispositivos semiconductores de potencia modernos MOSFET de potencia convencional Estructura interna del MOSFET Principio de funcionamiento Principales características Resistencia intrínseca del MOSFET Capacitancias parásitas del MOSFET de potencia Super-Junction MOSFET Estructura y principio de funcionamiento Principales características El Transistor Bipolar de Compuerta Aislada Estructura del IGBT Principio de funcionamiento Principales características del IGBT Velocidad de conmutación del IGBT Tecnologías de fabricación del IGBT High Speed IGBT (o IGBT de alta velocidad) [15] Estructura Principales características Nuevos campos de aplicación del High Speed IGBT Comparación de los DSEP Dispositivos seleccionados para el análisis comparativo Resumen Amplificador clase E... 21

3 Índice iii 2.1. Introducción Amplificador clase E Amplificador clase E conmutado a voltaje cero (ACECVC) Principio de funcionamiento Formas de onda típicas del ACECVC Pérdidas de potencia en el ACECVC Pérdidas en conducción Pérdidas en conmutación Pérdidas debido a los elementos reactivos Pérdidas debido a la inductancia serie del cableado Pérdidas debido al impulsor de compuerta del dispositivo Principales aplicaciones del ACECVC Topologías derivadas del amplificador clase E Amplificador clase E Push-Pull Amplificador clase E con inductor y capacitor en la red de carga Amplificador clase E conmutado a corriente cero (ACECCC) Análisis y diseño del ACECVC Introducción Análisis matemáticos del ACECVC considerando el interruptor ideal Procedimiento de análisis propuesto por F. Raab [31] Procedimiento de Análisis propuesto por Li y Yam [34] Procedimiento de Análisis propuesto por M. Albulet [35] Análisis matemáticos del ACECVC considerando la R DS (on) y la C OSS del interruptor Procedimiento de análisis propuesto por Chan y Toumazou [36] Procedimiento de Análisis propuesto por Chudabiak [37] Procedimiento de análisis propuesto por Wang y Gao [38] Resumen Análisis matemático y diseño del ACECVC Introducción Análisis matemático del ACE considerando la resistencia de encendido del dispositivo Suposiciones y parámetros Ecuaciones del circuito Cálculo de los valores del circuito Análisis matemático del ACECVC considerando la (C OSS ) del MOSFET Suposiciones y parámetros Ecuaciones del circuito Ecuaciones de diseño del ACECVC con capacitor paralelo lineal y no lineal Diseño del ACECVC Especificaciones de diseño del ACECVC Procedimiento de diseño del ACECVC Ejemplo de diseño del ACECVC a 250 khz y 100 W Señales generadas por el programa de diseño Método de diseño del ACECVC propuesto por Li y Yam Resumen Simulación del ACECVC Introducción Circuito simulado... 54

4 Índice iv 4.3. Resultados con el MOSFET convencional Formas de onda en el interruptor Formas de onda en la carga Gráficas de funcionamiento Voltaje de alimentación Pérdidas de potencia y eficiencia Resultados con el CoolMOS TM Formas de onda en el interruptor Formas de onda en la carga Gráficas de funcionamiento Voltaje de alimentación Pérdidas de potencia y eficiencia Resultados con el IGBT convencional Formas de onda en el interruptor Formas de onda en la carga Gráficas de funcionamiento Simulaciones con el IGBT de alta velocidad Formas de onda en el interruptor Formas de onda en la carga Gráficas de funcionamiento Gráficas comparativas de los cuatro interruptores Voltaje de alimentación Pérdidas de potencia y eficiencia Resumen Resultados experimentales Introducción Diseño del prototipo Circuito impulsor de compuerta del MOSFET Diseño de inductores Especificaciones de diseño Procedimiento de diseño Resultados con el MOSFET convencional (BUZ334) Formas de onda en el dispositivo y en la carga Resultados con el CoolMOS (SPP11N60C3) Formas de onda Resultados con el IGBT (SKP06N60) Formas de onda Resultados con el IGBT de alta velocidad (SKB20N60HS) Formas de onda Graficas comparativas de los experimentos Esfuerzos de voltaje Potencia de salida Análisis comparativo entre simulación y experimento Transitorios de corriente y voltaje Potencia de salida Esfuerzos de voltaje en los dispositivos Eficiencia del circuito... 78

5 Índice v 5.9. Resumen Conclusiones, comentarios y trabajos futuros Conclusiones generales Recomendaciones y trabajos futuros Bibliografía Anexo 1. Simulaciones Anexo 2. Resultados experimentales Anexo 3. Hojas de datos de los dispositivos... 95

6 Lista de figuras Figura 1.1. Aplicaciones de los dispositivos semiconductores de potencia [1] Figura 1.2. Semiconductores de potencia: a) Diodo b) Tiristor c) Transistor bipolar... 4 Figura 1.3. Estructura del MOSFET con compuerta plana Figura 1.4. MOSFET con resistencias intrínsecas... 6 Figura 1.5. Circuito equivalente del MOSFET en conmutación Figura 1.6. Variación de las capacitancias parásitas en el MOSFET convencional... 8 Figura 1.7. Estructura del CoolMOS TM... 9 Figura 1.8. Resistencia de encendido por área contra voltaje de ruptura Figura 1.9. Estructura del IGBT con su circuito equivalente Figura Corriente de apagado de un IGBT Figura Tecnologías de fabricación: a) PT IGBT b) NPT IGBT c) FS IGBT Figura Tecnología de fabricación del IGBT de alta velocidad Figura Densidad de corriente contra frecuencia de conmutación Figura Comparación de las pérdidas de un MOSFET y un IGBT en un convertidor flyback Figura Balastro electrónico construido Figura Circuito de potencia del convertidor reductor a 150 khz Figura Eficiencia del convertidor reductor a 150 khz Figura 2.1. Comparativo de las pérdidas generadas en conmutación dura y en conmutación suave Figura 2.2. Circuito básico del amplificador clase E [23] Figura 2.3. Formas de onda del ACECVC: a) Conmutación óptima b) Conmutación subóptima [24] Figura 2.4. Encendido y apagado del MOSFET Figura 2.5. Amplificador clase E Push-Pull Figura 2.6. Formas de onda del amplificador clase E Push-Pull Figura 2.7. Amplificador clase E con red RL en la carga Figura 2.8. Formas de onda del amplificador clase E con red RL en la carga Figura 2.9. Amplificador clase E conmutado a corriente cero Figura Formas de onda del ACECCC: a) Conmutación óptima b) Conmutación subóptima Figura 3.1. Circuito equivalente del ACECVC Figura 3.2. Circuito del ACECVC con capacitor parásito

7 Lista de figuras vii Figura 3.3. Circuito de diseño del ACECVC con capacitor externo Figura 3.4. Señales de voltaje y corriente en el dispositivo Figura 3.5. Voltaje en la carga y corriente en el inductor choque Figura 3.6. Corriente en el inductor choque Figura 3.7. Voltaje drenaje-fuente en el dispositivo Figura 3.8. Corriente de drenaje en el dispositivo Figura 3.9. Voltaje en la carga del amplificador Figura 4.1. Circuito del ACECVC simulado Figura 4.2. Formas de onda en el interruptor: a) señal de control y voltaje (parte superior), corriente (parte inferior), b) voltaje y corriente (parte superior), potencia instantánea y promedio (parte inferior) Figura 4.3. Formas de onda en la carga: a) voltaje (parte superior), corriente (parte inferior). b) potencia de entrada (parte superior), potencia de salida (parte inferior) Figura 4.4. Voltaje de alimentación en función de la potencia y frecuencia de operación usando el MOSFET como interruptor Figura 4.5. Gráficas de desempeño del ACECVC con el MOSFET: a) Pérdidas, b) Eficiencia Figura 4.6. Formas de onda en el interruptor: a) señal de control y voltaje (parte superior), corriente (parte inferior), b) voltaje y corriente (parte superior), potencia instantánea y promedio (parte inferior) Figura 4.7. Formas de onda en la carga: a) voltaje (parte superior), corriente (parte inferior), b) potencia de entrada (parte superior), potencia de salida (parte inferior) Figura 4.8. Voltaje de alimentación en función de la potencia y frecuencia de operación usando el CoolMOS TM como interruptor Figura 4.9. Gráficas de desempeño del ACECVC con el CoolMOS TM : a) Pérdidas, b) Eficiencia Figura Formas de onda en el interruptor: a) señal de control y voltaje (parte superior), corriente (parte inferior), b) voltaje y corriente (parte superior), potencia instantánea y promedio (parte inferior) Figura Formas de onda en la carga: a) voltaje (parte superior), corriente (parte inferior), b) potencia de entrada (parte superior), potencia de salida (parte inferior) Figura Voltaje de alimentación en función de la potencia y frecuencia de operación usando el IGBT convencional como interruptor Figura Gráficas de desempeño del ACECVC con el IGBT convencional: a) Pérdidas, b) Eficiencia Figura Formas de onda en el interruptor: a) señal de control y voltaje (parte superior), corriente (parte inferior), b) voltaje y corriente (parte superior), potencia instantánea y promedio (parte inferior) Figura Formas de onda en la carga: a) voltaje (parte superior), corriente (parte inferior), b) potencia de entrada (parte superior), potencia de salida (parte inferior) Figura Voltaje de alimentación en función de la potencia y frecuencias de operación usando el IGBT de alta velocidad como interruptor

