Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Experiencia P51: Circuito RL Sensor de Voltaje, salida de potencia"

Transcripción

1 Sensor de Voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Circuitos P51 LR Circuit.DS ( vea al final experiencia) ( vea al final experiencia) Equipo necesario Cant. Del AC/DC Electronics Lab* Cant. Sensor de voltaje (CI-6503) 2 Bobina inductora y núcleo de hierro 1 Medidor RLC (SB-9754) 1 Resistencia, 10 ohm 1 Multimetro (SE-9786) 1 Cable de 13 cm 2 Cables de conexión (SE-9750) 2 (*El AC/DC Electronics Lab es el modelo PASCO EM-8656) IDEAS PREVIAS Cuál es la relación entre la tensión a través de la inductancia y la tensión a través la resistencia en un circuito resitencia-inductancia? Cuál es la relación entre la intensidad que circula y el comportamiento de una inductancia en un circuito de CC? Anote su respuesta en la sección Informe de Laboratorio. FUNDAMENTO TEÓRICO Cuando se aplica una tensión CC a una inductancia en serie con una resistencia se establecerá una intensidad estacionaria I max R donde V o es la tensión aplicada y R es la resistencia total en el circuito. Pero se requiere tiempo para que se alcance esta intensidad estacionaria debido a que la inductancia genera una fuerza contraelectromotriz en respuesta al aumento de la intensidad. La intensidad se incrementará exponencialmente: I I max (1 e (R L )t ) I max (1 e t / ) donde L es la inductancia y la cantidad L R es la constante de tiempo inductiva. La constante de tiempo inductiva. es una medida cuanto tiempo requiere la intensidad para establecerse. Una constante de tiempo inductiva es el tiempo que requiere la intensidad para aumentar hasta un 63% de su máximo valor ( o para caer un 37% de su máximo). El tiempo para R L P PASCO scientific p. 153

2 que la intensidad aumente o caiga a la mitad de su máximo está relacionada con la constante de tiempo inductiva por t 12 (ln2) t 1 2 ln 2 Puesto que la tensión a través de una resistencia está dada por V R IR, la tensión a través de la resistencia se establece exponencialmente: V R (1 e t / ) Puesto que la tensión a través de una inductancia está dada por V L L di dt, e la tensión a través de la inductancia comienza a su máximo y decrece exponencialmente: V L e ( t ) Después de un tiempo t >>, se establece una corriente estacionaria I max y la tensión a través de la resistencia es igual a la tensión aplicada., V o. La tensión a través de la inductancia es cero. Si, después de conseguirse la intensidad máxima, la fuente tensión se apaga, la intensidad comenzará a decrecer exponencialmente hasta cero mientras que la tensión a través de la resistencia hace lo mismo y la inductancia vuelve a producir una fuerza contraelectromotriz que decrece exponencialmente hasta cero. Resumiendo: Tensión CC aplicada: I I max 1 e ( t ) Tensión CC apagada: I I t max e ( ) V V R o e ( t ) V R 1 e ( t ) V L e (t ) V L V emf 1 e ( t ) En cualquier instante. Aplicando la Ley de Kirchhoff de las tensiones. La suma algebraica de las caídas de tensión a lo largo de una malla debe ser nula. En otras palabras, la tensión a través de la resistencia más la tensión de la inductancia alcanzará la tensión de la fuente. PROCEDIMIENTO Utilice la característica "salida"( Output ) del interfaz ScienceWorkshop para suministrar una tensión al circuito resistencia-inductancia.. (La salida del interfaz es una onda cuadrada positiva de baja frecuencia que imita la acción de encendido y apagado de una fuente de tensión CC. Utilice el sensor de voltaje para medir la tensión a través de la inductancia y resistencia. P PASCO scientific p. 154