8 Lista de figuras viii Figura Gráficas de desempeño del ACECVC con el IGBT de alta velocidad: a) Pérdidas, b) Eficiencia Figura Voltaje de alimentación en función de la potencia y tipo de dispositivo Figura Comparación de las pérdidas totales y eficiencia del circuito diferentes frecuencias contra potencia de salida y tipo de dispositivo Figura 5.1. Circuito construido para realizar pruebas con el MOSFET convencional Figura 5.2. Circuito impulsor de compuerta Figura 5.3. Componentes resonantes del circuito impulsor Figura 5.4. Materiales utilizados en la fabricación de núcleos de ferrita Figura 5.5. Transitorios medidos a 250 khz usando el MOSFET convencional Figura 5.6. Transitorios medidos a 250 khz usando el CoolMOS Figura 5.7. Transitorios medidos a 250 khz usando el S-IGBT Figura 5.8. Transitorios medidos a 250 khz usando el HS-IGBT Figura 5.9. comparación de los esfuerzos de voltaje en los dispositivos a voltaje constante Figura Potencia de salida contra voltaje de alimentación y tipo de dispositivo Figura Figura Figura Figura Simulaciones (izquierda) y mediciones (Derecha) de las formas de onda en el interruptor Comparación entre mediciones y simulaciones de la potencia de salida contra voltaje de entrada a 250 khz para el: a) MOSFET, b) CoolMOS, c) S-IGBT y d) HS-IGBT Comparación entre mediciones y simulaciones del esfuerzo de voltaje contra voltaje de entrada a 250 khz para el: a) MOSFET, b) CoolMOS, c) S-IGBT y d) HS-IGBT Comparación entre mediciones y simulaciones del esfuerzo de voltaje contra voltaje de entrada a 250 khz para el: a) MOSFET, b) CoolMOS, c) S-IGBT y d) HS-IGBT... 79

9 Lista de tablas Tabla 1.1. Distribución de las resistencias en el MOSFET... 6 Tabla 1.2. Características de los dispositivos utilizados Tabla 1.3. Pérdidas de energía en los dispositivos Tabla 1.4. Características de los dispositivos a utilizar Tabla 2.1. Principales aplicaciones del amplificador clase E Tabla 3.1. Ecuaciones de diseño diferentes del ACECVC, con capacitor paralelo lineal y no lineal Tabla 3.2. Ecuaciones de diseño idénticas del ACECVC, con capacitor paralelo lineal y no lineal Tabla 3.3. Especificaciones de diseño del ACECVC Tabla 3.4. Secuencia de diseño del ACECVC Tabla 3.5. Valores de diseño a diferentes frecuencias de conmutación (V DC = 10 V) Tabla 3.6. Voltaje de alimentación en función de la potencia y frecuencia de funcionamiento para el MOSFET convencional Tabla 3.7. Datos de entrada del ejemplo de diseño del ACECVC a 250 khz y 100 W Tabla 3.8. Datos de salida del ejemplo de diseño del ACECVC a 250 khz y 100 W Tabla 3.9. Variables útiles del ejemplo de diseño del ACECVC a 250 khz, 100 W Tabla 4.1. Valores de los elementos de diseño en función del dispositivo Tabla 5.1. Valores de componentes usados en las pruebas experimentales Tabla 5.2. Clasificación de los núcleos RM en función de la potencia Tabla 5.3. Secuencia de diseño

10 Simbología BJT MOSFET IGBT HS-IGBT S-IGBT CoolMOS TM CVC CCC ACECVC ACECCC DSEP RF SPICE R DS (on) R G R V DSS V DC V SM Vm Vbi Vt Vo I SM Im I DC Transistor de unión bipolar Transistor de efecto de campo Metal-Óxido-Semiconductor Transistor bipolar de compuerta aislada Transistor bipolar de compuerta aislada de alta velocidad Transistor bipolar de compuerta aislada convencional MOSFET compensado Conmutado a voltaje cero Conmutado a corriente cero Amplificador clase E conmutado a voltaje cero Amplificador clase E conmutado a corriente cero Dispositivo semiconductor de potencia Radio frecuencia Simulación de circuitos con énfasis en circuitos integrados Resistencia de encendido del MOSFET Resistencia de compuerta Resistencia de carga Voltaje drenaje fuente Voltaje de alimentación Esfuerzo de voltaje en el interruptor Voltaje máximo en la carga Voltaje integral de la unión Voltaje térmico Voltaje rms de salida Esfuerzo de corriente en el interruptor Corriente máxima en la carga Corriente

11 Simbología xi Po Potencia de salida Pe Potencia de entrada P dr P dt Q G f fo tf C ISS C OSS C RSS C GD C GS C DS Pérdidas de potencia en conducción Pérdidas de potencia en conmutación Carga de la compuerta Frecuencia de conmutación Frecuencia de resonancia tiempo de caída de la corriente Capacitancia de entrada Capacitancia de salida no lineal Capacitancia de transferencia Capacitancia compuerta-drenaje Capacitancia compuerta fuente Capacitancia drenaje-fuente Cjo Capacitancia no lineal con V=0 C DS C1 C 25 Cs Co C EXT Lc Lo ω ω O Q A B H D m N A N B ni Capacitancia drenaje-fuente Capacitor linealizado Capacitor no lineal a 25 V Capacitor paralelo no lineal Capacitor resonante Capacitor externo Inductor fuente de corriente Inductor resonante Frecuencia angular de conmutación Frecuencia angular de resonancia Factor de calidad Relación de frecuencias (fo/f) Relación de capacitancias (Co/Cs) Relación de inductancias (Lo/Lc) Ciclo de trabajo Coeficiente de distribución Concentración de aceptores Concentración de donadores Concentración de portadores en equilibrio termodinámico

12 Introducción El concepto de resonancia en la conversión de energía contribuyó en gran medida a la realización de convertidores electrónicos con altas eficiencias de funcionamiento. El empleo de un circuito resonante, formado por un inductor y un capacitor, genera formas de onda sinusoidales de corriente y voltaje en los dispositivos de conmutación, dando lugar a condiciones de conmutación suave en los mismos. Con las técnicas de conmutación suave se pretende que los dispositivos de potencia se enciendan ante condiciones de voltaje cero y se apaguen ante condiciones de corriente cero. Con estas técnicas se reducen significativamente las pérdidas por conmutación. El amplificador clase E conmutado a voltaje cero (ACECVC) pertenece a este tipo de convertidores resonantes. Este circuito cuenta con una estructura con pocos componentes y tiene altas eficiencias de funcionamiento, razón por la cual está siendo utilizado en diferentes áreas de la electrónica, sin embargo su análisis es complicado ya que todos sus elementos se relacionan entre si. Una forma de disminuir tal complejidad es considerar al interruptor ideal, pero los resultados obtenidos con esta suposición son adecuados en la medida en que los efectos parásitos del mismo sean despreciables. Al aumentar la frecuencia de conmutación, la capacitancia parásita del interruptor es la dominante en el arreglo paralelo que se forma entre ésta y el capacitor externo y en un caso extremo el valor de tal capacitancia lo forma únicamente la capacitancia parásita del interruptor, siendo el capacitor externo de cero. Puesto que la capacitancia no lineal de los dispositivos varia con el voltaje drenaje fuente, es difícil la selección de un interruptor adecuado para el amplificador clase E. Varios desarrollos matemáticos del amplificador clase E, considerando el interruptor ideal y los parásitos del interruptor, han sido reportados en la literatura. La tendencia actual con respecto a la miniaturización de los sistemas, lo planteado anteriormente y el gran desarrollo que están teniendo los dispositivos semiconductores de potencia (DSEP s), ha forzado a los fabricantes a obtener nuevas tecnologías y con ello mejores características lo cuál ha requerido una evaluación previa del desempeño de dichos dispositivos mediante pruebas experimentales y simulaciones. El desarrollo de ésta tesis plantea principalmente dos problemas: primero, desarrollar el análisis matemático del amplificador clase E considerando los elementos parásitos del dispositivo de potencia (resistencia de encendido y capacitancia de salida); y segundo evaluar el desempeño del amplificador clase E utilizando diferentes DSEP s, siendo dos de éstos un MOS- FET y un IGBT convencional, los otros dos dispositivos son de reciente aparición en el mercado como el CoolMOS TM y el IGBT de alta velocidad.

13 Introducción xiii El objetivo general de esta tesis de Maestría es el análisis, teórico y experimental, del desempeño del amplificador clase E en conmutación suave ante diferentes condiciones de operación, utilizando como interruptores diferentes dispositivos semiconductores de potencia como: el MOSFET convencional, Super Junction MOSFET, IGBT convencional e IGBT de alta velocidad. Como objetivos particulares se plantean los siguientes: Estudio de las características de los dispositivos semiconductores de potencia: MOSFET convencional, Super Junction MOSFET, IGBT convencional e IGBT de alta velocidad. Análisis matemático y diseño del amplificador clase E conmutado a voltaje cero. Manejo eficaz de los interruptores en altas frecuencias. Verificación experimental del amplificador clase E conmutado a voltaje cero, con los diferentes dispositivos semiconductores de potencia. Estudio comparativo de los dispositivos semiconductores de potencia y desempeño del amplificador por medio de gráficas de salida Para solucionar los problemas planteados, ésta tesis se ha organizado de la siguiente manera: En el capítulo 1 se presenta la estructura de cada dispositivo para ver las diferencias tecnológicas entre ellos y de esta manera entender su funcionamiento, además se presenta un estudio de las características estáticas y dinámicas de los mismos, haciendo especial énfasis en sus elementos parásitos. El capítulo 2 se dedica al estudio del ACE, en donde se puede ver que su estructura cuenta con pocos componentes, también se analiza el principio de funcionamiento y principales aplicaciones, así mismo se hace referencia a los trabajos existentes en la literatura de algunos desarrollos matemáticos realizados a la fecha. El desarrollo matemático del ACECVC se lleva a cabo en el capítulo 3 basado en [32,40], en seguida se hace un programa de computo para el diseño del mismo. En el capítulo 4 se llevan a cabo las simulaciones, en PSpice, del ACE con cada uno de los dispositivos, es importante mencionar el uso de modelos de Infineon Technologies de los dispositivos semiconductores de potencia. En el capítulo 5 se presentan los resultados experimentales, así como una comparación entre éstos y los resultados de la simulación. Para finalizar se presentan las conclusiones, recomendaciones y trabajos futuros en el capítulo 6.

14 1. Estudio de los dispositivos semiconductores de potencia En este capítulo se presenta un estudio de los dispositivos semiconductores de potencia a utilizar, desde su construcción, principio de funcionamiento, principales características estáticas y dinámicas, hasta sus más recientes aplicaciones. También se presentan algunas aplicaciones en donde se compara el desempeño de los mismos Introducción Los dispositivos semiconductores de potencia juegan un papel muy importante en la regulación y distribución de la potencia y energía en el mundo. Según algunas estimaciones, más del 60 % de toda la energía utilizada en los Estados Unidos fluye a través de por lo menos un dispositivo de potencia. Consecuentemente, el funcionamiento de los convertidores electrónicos de potencia e interruptores, tienen un impacto significativo en el uso eficiente de la electricidad. En el área de electrónica de potencia, se requiere del constante mejoramiento de las características de los dispositivos semiconductores de potencia, para perfeccionar el funcionamiento de los sistemas en términos de eficiencia, tamaño y peso. Lo que significa que tales dispositivos deben funcionar de manera parecida a un interruptor ideal, el cual tiene las siguientes características: cero resistencia o cero caída de voltaje directo en estado de encendido, resistencia infinita en estado de apagado y velocidad infinita. Algunas de las aplicaciones de los dispositivos semiconductores de potencia se muestran en la Figura 1.1, donde los rectángulos indican la corriente y el voltaje de bloqueo nominal requeridos para satisfacer las necesidades de los sistemas. En esta figura, se puede ver el amplio rango de corriente y voltaje de bloqueo que abarcan los dispositivos [1] Características de los dispositivos semiconductores de potencia Existe una gran variedad de tecnologías de interruptores de estado sólido para realizar las funciones de conmutación. Las características deseables de tales dispositivos semiconductores de potencia son las siguientes: Alta capacidad de bloqueo. Alta densidad de corriente. Tiempos de conmutación cortos. Facilidad de control.

15 Estudio de los dispositivos semiconductores de potencia 2 Corriente nominal del dispositivo [A] Fuentes de alimentación conmutadas Electrónica del automovil Controladores de despliegue Automatización Circuitos de telecomunicaciones Control de motores Balastros electrónicos Tracción HVDC Voltaje nominal de bloqueo del dispositivo [V] Figura 1.1. Aplicaciones de los dispositivos semiconductores de potencia [1]. Robustez al corto circuito. Estabilidad térmica. Confiabilidad. Costos bajos. Un solo dispositivo no puede satisfacer todos los requisitos al mismo tiempo, por lo que se han desarrollado semiconductores de potencia cuyas características se adaptan a los diferentes tipos de aplicación. Sin embargo, todos los dispositivos de potencia tienen una propiedad en común que los distingue de los demás componentes electrónicos: disponen en su estructura de una capa gruesa y con un dopado muy bajo para soportar los altos voltajes de bloqueo. Además, todos los semiconductores de potencia tienen una estructura vertical que permite un mejor aprovechamiento de la superficie, una mejor distribución de la corriente, disminución de la resistividad de las capas y como consecuencia, disminución de las pérdidas en conducción [2].

16 Estudio de los dispositivos semiconductores de potencia 3 Cuando se usan tecnologías de interruptores de estado sólido, el diseñador debe seleccionar el más conveniente a la aplicación con la mínima pérdida de eficiencia. La selección involucra, consideraciones tales como: voltaje máximo de bloqueo, corriente máxima de conducción, velocidad de conmutación, circuitos de control y protección, carga y efectos de temperatura Dispositivos semiconductores de potencia clásicos Los diodos de potencia fueron introducidos en la década de los 50 con fines comerciales. Inicialmente estos dispositivos cubrían aplicaciones, como fuentes de alimentación conmutada y electrónica del automóvil, que requerían bajos voltajes de bloqueo. Después se fabricaron dispositivos con altos voltajes de bloqueo, para cubrir aplicaciones tales como el control de motores. Los tiristores dieron origen al gran desarrollo de la electrónica de potencia. Están compuestos básicamente por la unión de un transistor npn y un transistor pnp, conectados en modo de retroalimentación regenerativa, el cual es puesto en conducción mediante un pulso de corriente en la compuerta. El transistor bipolar de potencia, es un dispositivo controlado por corriente, en donde la magnitud de la corriente de colector es determinada por la corriente de base. Debido a problemas tales como bajas ganancias de corriente, segunda ruptura y almacenamiento de cargas, los transistores bipolares han sido desplazados por los MOSFET de potencia en aplicaciones de bajo voltaje y por los IGBT en aplicaciones de voltajes medios. En la Figura 1.2 se muestra la estructura interna del diodo de potencia, tiristor y transistor bipolar [3] Dispositivos semiconductores de potencia modernos MOSFET de potencia convencional La tecnología FET (Transistor de Efecto de Campo) fue inventada en 1930, 20 años antes que el transistor bipolar. El primer FET fue construido en la década de los 50, mientras que el MOSFET ha estado disponible a partir de mediados de Tales dispositivos tienen una función similar a los transistores bipolares, pero con una estructura y principio de funcionamiento diferente. En realidad las características de funcionamiento de los MOSFETs son superiores a las de los transistores bipolares en cuanto a tiempos de conmutación más rápidos, circuitos de control sencillos, ausencia del mecanismo de falla de segunda ruptura, habilidad para ser paralelados, ganancia estable y tiempo de respuesta en un amplio rango de temperatura [4]. El MOSFET de potencia ha ganado popularidad y ha llegado a ser el dispositivo de conmutación dominante en la electrónica de potencia desde Su rápida velocidad de conmutación ha extendido las frecuencias de conmutación en la conversión de potencia del rango de 20 khz de los transistores bipolares por arriba de los 100 khz en conmutación dura. Con técnicas de conmutación suave tales como conmutación a voltaje cero (CVC) y conmutación a corriente cero (CCC), la frecuencia de conmutación puede exceder los MHz [5].

17 Estudio de los dispositivos semiconductores de potencia 4 Ánodo Compuerta Cátodo Compuerta Base Emisor Base p + n + n + p p n - n - n - n + n + p + n + Cátodo Ánodo Colector Figura 1.2. a) b) c) Semiconductores de potencia: a) Diodo b) Tiristor c) Transistor bipolar Estructura interna del MOSFET La Figura 1.3, muestra la estructura de un MOSFET de canal n, la cual es una estructura de doble difusión con compuerta horizontal a la superficie y flujo vertical. Consta de un sustrato altamente concentrado (n + ), sobre el que se expande una capa epitaxial (n - ) y dos difusiones sucesivas, una zona p - en la cual se genera el canal con una polaridad adecuada y una n + dentro de la cual se define la fuente. La terminal de compuerta está eléctricamente aislada del cuerpo de silicio por una capa delgada de dióxido de silicio Con la finalidad de incrementar el desempeño del MOSFET, se creó la tecnología TrenchMOS, en la cual la estructura de la compuerta en lugar de ser paralela a la superficie del encapsulado, se construye en una trinchera perpendicular a la misma, ocupando menor espacio y haciendo el flujo de corriente de canal en dirección vertical. Tales transistores ofrecen un 50 % en la reducción del área para la misma R DS (on), o un 35% en reducción del área, manteniendo la misma capacidad de manejo de corriente Principio de funcionamiento Cuando no se polariza la compuerta, la fuente n + y el drenaje n están separados por la zona p y no existe flujo de corriente (el transistor está apagado). Un voltaje positivo aplicado a la compuerta de un MOSFET tipo n, crea un campo eléctrico en la región del canal debajo de la compuerta cerca de la terminal de la fuente. Debido a que el nivel de dopado de la región tipo p es suficientemente bajo, la carga efectiva se convierte localmente en un material tipo n, con exceso de electrones. Cuando el voltaje compuerta-fuente aumenta, el efecto de inversión se extiende a través de la región de la compuerta. A un voltaje especifico de umbral V th, se forma completamente un canal tipo n entre la fuente y el drenaje, el cual proporciona una ruta para la corriente.

18 Estudio de los dispositivos semiconductores de potencia 5 Fuente Compuerta Dióxido de silicio n + p n - n + Drenaje Figura 1.3. Estructura del MOSFET con compuerta plana Principales características Las principales características del MOSFET son: Dispositivo con alta impedancia de entrada, controlado por voltaje y de fácil control. Dispositivo semiconductor unipolar (portadores mayoritarios), no presenta el problema de almacenamiento de cargas, por lo tanto trabaja a más altas frecuencias de conmutación que los transistores bipolares. Dispositivo con mayor área de operación segura que los transistores de unión bipolar (BJT). El coeficiente positivo en la temperatura de la resistencia indica que un MOSFET es estable ante fluctuaciones de la temperatura, proporciona su propia protección contra fugas térmicas y segunda ruptura. Otro beneficio de esta característica es que el MOSFET puede ser puesto fácilmente en paralelo Resistencia intrínseca del MOSFET En la Figura 1.4 se muestra la estructura del MOSFET convencional de potencia, con las partes más importantes que contribuyen a la resistencia de encendido drenaje-fuente R DS (on), tal resistencia es un parámetro importante en la determinación de la corriente nominal y las pérdidas por conducción.