3 Utilice ScienceWorkshop o DataStudio para registrar y mostrar las tensiones a través de la inductancia y resistencia cuando la intensidad esté establecida exponencialmente en el circuito. Utilice la gráfica de las tensiones para investigar el comportamiento del circuito inductancia y resistencia. PARTE I: CONFIGURACIÓN DEL ORDENADOR 1. Conecte el interfaz al ordenador, encienda el interfaz y el ordenador 2. Conecte un sensor de voltaje al Canal analógico A. Esta será Tensión Sensor A Conecte el segundo sensor de voltaje al Canal analógico. B. Esta será Tensión Sensor B. 3. Conecte los cables a los terminales de SALIDA del interfaz. 4. Abra el archivo titulado: DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) P51 LR Circuit.DS ( Vea al final de la ( Vea al final de la experiencia) experiencia) El archivo DataStudio contiene una gráfica de la tensión frente al tiempo de la " Salida", la resistencia y la inductancia.. El archivo DataStudio también contiene el Workbook. Lea las instrucciones en el Workbook Mire las páginas del final de esta experiencia para obtener información de cómo modificar el archivo de ScienceWorkshop. El generador de señales está configurado para generar una onda cuadrada positiva 3.00 voltios y Hz. Está configurando en " Auto" así que automáticamente comienza y para de generar señal cuando inicie o pare la medida de datos. La recogida de datos está configurada para parar automáticamente a los 0.12 segundos. P PASCO scientific p. 155

4 PARTE II: CALIBRADO DEL SENSOR Y MONTAJE DEL EQUIPO No se necesita calibrar el Sensor de voltaje. 1. Ponga el núcleo de hierro dentro de la bobina inductora de tarjeta AC/DC Electronics Lab. 2. Conecte un cable de 13 cm entre un muelle porta-componentes próximo a terminal tipo banana superior y el muelle porta-componentes al lado derecho de la bobina inductora en la tarjeta. 3. Conecte la resistencia de 10-ohm (marrón, negro, negro) entre el muelle portacomponentes a la izquierda de la bobina y el segundo muelle porta-componentes a la izquierda del terminal tipo banana superior.. 4. Conecte otro cable de 13 cm entre el muelle porta-componentes más próximo a uno en el cual está conectado uno de los extremos de la resistencia de 10 ohm, y un muelle portacomponentes lo más próximo al terminal tipo banana inferior en la esquina inferior derecha de la tarjeta. 5. Ponga las pinzas tipo cocodrilo en los conectores banana de ambos sensores de voltaje. Conecte las pinzas tipo cocodrilo del sensor de voltaje A a los muelles portacomponentes de ambos lados de la bobina inductora. 6. Conecte las pinzas tipo cocodrilo del sensor de voltaje B a los cables de ambos extremos de la resistencia de Conecte los cables desde el puerto de " SALIDA" del interfaz a los terminales tipo banana del la tarjeta AC/DC Electronics Lab. RECUERDE Siga todas las instrucciones de seguridad. P PASCO scientific p. 156