19 Estudio de los dispositivos semiconductores de potencia 6 Rs Dióxido de silicio n + Rn Rch Ra p Repi n - Rsus n + Figura 1.4. MOSFET con resistencias intrínsecas. En aplicaciones de bajo voltaje, los MOSFET de potencia ofrecen una resistencia en estado de encendido extremadamente baja y se aproxima al interruptor ideal deseado, mientras que en aplicaciones de alto voltaje los MOSFETs presentan altas resistencia en estado de encendido, ya que la relación existente entre la resistencia de encendido y el voltaje de ruptura está dada de la siguiente forma R DS (on) α V DSS 2.6 dando como resultado bajas eficiencias debido al aumento de las pérdidas de conducción. Un MOSFET de potencia está construido con un gran número de células conectadas en paralelo con la finalidad de reducir la resistencia total. El número de células varía de acuerdo a las dimensiones del chip, mientras más grande sea el área, más baja es la resistencia de encendido, pero al mismo tiempo mas grande es la capacitancia parásita y es peor su funcionamiento en conmutación [6]. La Tabla 1.1 muestra la contribución de cada una de las resistencias, la zona de deriva o zona epitaxial Repi es la que más aporta mientras más grande es el voltaje. Tabla 1.1. Distribución de las resistencias en el MOSFET. Resistencia Dren R DS (on) Valor en % (V DS 30 V) Valor en % (V DS 300 V) Rs Resistencia de la fuente Rn Resistencia en la región n Rch Resistencia del canal Ra Resistencia entre el canal y la región del JFET Repi Resistencia de la región epitaxial Rsus Resistencia del sustrato 7 0.5

20 Estudio de los dispositivos semiconductores de potencia 7 La resistividad de la zona epitaxial n - determina el voltaje de ruptura de un MOSFET. Para incrementar el voltaje de ruptura de un MOSFET, el espesor de la región epitaxial n - se debe incrementar, pero se requiere de un área de silicio A grande para mantener la misma resistencia de encendido R DS (on), debido a la clásica relación R α 1/A. Lo anterior trae como consecuencia un incremento en el costo del dispositivo Capacitancias parásitas del MOSFET de potencia El circuito equivalente de la Figura 1.5 muestra los elementos parásitos más importantes que afectan el funcionamiento del MOSFET de potencia en conmutación. En aplicaciones de conmutación de alta velocidad, los parámetros más importantes son las capacitancias parásitas del dispositivo. Los capacitores C GS y C GD corresponden a la actual geometría del dispositivo mientras que el capacitor C DS es la capacitancia base-colector del diodo del transistor bipolar parásito. El capacitor C GS está formado por el traslape de la fuente y la región del canal del electrodo de la compuerta. Su valor está definido por la actual geometría de las regiones y permanece constante (lineal) bajo diferentes condiciones de operación. El capacitor C GD es el resultado de dos efectos. Parte de esto es el traslape de la región del JFET y el electrodo de compuerta más la capacitancia de la región de deriva o epitaxial la cuál es no-lineal. La capacitancia equivalente C GD es función del voltaje drenaje-fuente del dispositivo. El capacitor C DS también es no-lineal, dado que es la capacitancia de unión del diodo del BJT parásito [7]. Desafortunadamente, ninguno de los valores de los capacitores mencionados es definidos en las hojas de datos del fabricante. Sus valores son dados indirectamente por los valores de los capacitores C ISS, C RSS y C OSS, y son calculados por medio de las siguientes ecuaciones. Capacitancia drenaje-fuente: C DS = C OSS - C RSS Capacitancia compuerta fuente: C GS = C ISS - C RSS Capacitancia compuerta-drenaje: C GD = C RSS Las capacitancias mencionadas deben ser consideradas para optimizar cualquier diseño de conversión de potencia. El valor de dichas capacitancias varía de manera no lineal con el voltaje drenaje-fuente (ver Figura 1.6). Lo que trae como resultado análisis más complejos. Drenaje C GD L D Compuerta R GI C DS C GS L S Fuente Figura 1.5. Circuito equivalente del MOSFET en conmutación.

21 Estudio de los dispositivos semiconductores de potencia Capacitancia en [pf] C RSS Coss C ISS 1 Figura Variación de las capacitancias parásitas en el MOSFET convencional. En algunos circuitos como el amplificador clase E (CVC), la capacitancia de salida Coss influye directamente en su análisis y diseño. En muchos de los análisis que se han realizado de este amplificador, se considera constante dicha capacitancia, sin embargo es de reciente interés el estudio de la respuesta de este amplificador con la capacitancia en parásita, la cual depende del voltaje drenaje-fuente según la siguiente expresión: C Voltaje drenaje-fuente [V] OSS = CO V 1+ V DSS bi Super-Junction MOSFET Una nueva clase de dispositivo de alto voltaje, llamado Super-Junction MOSFET fue introducido recientemente, con características de conducción superiores que superan las limitaciones de la alta resistencia de encendido de los MOSFET de potencia. Los fabricantes que desarrollaron esta tecnología, Infineon Technologies, llamaron al nuevo componente Cool- MOS TM. En conversiones de potencia de alta frecuencia, las pérdidas de conmutación se reducen o eliminan a través de técnicas de conmutación suave, pero la caída de voltaje del dispositivo impone pérdidas inherentes que no pueden ser reducidas a través del diseño del circuito. El CoolMOS TM, actualmente considerado como un dispositivo de ruptura, fue desarrollado para reducir la caída de voltaje o la resistencia de encendido en aplicaciones de alto voltaje [8] Estructura y principio de funcionamiento La tecnología del CoolMOS TM está basada en el principio de compensación, a través de la inserción de bandas verticales tipo p en la zona de deriva, como se muestra en la Figura 1.7. Esto permite un incremento en el dopado de la misma, reduciendo su resistencia hasta obtener una relación proporcional entre R DS (on) y el voltaje de ruptura (Figura 1.8), la capacidad de bloqueo de alto voltaje puede obtenerse en ambas direcciones vertical y horizontal con una (1.1)

22 Estudio de los dispositivos semiconductores de potencia 9 estructura de tres dimensiones (3-D). Esto resulta en una considerable reducción de la resistencia de encendido específicamente en los MOSFET de alto voltaje [9]. P + P n + n RDS(on) * A [Ω * mm 2 ] MOSFET CoolMOS TM n Voltaje de ruptura [V] Figura 1.7. Estructura del CoolMOS TM. Figura 1.8. Resistencia de encendido por área contra voltaje de ruptura Principales características Con la tecnología del CoolMOS TM se pueden obtener los siguientes beneficios: Reducción de la resistencia de encendido en un factor de cinco para la misma área y el mismo voltaje de bloqueo, por lo tanto las pérdidas de potencia basadas en la conducción son reducidas y como consecuencia la generación de calor, incrementando la eficiencia del sistema y dando lugar a un aumento en el manejo de la potencia de salida. Reducción del área activa para la misma potencia, permitiendo el uso de encapsulados más pequeños y dando lugar a diseños menos voluminosos. Reducción de las capacitancias parásitas y consecuentemente mejora en el comportamiento dinámico del dispositivo Altas densidades de corriente, área de operación segura casi rectangular y capacidad de corto circuito Los principales campos de aplicación del CoolMOS TM son las fuentes de alimentación conmutadas, balastros electrónicos para lámparas y el control de motores eléctricos. En el CoolMOS TM, la capacitancia de salida tiene una variación más amplia con respecto al voltaje drenaje-fuente. Por ejemplo en un dispositivo de 600 V, la capacitancia disminuye de 7000 a 60 pf, dos ordenes en magnitud, cuando el voltaje drenaje-fuente incrementa de 0 a 300 V [10]

23 Estudio de los dispositivos semiconductores de potencia El Transistor Bipolar de Compuerta Aislada El transistor bipolar de compuerta aislada (IGBT) es un dispositivo de potencia, que combina las características de entrada de un MOSFET con las características de salida de un Transistor bipolar. Por un lado presentan bajas pérdidas de conducción, voltaje de encendido y densidad de corriente de los BJT y, por otro lado tienen altas velocidades de conmutación, así como alta impedancia de entrada, velocidad de encendido y control por voltaje similares a un MOSFET de potencia. Los IGBT están sustituyendo a los MOSFET de potencia en aplicaciones de alto voltaje, donde las pérdidas de conducción se deben mantener bajas. Con conmutación a corriente cero, o técnicas de conmutación resonante, el IGBT puede trabajar en el rango de los cientos de khz. Si bien, las velocidades en el encendido son muy rápidas, el apagado de un IGBT es más lento que un MOSFET, ya que presenta una corriente en el tiempo de bajada o cola de apagado, la cual restringe la operación del dispositivo a frecuencias moderadas (< 50 khz) en aplicaciones de conmutación dura Estructura del IGBT La Figura 1.9 muestra la estructura de un IGBT, la cual es similar a la de un MOSFET de potencia de doble difusión con compuerta horizontal a la superficie y flujo vertical, marcando la principal diferencia el sustrato en el inicio del material. Un MOSFET tiene un sustrato tipo n + mientras que el sustrato de un IGBT es del tipo p +, formando una unión pn responsable de la inyección de cargas y la modulación de la conductividad en la zona n-, lo cual supera los efectos de las altas resistencias de la región epitaxial n - y, consecuentemente aumenta la densidad de corriente del dispositivo y disminuye la caída de voltaje en estado de conducción [11]. Rs es la resistencia parásita de la región del emisor p +. La corriente que fluye a través de esta resistencia puede resultar en un voltaje a través de la unión base emisor del transistor npn, y si este voltaje es mayor a cierto voltaje de umbral, el transistor npn empezará a conducir generando un flujo de corriente en el transistor pnp y dando lugar a un proceso regenerativo hasta que ambos transistores estén en saturación. De aquí resulta el efecto no deseado de amarre en el dispositivo, en forma similar al rectificador controlado de silicio (SCR). El diseño del dispositivo está optimizado para direccionar las corrientes dentro del mismo y mantener el voltaje a través de Rs bajo para evitar el efecto amarre de la estructura pnpn parásita. Por otro lado, el sustrato p +, la capa epitaxial n - y el emisor p + forman un transistor BJT parásito tipo pnp, en donde la capa n - actúa como una región de base amplia. La estructura del dispositivo que se muestra en la Figura 1.9, proporciona una idea del origen de la corriente de apagado. Los portadores minoritarios se concentran en la base donde se modula la conductividad de la misma. Cuando el dispositivo se apaga, estos portadores no tienen una ruta de corriente para salir del dispositivo. Después de la expansión de la zona de carga espacial, la recombinación es el único camino para eliminar la carga almacenada, resultado de la concentración del exceso de portadores.