5 PARTE III: RECOGIDA DE DATOS 1. Utilice un Multimetro para medir la resistencia de la bobina inductora de la tarjeta AC/DC Electronics Lab. Anote la resistencia de la bobina en la sección de Datos.. 2. Utilice un Multimetro para medir la resistencia de la resistencia 10-ohm Anote el valor medido de la resistencia en la sección de Datos.. (Opcional: si tiene un medidor de inductancia utilícelo para medir la inductancia de la bobina con el núcleo de hierro dentro) 3. Inicie la medida de datos. El generador de señales comience automáticamente.. La recogida de datos parará automáticamente. En datos aparecerá pasada # 1 ANÁLISIS DE DATOS La tensión a través de la resistencia estará en fase con la intensidad. La tensión también es proporcional a la intensidad (esto es, V = IR). Así el comportamiento de la intensidad se estudia indirectamente estudiando el comportamiento de la tensión a través de la resistencia ( medido en el canal B). 1. Utilice las herramientas de análisis de la ventana de gráfica para encontrar el tiempo para alcanzar " la mitad de la máxima". tensión. En DataStudio, utilice Smart Tool. En ScienceWorkshop, utilice Smart Cursor. Mueva el cursor a la parte superior de la parte exponencial de la gráfica donde la tensión a través de la resistencia (canal B) es un máximo. Anote en la Tabla de Datos el pico de tensión (coordenada Y) y el tiempo (coordenada X) para ese punto. Determine la tensión que es la mitad del pico (la mitad del máximo tensión). Mueva el cursor hacia abajo en la exponencial de la gráfica de la tensión de la resistencia hasta que llegue a la " mitad de la máxima" tensión. Anote la coordenada X (tiempo) para este punto.. Reste el tiempo para pico de tensión del tiempo de la " mitad del máximo" para obtener el tiempo para que la tensión alcance " la mitad del máximo". Anote este tiempo en la Tabla de Datos.. 2. Calcule la constante de tiempo inductiva basándose en la resistencia total en el circuito y el valor de la inductancia del la bobina inductora con núcleo L = 18.9 millihenrio o H. NOTA: si tiene un medidor de inductancia, utilice el valor medido de la inductancia de la bobina más el núcleo.. P PASCO scientific p. 157

6 Constante de tiempo inductiva L R. 3. Anote el valor calculado de la constante de tiempo inductiva en la sección de datos. Anote sus resultados en la sección Informe de Laboratorio. P PASCO scientific p. 158

7 Informe de Laboratorio Experiencia P 51:Circuito LR IDEAS PREVIAS Cuál es la relación entre la tensión a través de la inductancia y la tensión a través la resistencia en un circuito resitencia-inductancia? Cuál es la relación entre la intensidad que circula y el comportamiento de una inductancia en un circuito de CC? Datos L = 18.9 millihenrios o H para la bobina más el núcleo, salvo otra medida. Item Resistencia inductancia Resistencia resistencia Resistencia total Pico de tensión ( para la Resistencia ) Tiempo al pico de tensión Tiempo a la mitad del máximo Tiempo para alcanzar la mitad del máximo Valor t 1 2 ln 2 = L/R P PASCO scientific p. 159

8 CONCLUSIONES Y APLICACIONES 1. Cómo compara la constante de tiempo inductiva encontrada en esta experiencia con la el valor teórico dado por = L/R? (Recuerde que R es la resistencia total del circuito, esto es debe incluir la resistencia de la bobina y la resistencia de la resistencia) 2. Se cumple la Ley de Kirchhoff de las tensiones en una malla en cualquier instante? Utilice las gráficas para comprobarlo al menos en tres tiempos diferentes. Es la suma de las tensiones a través de la resistencia y a través de la inductancia igual a la tensión de la fuente en cualquier instante? P PASCO scientific p. 160

9 APENDICE. MODIFICACIÓN DEL ARCHIVO ScienceWorkshop Modificación del archivo existente de ScienceWorkshop. Abra el archivo ScienceWorkshop Abra el archivo titulado: ScienceWorkshop (Mac) P44 LR Circuit ScienceWorkshop (Win) P44_LRCI.SWS Esta experiencia utiliza la característica " salida" (Output) del interfaz ScienceWorkshop 750 para proporcionar una tensión de salida Elimine el amplificador de potencia en la ventana de preparación de experiencia. Elimine el icono del amplificador de potencia Em la ventana de preparación, pulse en el icono amplificador de potencia y pulse <supr> (delete) en el teclado. Resultado: Una ventana de " peligro" (warning) se abre. Pulse " Aceptar" para volver a la ventana de preparación Modificación de la ventana del generador de señales Cambie en la ventana del generador de señales la amplitud a 3.00 voltios y la forma de onda CA a una " onda cuadrada sólo positiva". Cambio de las opciones de muestreo Abra la ventana opciones de muestreo. Elimine la condición "Start. Cambie la condición Stop a 0.12 s. P PASCO scientific p. 161

Experiencia P53: Diodos- Propiedades- LED Sensor de voltaje, salida de potencia

Experiencia P53: Diodos- Propiedades- LED Sensor de voltaje, salida de potencia Experiencia P53: Diodos- Propiedades- LED Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P53 LED.DS (Vea al final de la (Vea al final

Más detalles

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia

Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Experiencia P56: Transistores: ganancia de corriente: Amplificador NPN seguidor de emisor Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores

Más detalles

Experiencia P52: Circuito RLC Sensor de voltaje

Experiencia P52: Circuito RLC Sensor de voltaje Sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) Circuitos CA P52 LRC Circuit.DS (vea al final de la experiencia) ScienceWorkshop (Win) (vea al final de la experiencia) Equipo necesario Cant. Del

Más detalles

Experiencia P55: El transistor NPN como un interruptor digital Sensor de voltaje, salida de potencia

Experiencia P55: El transistor NPN como un interruptor digital Sensor de voltaje, salida de potencia Experiencia P55: El transistor NPN como un interruptor digital Sensor de voltaje, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Semiconductores P55 Digital Switch.DS (Vea

Más detalles

Experiencia P37: Tiempo de Vuelo frente a Velocidad Inicial Célula Fotoeléctrica

Experiencia P37: Tiempo de Vuelo frente a Velocidad Inicial Célula Fotoeléctrica Célula Fotoeléctrica Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento de un P37 Time of Flight.DS P08 Time of Flight P08_TOF.SWS proyectil Equipo necesario Cant. Equipo necesario

Más detalles

Experiencia P33: Intensidad de la Luz frente a distancia Sensor de Luz, Sensor de Movimiento rotatorio

Experiencia P33: Intensidad de la Luz frente a distancia Sensor de Luz, Sensor de Movimiento rotatorio Experiencia P33: Intensidad de la Luz frente a distancia Sensor de Luz, Sensor de Movimiento rotatorio Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Inverse Square Law? P33 Light vs Position.DS

Más detalles

Laboratorio de Física con Ordenador Experiencia P01: Posición frente a tempo PROCEDIMIENTO

Laboratorio de Física con Ordenador Experiencia P01: Posición frente a tempo PROCEDIMIENTO Experiencia P01: Posición frente a tiempo Sensor de Movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento P01 Position and Time.ds P01 Understanding Motion 1 P01_MOT1.SWS rectilíneo

Más detalles

Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento

Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento Experiencia P11: CHOQUE. Impulso y Momento lineal Sensor de Fuerza, Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de P11 Impulse.DS P14 Collision P14_COLL.SWS Newton

Más detalles

Experiencia P27: Velocidad del Sonido en el Aire Sensor de Sonido

Experiencia P27: Velocidad del Sonido en el Aire Sensor de Sonido Experiencia P27: Velocidad del Sonido en el Aire Sensor de Sonido Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Velocidad del Sonido P27 Speed of Sound 1.DS Ver Apéndice Ver Apéndice Equipo

Más detalles

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos.

Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Circuitos RC y LR Objetivo Estudiar empíricamente la existencia de constantes de tiempo características, asociadas a capacidades e inductancias en circuitos eléctricos. Equipamiento Computador PC con interfaz

Más detalles

Experiencia P06: Aceleración de la gravedad Sensor de movimiento

Experiencia P06: Aceleración de la gravedad Sensor de movimiento Experiencia P06: Aceleración de la gravedad Sensor de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Movimiento rectilineo P06 Gravity.ds G14 Gravity G14_GRAV.SWS Equipo necesario

Más detalles

Parte A: Circuito RC

Parte A: Circuito RC Circuitos RC, RL Y RLC Parte A: Circuito RC EQUIPAMIENTO - Osciloscopio Digital Tektronic - Circuito RLC, PASCO CI-6512 - Fuente de Poder 30V,5 A - Conectores banana - 2 cables BNC - 1 resistencia de 10