24 Estudio de los dispositivos semiconductores de potencia 11 Emisor Compuerta Dióxido de silicio Rs n + P + Rmod n - P+ Colector Figura 1.9. Estructura del IGBT con su circuito equivalente Principio de funcionamiento Cuando se aplica un voltaje de compuerta mayor que el voltaje de umbral (V th ), los electrones son atraídos de la región p + hacia la superficie debajo de la compuerta. Estos electrones atraídos invertirán la región del cuerpo de p + para formar un canal n, dando lugar a una trayectoria para que las cargas fluyan entre la fuente n + y la región de deriva n -. El flujo de corriente de colector a emisor debe pasar a través de la unión pn, formada por el sustrato p + y la capa epitaxial n -. Formándose una caída de voltaje similar a la unión de un diodo polarizada directamente, resultando en un offset de voltaje en la característica de salida del dispositivo. Cuando se aplica un voltaje positivo a la terminal del ánodo del IGBT, el emisor de la sección del BJT está a un mayor potencial que el colector. Portadores minoritarios (huecos) son inyectados del emisor (región p + ) en la base (región de deriva n - ). Como el voltaje de polarización del emisor del BJT aumenta, la concentración de los huecos inyectados aumenta también. La concentración de los huecos inyectados excederá eventualmente el nivel de dopado de la región de deriva n - ; presentándose por lo tanto el fenómeno de la modulación de la conductividad. Los portadores inyectados reducen la resistencia de la región de deriva n -, y como resultado, los huecos inyectados se recombinan con los electrones que fluyen de la fuente para generar la corriente de ánodo (estado de encendido). Cuando un voltaje negativo es aplicado en la terminal del ánodo la unión emisor-base es polarizada inversamente y la corriente es reducida a cero. Una caída de voltaje grande aparece en la región de deriva n - puesto que la capa de deflexión se extiende en esa región principalmente [12].

25 Estudio de los dispositivos semiconductores de potencia 12 El voltaje de compuerta del MOSFET controla la acción de conmutación del IGBT. El apagado tiene lugar, cuando el voltaje de compuerta es menor que el voltaje de umbral (V th ). La capa de inversión de la superficie del cuerpo p + debajo de la compuerta no se puede mantener y por lo tanto no hay corriente de electrones disponibles en el canal del MOSFET mientras los portadores minoritarios restantes (huecos) requieren algo de tiempo para ser removidos o extraídos. La velocidad de conmutación del IGBT, depende del tiempo que se tarda en remover la carga almacenada en la región de deriva n -, que fue almacenada durante el estado de conducción de la corriente (encendido del IGBT) Principales características del IGBT Las principales características del IGBT son las siguientes: Libre del efecto de amarre dentro del área segura de operación, debido a un estratégico procedimiento de optimización del dispositivo. Optimización de la geometría y niveles de dopado para minimizar el voltaje de encendido, velocidad de conmutación y lograr otras variaciones paramétricas clave. Alta densidad de corriente. Falta de conducción inversa (o unidireccional en corriente), dado que el IGBT tiene una estructura de cuatro capas. Alta impedancia de entrada, puesto que la compuerta de un IGBT está eléctricamente aislada del resto del chip por medio de una capa delgada de S i O 2. Control del dispositivo por voltaje y posibilidad de aplicar controladores simples de compuerta dando lugar a excelentes eficiencias en el control de la misma. Posibilidad de sustituir el MOSFET por un IGBT y aumentar la eficiencia y/o reducir el costo de la aplicación. Un IGBT tiene un área de silicio considerablemente menor que un MOSFET de similares características. El costo del dispositivo está relacionado con el área de silicio, por lo tanto el área reducida del silicio hace al IGBT una mejor solución en cuanto al costo Velocidad de conmutación del IGBT Hasta hace poco tiempo la característica que limitaba al IGBT para ser utilizado en una gran cantidad de aplicaciones, fue su velocidad de apagado relativamente lenta comparado con el MOSFET convencional. Mientras que el encendido de un IGBT es bastante rápido, su tiempo de apagado es lento, debido a la gran cantidad de portadores almacenados en la región de deriva n -. El apagado de un IGBT tiene dos fases: una fase de inyección donde la corriente de colector cae rápidamente, y una fase de recombinación en donde la corriente de colector disminuye lentamente como se muestra en la Figura 1.10.

26 Estudio de los dispositivos semiconductores de potencia 13 Corriente de colector ( A ) Tiempo de apagado Porcion de apagado del MOSFET Porción de apagado del transistor BJT Tiempo Figura Corriente de apagado de un IGBT Tecnologías de fabricación del IGBT Actualmente se fabrican varios tipos de tecnologías de IGBT: la estructura PT (Punch- Through) o IGBT con estructura no homogénea, la estructura NPT (Non Punch-Through) o IGBT con estructura homogénea y recientemente, la estructura FS (Field-Stop) o SPT (Soft- Punch-Through), según el fabricante. A) IGBT tipo PT (Punch-Through) En esta tecnología de fabricación, el dispositivo es construido en un sustrato grueso tipo p + (300 µm). La región n - con un dopado muy bajo es obtenida a través de crecimiento epitaxial. En la Figura 1.11a se puede apreciar una capa delgada n + llamada buffer que limita la expansión de la región de carga de espacio en estado de bloqueo (efecto Punch-Through). El IGBT tipo PT genera bajas pérdidas por conducción a través de un coeficiente de emisor alto del BJT interno y bajas pérdidas por conmutación por medio de un tiempo de vida de los portadores muy reducido. Esto resulta por un lado en un campo eléctrico de forma trapezoidal, el aumento de la velocidad de conmutación y disminución de la posibilidad del efecto amarre, por otro lado se incrementa la caída de voltaje colector-emisor del dispositivo. B) IGBT tipo NPT (Non Punch-Through) En esta tecnología de fabricación el dispositivo es construido en un sustrato homogéneo de tipo n - ligeramente dopado (220 µm). El emisor se realiza por implantación de una capa p + delgada y de dopado bajo (emisor transparente) en la parte posterior del sustrato (Figura 1.11b). Por lo tanto en el IGBT homogéneo se realiza la modulación de la resistencia de base a través de un bajo coeficiente de emisor, en combinación con un tiempo de vida alto de los portadores, dando como resultado directo alta velocidad de apagado, además de proporcionar un bajo voltaje de colector-emisor de encendido [14]. C) IGBT tipo FS (Field-Stop) Con la tecnología del FS IGBT se logra disminuir aun más el espesor del chip (120 µm), a través de la inserción de una capa n + (búffer) al igual que en una estructura Punch- Through. De esta forma se reducen las pérdidas por conducción del dispositivo con la reduc-

Accionamientos eléctricos Tema VI

Accionamientos eléctricos Tema VI Dispositivos semiconductores de potencia. ELECTRÓNICA DE POTENCIA - Con el nombre de electrónica de potencia o electrónica industrial, se define aquella rama de la electrónica que se basa en la utilización

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES

CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES CIRCUITO DE AYUDA A LA CONMUTACIÓN DE TRANSISTORES Las redes de ayuda a la conmutación sirven para proteger a los transistores mediante la mejora de su trayectoria de conmutación. Hay tres tipos básicos

Más detalles

Controladores de Potencia Dispositivos Electrónicos de Potencia

Controladores de Potencia Dispositivos Electrónicos de Potencia Dispositivos Electrónicos de Potencia Prof. Alexander Bueno M. 17 de septiembre de 2011 USB Funciones Básicas de los Convertidores Electrónicos de Potencia USB 1 Diodos Es el dispositivo más básico de

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 8 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica 1. TEMA

Más detalles

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta

5.- Si la temperatura ambiente aumenta, la especificación de potencia máxima del transistor a) disminuye b) no cambia c) aumenta Tema 4. El Transistor de Unión Bipolar (BJT). 1.- En un circuito en emisor común la distorsión por saturación recorta a) la tensión colector-emisor por la parte inferior b) la corriente de colector por

Más detalles

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS

APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS APLICACIONES DE LOS SEMICONDUCTORES EN DISPOSITIVOS ELECTRICOS GRUPO 3 Rubén n Gutiérrez González María a Urdiales García María a Vizuete Medrano Índice Introducción Tipos de dispositivos Unión n tipo

Más detalles

El Transistor BJT 1/11

El Transistor BJT 1/11 l Transistor JT 1/11 1. ntroducción Un transistor es un dispositivo semiconductor de tres terminales donde la señal en uno de los terminales controla la señal en los otros dos. Se construyen principalmente

Más detalles

Transistor BJT: Fundamentos

Transistor BJT: Fundamentos Transistor BJT: Fundamentos Lección 05.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT 1 / 48 Contenido

Más detalles

Contenido. Capítulo 2 Semiconductores 26

Contenido. Capítulo 2 Semiconductores 26 ROMANOS_MALVINO.qxd 20/12/2006 14:40 PÆgina vi Prefacio xi Capítulo 1 Introducción 2 1.1 Las tres clases de fórmulas 1.5 Teorema de Thevenin 1.2 Aproximaciones 1.6 Teorema de Norton 1.3 Fuentes de tensión

Más detalles

SEMICONDUCTORES. Silicio intrínseco

SEMICONDUCTORES. Silicio intrínseco Tema 3: El Diodo 0 SEMICONDUCTORES Silicio intrínseco 1 SEMICONDUCTORES Conducción por Huecos A medida que los electrones se desplazan a la izquierda para llenar un hueco, el hueco se desplaza a la derecha.

Más detalles

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4

LABORATORIO DE ELECTRÓNICA DE POTENCIA PRÁCTICA N 4 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control Carrera de Ingeniería Eléctrica LABORATORIO

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

Electrónica. Transistores BIPOLARES. Tipos, Zonas de trabajo, Aplicaciones

Electrónica. Transistores BIPOLARES. Tipos, Zonas de trabajo, Aplicaciones Transistores BIPOLARES Tipos, Zonas de trabajo, Aplicaciones 4 B ELECTRÓNICA 2012 1- Principio de Funcionamiento de los Transistores Bipolares: Tanto en un transistor NPN o PNP su principio de funcionamiento

Más detalles

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II

Seminario de Electrónica II PLANIFICACIONES Actualización: 2ºC/2016. Planificaciones Seminario de Electrónica II Planificaciones 6666 - Seminario de Electrónica II Docente responsable: VENTURINO GABRIEL FRANCISCO CARLOS 1 de 6 OBJETIVOS Estudiar la física de los semiconductores a partir de un enfoque electrostático.

Más detalles

Figura Nº 3.1(a) Fabricación de un TR npn: Crecimiento Epitaxial tipo n y Oxidación

Figura Nº 3.1(a) Fabricación de un TR npn: Crecimiento Epitaxial tipo n y Oxidación 1 3- FABRICACION DE TRANSISTORES BIPOLARES Describiremos la fabricación del BJT planar para circuitos monolíticos mediante los procesos tratados. Para seguir la secuencia de fabricación nos concentraremos

Más detalles

Conten ido. xix xxiii. Introducción 1. Capítulo Capítulo Prefacio Acerca del autor

Conten ido. xix xxiii. Introducción 1. Capítulo Capítulo Prefacio Acerca del autor Conten ido Prefacio Acerca del autor Capítulo 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 1.10 1.11 Capítulo 2 2.1 2.2 2.3 Introducción 1 Aplicaciones de la electrónica de potencia 1 1.1.1 Historia de la electrónica

Más detalles

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos.

CAPITULO 1 SINOPSIS. La Figura muestra el circuito que usaremos como base para construir varios ejemplos. 1 CAPITULO 1 SINOPSIS El propósito de este capítulo no es el de disminuir el entusiasmo del lector por leer el libro, delatando su contenido. En vez de eso se pretende que, mediante el uso de un circuito

Más detalles

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1

CONTENIDO PRESENTACIÓN. Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 CONTENIDO PRESENTACIÓN Capítulo 1 COMPONENTES SEMICONDUCTORES: EL DIODO... 1 1.1 INTRODUCCIÓN...1 1.2 EL DIODO...2 1.2.1 Polarización del diodo...2 1.3 CARACTERÍSTICAS DEL DIODO...4 1.3.1 Curva característica

Más detalles

DIODOS SEMICONDUCTORES DE POTENCIA

DIODOS SEMICONDUCTORES DE POTENCIA DIODOS SEMICONDUCTORES DE POTENCIA Los diodos de potencia son de tres tipos: de uso general, de alta velocidad (o de recuperación rápida) y Schottky. Los diodos de uso general están disponibles hasta 6000

Más detalles

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE

1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE UNIDAD 5: CIRCUITOS PARA APLICACIONES ESPECIALES 1.- CORRIENTE CONTINUA CONSTANTE Y CORRIENTE CONTINUA PULSANTE La corriente que nos entrega una pila o una batería es continua y constante: el polo positivo

Más detalles

INVERSORES RESONANTES

INVERSORES RESONANTES 3 INVERSORES RESONANTES 3.1 INTRODUCCIÓN Los convertidores de CD a CA se conocen como inversores. La función de un inversor es cambiar un voltaje de entrada en CD a un voltaje simétrico de salida en CA,

Más detalles

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS

UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERIA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS SÍLABO ASIGNATURA: DISPOSITIVOS ELECTRONICOS CÓDIGO: IEE303 1. DATOS GENERALES 1.1. DEPARTAMENTO ACADÉMICO : Ing. Electrónica e Informática 1.2. ESCUELA PROFESIONAL : Ingeniería Electrónica 1.3. CICLO

Más detalles

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal

A.1. El diodo. - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.1. Introducción A.1. El diodo - pieza básica de la electrónica: unión de un semiconductor de tipo p y otro de tipo n es un elemento no lineal A.1.2. Caracterización del diodo - al unirse la zona n

Más detalles

Anexo V: Amplificadores operacionales

Anexo V: Amplificadores operacionales Anexo V: Amplificadores operacionales 1. Introducción Cada vez más, el procesado de la información y la toma de decisiones se realiza con circuitos digitales. Sin embargo, las señales eléctricas analógicas

Más detalles

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Electrónica. Tema 2 Diodos. Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 2 Diodos Contenido Ideas básicas Aproximaciones Resistencia interna y Resistencia en continua Rectas de carga Diodo zener Dispositivos optoelectrónicos Diodo Schottky 2 Diodo Es un dispositivo

Más detalles

TEORÍA DE PUESTAS A TIERRA. Johny Montaña

TEORÍA DE PUESTAS A TIERRA. Johny Montaña TEORÍA DE PUESTAS A TIERRA Johny Montaña Barranquilla - Bogotá Colombia, 2011 CONTENIDO Prólogo... xi 1. Análisis de electrodos de puesta a tierra en baja frecuencia...1 Punto fuente de corriente, 3. Línea

Más detalles

Electrónica 2. Práctico 3 Alta Frecuencia

Electrónica 2. Práctico 3 Alta Frecuencia Electrónica 2 Práctico 3 Alta Frecuencia Los ejercicios marcados con son opcionales. Además cada ejercicio puede tener un número, que indica el número de ejercicio del libro del curso (Microelectronic

Más detalles

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR

FUNDAMENTOS DE CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR FUNDAMENTOS DE ELECTRÓNICA CLASE 4: TRANSISTOR BJT BIPOLAR JUNCTION TRANSISTOR TRANSISTOR Es un tipo de semiconductor compuesto de tres regiones dopadas. Las uniones Base-Emisor y base colector se comportan

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA

UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA UNIVERSIDAD POLITECNICA SALESIANA UNIDAD2: SEMICONDUCTORES ING. JUAN M. IBUJÉS VILLACÍS, MBA Qué es un semiconductor? Es un material con una resistividad menor que un aislante y mayor que un conductor.

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA

SIFeIS. CONCAyNT PLANTA EXTERIOR E IPR. CONCAyNT ELECTRÓNICA ELECTRÓNICA PLANTA EXTERIOR E IPR GUÍA DE ESTUDIOS DE ELECTRÓNICA PARA IPR Un agradecimiento especial al Co. FRANCISCO HERNANDEZ JUAREZ por la oportunidad y el apoyo para realizar este trabajo, así como

Más detalles

El transistor sin polarizar

El transistor sin polarizar EL TRANSISTOR DE UNIÓN BIPOLAR BJT El transistor sin polarizar El transistor esta compuesto por tres zonas de dopado, como se ve en la figura: La zona superior es el "Colector", la zona central es la "Base"

Más detalles

Módulo 2: Medición y Análisis de Componentes y Circuitos Electrónicos.