Más detalles

Experiencia P38: Conservación del momento lineal Sensores de movimiento

Experiencia P38: Conservación del momento lineal Sensores de movimiento Experiencia P38: Conservación del momento lineal Sensores de movimiento Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Leyes de Newton P38 Linear Momentum.DS P16 Cons. of Momentum 1 P16_CON1.SWS

Más detalles

Experiencia P42: Ondas de sonido Sensor de sonido, salida de potencia

Experiencia P42: Ondas de sonido Sensor de sonido, salida de potencia Sensor de sonido, salida de potencia Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) ondas P42 Sound.DS P32 Sound Waves P32_SOUN.SWS Equipo necesario Cant. Equipo necesario Cant. Sensor de

Más detalles

Experiencia P20: Conservación de la Energía Mecánica Sensor de Fuerza, Puerta Fotoeléctrica

Experiencia P20: Conservación de la Energía Mecánica Sensor de Fuerza, Puerta Fotoeléctrica Sensor de Fuerza, Puerta Fotoeléctrica Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energía P20 Mechanical Energy.DS P23 Cons. Mechanical Energy P23_MECH.SWS Equipo necesario Cant. Equipo

Más detalles

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo.

La Ley de Ohm establece una relación entre voltaje, V, aplicado a un conductor y corriente, I, circulando a través del mismo. FIS-1525 Ley de Ohm Objetivo Estudiar empíricamente la relación existente entre el voltaje aplicado a un conductor y la corriente eléctrica que circula. Probar el cumplimiento de la ley de Ohm para dos

Más detalles

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO.

Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 1 1. INSTRUMENTACIÓN DEL LABORATORIO. Sistemas Elec. Digitales. Instrumentación del laboratorio. Pag. 2 1.1. Fuente de alimentación CPS250

Más detalles

Experiencia P39: Rendimiento de un motor Fotopuerta, amplificador de potencia, sensor de voltaje

Experiencia P39: Rendimiento de un motor Fotopuerta, amplificador de potencia, sensor de voltaje Experiencia P39: Rendimiento de un motor Fotopuerta, amplificador de potencia, sensor de voltaje Tema DataStudio ScienceWorkshop (Mac) ScienceWorkshop (Win) Energia P39 Motor Efficiency.DS P24 Motor Efficiency

Más detalles

Laboratorios de Física Universitaria I y II. FISI 3013 y FISI 3014

Laboratorios de Física Universitaria I y II. FISI 3013 y FISI 3014 Apéndice 337 338 Laboratorios de Física Universitaria I y II. FISI 3013 y FISI 3014 INICIO DE DATASTUDIO Introducción El programa de Data Studio 1.7, es una aplicación que funciona con la interfaz modelo

Más detalles

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos

TEMA 6 ELECTROACÚSTICA. Sonorización industrial y de espectáculos TEMA 6 ELECTROACÚSTICA Sonorización industrial y de espectáculos Ley de Ohm La intensidad de corriente que circula en un circuito es directamente proporcional al voltaje aplicado e inversamente proporcional

Más detalles

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA

TRABAJO PRÁCTICO Nº 2 ANÁLISIS DE CIRCUITOS DE CORRIENTE CONTINUA E.T. Nº 17 - D.E. X Reg. PRÁCTCAS UNFCADAS 1 ntroducción Teórica TRABAJO PRÁCTCO Nº 2 ANÁLSS DE CRCUTOS DE CORRENTE CONTNUA a Multímetro digital: El multímetro digital es un instrumento electrónico de

Más detalles

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Introducción El programa de Data Studio 1.7, es una aplicación

Más detalles

Corriente y Circuitos Eléctricos

Corriente y Circuitos Eléctricos Módulo: Medición y Análisis de Circuitos Eléctricos Unidad 1 Unidades y Mediciones Eléctricas Responda en su cuaderno las siguientes preguntas: Cuestionario 1 1.- Defina los siguientes conceptos, indicando