Módulo 2: Medición y Análisis de Componentes y Circuitos Electrónicos. Liceo Industrial de Electrotecnia Ramón Barros Luco- La Cisterna 1 Prof: Claudio Pinto Celis. Módulo 2: Medición y Análisis de Componentes y Circuitos Electrónicos. Conceptos de Transistores. Los transistores

Más detalles

TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES

TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV CIRCUITOS AMPLIFICADORES TARJETAS PARA EXPERIMENTOS DE ELECTRÓNICA LINEAL SEMICONDUCTORES MOD. MCM3/EV EB 21 TRANSISTORES Y SUS POLARIZACIONES MOD. MCM4/EV EB 22 CIRCUITOS AMPLIFICADORES MOD. MCM5/EV EB 23 CIRCUITOS OSCILADORES

Más detalles

Web:

Web: FACULTAD POLITÉCNICA DIRECCIÓN ACADÉMICA I. IDENTIFICACIÓN PROGRAMA DE ESTUDIO Carrera : Ingeniería Eléctrica CARGA HORARIA - (Horas reloj) Asignatura : Electrónica Básica Carga Horaria Semestral 75 Semestre

Más detalles

ARRANQUE DE LÁMPARAS FLUORESCENTES

ARRANQUE DE LÁMPARAS FLUORESCENTES 4 ARRANQUE DE LÁMPARAS FLUORESCENTES 4. INTRODUCCIÓN En el uso de sistemas de iluminación fluorescente es necesario alimentar a la lámpara de descarga con el voltaje adecuado para evitar un mal funcionamiento

Más detalles

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones

EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones EL42A - Circuitos Electrónicos Clase No. 5: Circuitos Limitadores y Otras Aplicaciones Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 13 de Agosto de 2009

Más detalles

CONVERSIÓN DE CORRIENTE DIRECTA A CORRIENTE ALTERNA

CONVERSIÓN DE CORRIENTE DIRECTA A CORRIENTE ALTERNA CONVERSIÓN DE CORRIENTE DIRECTA A CORRIENTE ALTERNA 5.1 Inversor. Un inversor es un dispositivo capaz de convertir la energía de corriente directa que puede estar almacenada en un banco de baterías a un

Más detalles

CLASIFICACIÓN DE LOS CIRCUITOS ELECTRÓNICOS DE POTENCIA

CLASIFICACIÓN DE LOS CIRCUITOS ELECTRÓNICOS DE POTENCIA CLASIFICACIÓN DE LOS CIRCUITOS ELECTRÓNICOS DE POTENCIA Aprovechando las características de conmutación de los dispositivos semiconductores de potencia, se puede controlar la potencia eléctrica de una

Más detalles

Interpretación de las hojas de datos de diodos

Interpretación de las hojas de datos de diodos 1 Interpretación de las hojas de datos de diodos En las hojas de datos dadas por el fabricante de cualquier dispositivo electrónico encontramos la información necesaria como para poder operar al dispositivo

Más detalles

Laboratorio Nº3. Procesamiento de señales con transistores

Laboratorio Nº3. Procesamiento de señales con transistores Laboratorio Nº3 Procesamiento de señales con transistores Objetivos iseñar redes de polarización para operar transistores JT y JFT en modo activo, y evaluar la estabilidad térmica de puntos de operación,

Más detalles

Electrónica de Potencia I. Curso

Electrónica de Potencia I. Curso Departamento de Ingeniería Electrónica. Plan de la asignatura: Electrónica de Potencia I Curso 2005-2006 Titulaciones: Ingeniero en Electrónica e Ingeniero en Automática y Electrónica Industrial. 2º Curso.

Más detalles

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER

PRÁCTICA PD4 REGULACIÓN DE VOLTAJE CON DIODOS ZENER elab, Laboratorio Remoto de Electrónica ITEM, Depto. de Ingeniería Eléctrica PRÁCTICA PD4 REGULACIÓN DE OLTAJE CON DIODO ENER OBJETIO Analizar teóricamente y de forma experimental la aplicación de diodos

Más detalles

S.E.P. S.E.I.T. D.G.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. cenidet

S.E.P. S.E.I.T. D.G.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO. cenidet S.E.P. S.E.I.T. D.G.I.T. CENTRO NACIONAL DE INVESTIGACIÓN Y DESARROLLO TECNOLÓGICO cenidet DESARROLLO E IMPLEMENTACIÓN DE UN BANCO DE PRUEBAS PARA CARACTERIZAR DISPOSITIVOS DE ALTA POTENCIA T E S I S PARA

Más detalles

UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA

UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA UNIVERSIDAD TECNOLÓGICA DE LA MIXTECA SIMULACIÓN Y DESARROLLO EXPERIMENTAL DEL AMPLIFICADOR CLASE E CONMUTADO A VOLTAJE CERO, CONSIDERANDO LOS ELEMENTOS PARÁSITOS DEL INTERRUPTOR TESIS PARA OBTENER EL

Más detalles

TECNOLOGÍA DE LOS SISTEMAS DIGITALES

TECNOLOGÍA DE LOS SISTEMAS DIGITALES TECNOLOGÍA DE LOS SISTEMAS DIGITALES ESCALAS DE INTEGRACIÓN TECNOLOGÍAS SOPORTES FAMILIAS LÓGICAS FAMILIAS LÓGICAS BIPOLAR MOS BICMOS GaAs TTL ECL CMOS NMOS TRANSMISIÓN DINÁMICOS PARÁMETROS CARACTERÍSTICOS

Más detalles

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo.

1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo. Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de Operación y Funcionamiento del GTO. Objetivos Específicos Visualizar las formas

Más detalles

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:

DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Electrónica ACADEMIA A LA QUE Electrónica Analógica Aplicada PERTENECE: NOMBRE DE LA MATERIA: Tecnología de Semiconductores CLAVE DE LA MATERIA: ET31 CARÁCTER

Más detalles

UNIDAD II FET Y OTROS DISPOSITIVOS PNPN. ACT 10 TRABAJO COLABORATIVO No. 2

UNIDAD II FET Y OTROS DISPOSITIVOS PNPN. ACT 10 TRABAJO COLABORATIVO No. 2 UNIDAD II FET Y OTROS DISPOSITIVOS PNPN ACT 10 TRABAJO COLABORATIVO No. 2 Nombre de curso: Electrónica Básica - 201419 Temáticas revisadas: El FET, polarizaciones del FET y otros dispositivos PNPN Aspectos

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º10 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II INTEGRADOR, DERIVADOR Y RECTIFICADOR DE ONDA CON AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio

Más detalles

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones

Universidad Nacional Autónoma de Honduras. Escuela de Física. Electricidad y magnetismo II Fs-415. Filtros Eléctricos y sus aplicaciones Universidad Nacional Autónoma de Honduras Escuela de Física Electricidad y magnetismo II Fs-415 Filtros Eléctricos y sus aplicaciones Introducción: Todo circuito eléctrico que tenga incluidas capacitancias

Más detalles

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente...

Índice general. 3. Resistencia eléctrica Introducción Resistividad de los conductores Densidad de corriente... Índice general 1. Principios fundamentales de la electricidad...1 1.1 Introducción...1 1.2 Principios fundamentales de la electricidad...1 1.2.1 Moléculas, átomos y electrones...2 1.3 Estructura del átomo...3

Más detalles

Programa de Asignatura

Programa de Asignatura Departamento de Ingeniería Industrial Programa: Ingeniería Mecatrónica, Plan 007- Asignatura: Electrónica Industrial Clave: 995 Semestre: VII Tipo: Obligatoria H. Teoría: H Práctica: H. Lab: 0 HSM: Créditos:

Más detalles

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO DISPOSITIVOS Y CIRCUITOS ELECTRÓNICOS 1654 6º 11 Asignatura Clave Semestre Créditos Ingeniería Eléctrica Ingeniería Electrónica

Más detalles

INTRODUCCIÓN: OBJETIVOS:

INTRODUCCIÓN: OBJETIVOS: INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores

Más detalles

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO

EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO EL TRANSISTOR MOSFET CURVAS CARACTERÍSTICAS DE UN MOSFET CANAL N DE ENRIQUECIMIENTO FORMA DE PRESENTACIÓN DE LAS ECUACIONES DEL MOSFET DE ENRIQUECIMIENTO De la ecuación que define el umbral VDS = VGS -Vth

Más detalles

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION

RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION RESPUESTA EN FRECUENCIA DE BJT Y FET INTRODUCION Hasta el momento no se han considerado los efectos de las capacitancías e inductancias en el análisis de los circuitos con transistores es decir se han

Más detalles

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S

Ingeniería Eléctrica A S I G N A T U R A S C O R R E L A T I V A S P R E C E D E N T E S UNIVERSIDAD NACIONAL DEL SUR 1/3 DEPARTAMENTO DE: Ingeniería Eléctrica H O R A S D E C L A S E P R O F E S O R R E S P O N S A B L E T E Ó R I C A S P R Á C T I C A S Ing. Pablo Mandolesi Por semana Por

Más detalles

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Politécnica Superior Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 20-12-2011 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:

PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo: PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones

Más detalles

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS

ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS 2. OBJETIVOS ELECTRÓNICA I UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad. Ingeniería en Telemática,

Más detalles

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( )

ES B1. Aviso: ESPAÑA 11. Número de publicación: Número de solicitud: G01K 7/01 ( ) 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 21 Número de publicación: 2 42 299 Número de solicitud: 12273 1 Int. CI.: G01K 7/01 (06.01) 12 PATENTE DE INVENCIÓN B1 22 Fecha de presentación: 23.02.12

Más detalles

Contenido. Acerca del autor... Prólogo... Agradecimientos...

Contenido. Acerca del autor... Prólogo... Agradecimientos... Contenido Acerca del autor... Prólogo... Agradecimientos... xiii xv xix Capítulo 1: CIRCUITOS MAGNÉTICOS Y CONVERSIÓN DE ENERGÍA...... 1 1.1. Introducción.................................... 1 1.2. Materiales

Más detalles

CAPITULO XIII RECTIFICADORES CON FILTROS

CAPITULO XIII RECTIFICADORES CON FILTROS CAPITULO XIII RECTIFICADORES CON FILTROS 13.1 INTRODUCCION En este Capítulo vamos a centrar nuestra atención en uno de los circuitos más importantes para el funcionamiento de los sistemas electrónicos:

Más detalles

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES

UNIVERSIDAD DISTRITAL FRANCISCO JOSÉ DE CALDAS Facultad de Ingeniería Departamento de Ing. Eléctrica Electrónica II AMPLIFICADORES OPERACIONALES AMPLIFICADORES OPERACIONALES LAURA MAYERLY ÁLVAREZ JIMENEZ (20112007040) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN En esta práctica de laboratorio se implementarán diferentes circuitos electrónicos

Más detalles

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado.

b) Frecuencia nominal. La frecuencia (medida en Hz) del sistema de potencia para el cual el banco del capacitor es diseñado. 4. Características de los capacitores Como ya se menciono anteriormente los elementos de compensación son necesarios para la adecuada operación de sistemas eléctricos de potencia. Estos pueden clasificarse

Más detalles

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople

Circuitos de RF y las Comunicaciones Analógicas. Capítulo II: Circuitos resonantes y Redes de acople Capítulo II: Circuitos resonantes y Redes de acople 21 22 2. Circuitos Resonantes y Redes de Acople En este capítulo se estudiaran los circuitos resonantes desde el punto de vista del factor de calidad

Más detalles

REVISTA COLOMBIANA DE FISICA, VOL. 33, No

REVISTA COLOMBIANA DE FISICA, VOL. 33, No CÁLCULO DE LA CONSTANTE DE BOLTZMAN A PARTIR DE MEDIDAS DE LA CARACTERÍSTICA IV DE UNA CELDA SOLAR. M. Grizález*, C. Quiñones y G. Gordillo Departamento de Física, Universidad Nacional de Colombia, Bogotá,

Más detalles

Cargador - Rectificador para Aplicaciones Industriales

Cargador - Rectificador para Aplicaciones Industriales Fuente: K-Tronix, S.A. de C.V. Rectificador Cargador - Rectificador para Aplicaciones Industriales K-Tronix ha diseñado un rectificador con opción de diseño a 6 o 12 pulsos de acuerdo con las necesidades

Más detalles

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos

Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA. Carrera: INGENIERIA ELECTRONICA. Dr. Marco A. Arjona L. Ing. Felipe de Jesús Cobos 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: CONVERTIDORES ELECTRONICOS DE POTENCIA Carrera: INGENIERIA ELECTRONICA Clave de la asignatura: Horas teoría - horas práctica créditos: 3 2 8 2.- HISTORIA

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos:

Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia. Nombre y apellidos: Escuela Universitaria Politécnica Ingeniero Técnico Industrial, especialidad Electrónica Industrial Electrónica de Potencia Fecha: 15-12-2010 Nombre y apellidos: Duración: 2h DNI: Elegir la opción correcta

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

Transistor BJT como Amplificador

Transistor BJT como Amplificador Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador

Más detalles

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES

LA UNIÓN P-N. La unión p-n en circuito abierto. Diapositiva 1 FUNDAMENTOS DE DISPOSITIVOS ELECTRONICOS SEMICONDUCTORES Diapositiva 1 LA UNÓN PN La unión pn en circuito abierto FUNDAMENTOS DE DSPOSTOS ELECTRONCOS SEMCONDUCTORES A K Zona de deplexión Unión p n Contacto óhmico ones de impurezas dadoras ones de impurezas aceptoras

Más detalles

Electrónica para Sistemas de Comunicación.

Electrónica para Sistemas de Comunicación. Electrónica para Sistemas de Comunicación. Profesor: Dr. Hildeberto Jardón Aguilar. OBJETIVOS. Los objetivos del curso son capacitar a los estudiantes de maestría en resolver una serie de tareas que se

Más detalles

CAPITULO IV FAMILIAS LÓGICAS

CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS CAPITULO IV FAMILIAS LÓGICAS FAMILIAS LÓGICAS Una familia lógica es un grupo de dispositivos digitales que comparten una tecnología común de fabricación y tienen estandarizadas sus características

Más detalles

CAPI TULO 2 TRANSISTORES MOSFET INTRODUCCIÓN. 2.1. Historia del Transistor

CAPI TULO 2 TRANSISTORES MOSFET INTRODUCCIÓN. 2.1. Historia del Transistor CAPI TULO 2 TRANSISTORES MOSFET INTRODUCCIÓN En este capítulo estudiaremos los transistores. Se dará a conocer de manera breve como surgió el transistor el funcionamiento básico de este. Sin embargo el

Más detalles

MATERIA: ELECTRICIDAD Y ELECTRONICA II CÓDIGO: ELE 252 CRÉDITOS: 3

MATERIA: ELECTRICIDAD Y ELECTRONICA II CÓDIGO: ELE 252 CRÉDITOS: 3 UNIVERSIDAD DE ESPECIALIDADES ESPÍRITU SANTO FACULTAD DE SISTEMAS, TELECOMUNICACIONES Y ELECTRÓNICA. PROGRAMA ANALÍTICO MATERIA: ELECTRICIDAD Y ELECTRONICA II CÓDIGO: ELE 252 CRÉDITOS: 3 PERIODO LECTIVO:

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

Sesión 7 Fundamentos de dispositivos semiconductores

Sesión 7 Fundamentos de dispositivos semiconductores Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

El transistor es un dispositivo no lineal que puede ser modelado utilizando

El transistor es un dispositivo no lineal que puede ser modelado utilizando Modelo de Ebers-Moll para transistores de unión bipolar El transistor es un dispositivo no lineal que puede ser modelado utilizando las características no lineales de los diodos. El modelo de Ebers-Moll

Más detalles

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus INDICE 1. Introducción a los Sistemas de Comunicaciones y sus 15 Limitaciones 1.1. Objetivos 15 1.2. Cuestionario de autoevaluación 15 1.3. Componentes básicos de un sistema de comunicaciones 16 1.4. Varios

Más detalles

NOTA: Este documento se ha realizado intencionalmente con un formato de borrador.

NOTA: Este documento se ha realizado intencionalmente con un formato de borrador. NOTA: Este documento se ha realizado intencionalmente con un formato de borrador. Las características básicas del diseño del osciloscopio son las siguientes: La impedancia de entrada tiene que ser de 1

Más detalles

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores

POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA. Mg. Amancio R. Rojas Flores POTENCIA EN CIRCUITOS DE CORRIENTE ALTERNA Mg. Amancio R. Rojas Flores El análisis de potencia es de suma importancia. La potencia es la cantidad más relevante en sistemas de suministro de electricidad,

Más detalles

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC:

4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: 4.1 CONGRUENCIA ENTRE LOS OBJETIVOS DEL PLAN DE ESTUDIOS Y EL PERFIL DE EGRESO CON LAS LGAC: A continuación se muestran los objetivos así como los mapas funcionales según la línea de acentuación y la línea

Más detalles

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2

BJT 1. V γ V BE +V CC =12V. R C =0,6kΩ I C. R B =43kΩ V I I B I E. Figura 1 Figura 2 J 1. n este ejercicio se trata de estudiar el funcionamiento del transistor de la figura 1 para distintos valores de la tensión V I. Para simplificar el análisis se supondrá que la característica de entrada

Más detalles

Semiconductores de potencia. José M. Cámara V 1.0

Semiconductores de potencia. José M. Cámara V 1.0 Semiconductores de potencia José M. Cámara V 1.0 Introducción Vamos a estudiar dispositivos semiconductores que se emplean en electrónica de potencia. Se caracterizan porque trabajan con tensiones y corrientes

Más detalles

TEMA 6: Amplificadores con Transistores

TEMA 6: Amplificadores con Transistores TEMA 6: Amplificadores con Transistores Contenidos del tema: El transistor como amplificador. Característica de gran señal Polarización. Parámetros de pequeña señal Configuraciones de amplificadores con

Más detalles

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION.

PRÁCTICA 6 AMPLIFICADOR MULTIETAPA CONFIGURACION EMISOR COMUN CON AUTOPOLARIZACION. PRÁCTIC 6 MPLIFICDOR MULTIETP CONFIGURCION EMISOR COMUN CON UTOPOLRIZCION. DESRROLLO 1.- rme el circuito de la siguiente figura y aplique a la señal de entrada una señal sinusoidal de 1 KHz. de frecuencia,

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROFESOR: ING. Juan Omar IBAÑEZ ÁREA: TECNOLOGÍA CARRERA: PROFESORADO EN EDUCACIÓN TECNOLÓGICA ESPACIO CURRICULAR: ELECTRICIDAD Y ELECTRÓNICA INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROGRAMA

Más detalles

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos

INDICE Capítulo 1. Variables del Circuito Eléctrico Capítulo 2. Elementos de Circuitos Capítulo 3. Circuitos Resistivos INDICE Capítulo 1. Variables del Circuito Eléctrico 1 Introducción 1 1.1. Reto de diseño: Controlador de una válvula para tobera 2 1.2. Albores de la ciencia eléctrica 2 1.3. Circuitos eléctricos y flujo

Más detalles

ELECTRÓNICA ANALÓGICA PLAN 2008

ELECTRÓNICA ANALÓGICA PLAN 2008 GUÍA DE APRENDIZAJE ELECTRÓNICA ANALÓGICA COMPETENCIA GENERAL Comprueba los principios y fundamentos de los dispositivos semiconductores activos, en función de los circuitos electrónicos analógicos COMPETENCIAS

Más detalles

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el

de diseño CAPÍTULO 4. Métodos de análisis de los circuitos resistivos 4.1. Reto de diseño: Indicación del ángulo de un potenciómetro 4.2. Circuitos el CAPÍTULO 1. VARIABLES DEL CIRCUITO ELÉCTRICO 1.1. Reto de diseño: Controlador de una válvula para tobera 1.2. Albores de la ciencia eléctrica 1.3. Circuitos eléctricos y flujo de corriente 1.4. Sistemas

Más detalles

Fuentes de corriente

Fuentes de corriente Fuentes de corriente 1) Introducción En Electrotecnia se estudian en forma teórica las fuentes de corriente, sus características y el comportamiento en los circuitos. Desde el punto de vista electrónico,

Más detalles