Más detalles

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE

PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE PROFESOR: JORGE ANTONIO POLANIA PUENTES CURSO 2: CIRCUITOS SERIE UNIDAD 1: CIRCUITO SERIE TEORÍA El circuito serie es el circuito que más se encuentra en el análisis de circuitos eléctricos y electrónicos,

Más detalles

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA

MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA MÓDULOS PARA EXPERIMENTOS DE ELECTRICIDAD BÁSICA CIRCUITOS Y SISTEMAS EN CORRIENTE CONTINUA MOD. MCM1/EV EB 15 CIRCUITOS Y SISTEMAS EN CORRIENTE ALTERNADA MOD. MCM2/EV EB 16 CIRCUITOS Y SISTEMAS TRIFASICOS

Más detalles

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO

ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.

Más detalles

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie

Experimento 5 COMBINACIONES DE RESISTENCIAS. Objetivos. Introducción. Figura 1 Circuito con dos resistencias en serie Experimento 5 COMBINACIONES DE RESISTENCIAS Objetivos 1. Construir circuitos con baterías, resistencias, y cables conductores, 2. Analizar circuitos con combinaciones de resistencias en serie para verificar

Más detalles

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS

LABORATORIO DE MAQUINAS ELECTRICAS. Guía de Practica N 02: MEDICION DE TENSION Y CORRIENTES EN TRANSFORMADORES MONOFASICOS Universidad Nacional del Santa Facultad de Ingeniería E.A.P. Ingeniería En Energía Departamento Académico de Energía y Física LABORATORIO DE MAQUINAS ELECTRICAS Guía de Practica N 02: MEDICION DE TENSION

Más detalles

ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA).

ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA). ACELERACION DE LA GRAVEDAD. CAIDA LIBRE. (SENSOR DE FOTOPUERTA Y LÁMINA OBTURADORA). Traducción del Physics Labs with Computers. PASCO. Actividad Práctica 5. Teacher s Guide Volumen 1. Pág. 53. Student

Más detalles

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA

POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA POTENCIA ACTIVA EN C.A. Y MEDICIÓN DE FACTOR DE POTENCIA OBJETIVOS: Determinar la potencia activa, aparente y el factor de potencia en circuitos monofásicos. Observe las normas de seguridad al realizar

Más detalles

Figura 5-1 Circuito con dos resistencias en serie

Figura 5-1 Circuito con dos resistencias en serie Experimento 5 COMBINACIONES DE RESISTENCIAS Objectivos 1. Construir circuitos con baterías, resistencias, y cables conductores, 2. Analizar circuitos con combinaciones de resistencias en serie para verificar

Más detalles

Experiencia: Aceleración de un carro dinámico en un plano inclinado

Experiencia: Aceleración de un carro dinámico en un plano inclinado Experiencia: Aceleración de un carro dinámico en un plano inclinado Interfase ScienceWorkshop Pasco Sensor de Movimiento Pasco OBJETIVO El objetivo de este experimento es calcular la aceleración de un

Más detalles

XIII. CIRCUITO RL. En un circuito RL conectado en serie con un generador de onda cuadrada,

XIII. CIRCUITO RL. En un circuito RL conectado en serie con un generador de onda cuadrada, XIII. CIRCUITO RL Objetivos En un circuito RL conectado en serie con un generador de onda cuadrada, a. Obtener con ayuda del osciloscopio curvas características de voltaje V L de la bobina en función del

Más detalles

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos

Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo

Más detalles

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO

CORRIENTE ALTERNA. CIRCUITO RLC. MANEJO DEL OSCILOSCOPIO eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

Electrónica II. Guía 4

Electrónica II. Guía 4 Electrónica II. Guía 4 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). COMPARADORES Objetivo General Verificar

Más detalles

Circuitos Eléctricos RL RC y RLC

Circuitos Eléctricos RL RC y RLC Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y

Más detalles

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C.

Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Potencia eléctrica Condensadores y Bobinas en Circuitos de C.C. Experiencia N 6 1.- OBJETIVOS 1. Mostrar la potencia eléctrica como función del voltaje y de la corriente, calculando y midiendo la potencia

Más detalles

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales)

Oscar Ignacio Botero H. Diana Marcela Domínguez P. SIMULADOR PROTEUS MÓDULO. VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) SIMULADOR PROTEUS MÓDULO VIRTUAL INSTRUMENTS MODE: (Instrumentos virtuales) En éste modo se encuentran las siguientes opciones 1. VOLTÍMETROS Y AMPERÍMETROS (AC Y DC) Instrumentos que operan en tiempo

Más detalles

LEY DE OHM Y PUENTE DE WHEATSTONE

LEY DE OHM Y PUENTE DE WHEATSTONE uned de Consorci Centre Associat la UNED de Terrassa Laboratori d Electricitat i Magnetisme (UPC) LEY DE OHM Y PUENTE DE WHEATSTONE Objetivo Comprobar experimentalmente la ley de Ohm. Determinar el valor

Más detalles

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición

Item Cantidad Descripción. 1 1 Fuente de energía ST S. 2 1 Amplificador de separación LM Osciloscopio con puntas de medición Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Sistemas Polifásicos y Medición de Potencia Contenidos ❿ Voltaje RMS. ❿ Voltaje máximo. ❿ Desfase de

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 3: CAMPO ELÉCTRICO Y POTENCIAL ELÉCTRICO Determinar la relación

Más detalles

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas

1 - Turbulencia insuficiente, que las partículas de combustible tienen a bajas temperaturas Estos sensores pueden ser de Coeficiente de Temperatura Negativo (NTC) la resistencia eléctrica y el voltaje disminuyen al aumentar la temperatura o de Coeficiente de Temperatura Positivo (PTC) la resistencia

Más detalles

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF

LABORATORIO DE ELECTROMAGNETISMO LEYES DE KIRCHHOFF No LABOATOO DE ELECTOMAGNETSMO LEYES DE KCHHOFF DEPATAMENTO DE FSCA Y GEOLOGA UNESDAD DE PAMPLONA FACULTAD DE CENCAS BÁSCAS Objetivos. Entender las leyes de conservación de energía eléctrica y de la conservación

Más detalles

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES

LABORATORIO DE ELECTROMAGNETISMO SUPERFICIES EQUIPOTENCIALES No 3 LABORATORIO DE ELECTROMAGNETISMO DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos 1. Dibujar líneas de campo a través del mapeo de líneas equipotenciales.

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 2: CAMPO Y POTENCIAL ELÉCTRICO Determinar la relación entre la

Más detalles

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin

Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin Circuitos de Corriente Continua Circuitería Básica, Leyes de Kirchhoff y Equivalente Thévenin 1. OBJETIVOS - Estudiar las asociaciones básicas de elementos resistivos en corriente continua: conexiones

Más detalles

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas

Experimento 8 EL CIRCUITO RC. Objetivos. Teoría. Figura 1 Un capacitor de placas planas paralelas Experimento 8 EL CIRCUITO RC Objetivos 1. Describir los aspectos básicos del circuito RC 2. Explicar y describir la dependencia del voltaje y la corriente con respecto al tiempo en los procesos de carga

Más detalles

PRÁCTICA Nº2 TUBO DE RESONANCIA

PRÁCTICA Nº2 TUBO DE RESONANCIA PRÁCTICA Nº2 TUBO DE RESONANCIA 1.- Objetivo El objetivo de esta práctica es determinar la velocidad de propagación del sonido en el aire empleando el fenómeno de la resonancia en un tubo. Además se pretenden

Más detalles

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM

Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM Departamento de Física Aplicada E.T.S. Ingeniería Industrial U.C.L.M. Laboratorio de Fundamentos Físicos de la Ingeniería LEY DE OHM El objetivo fundamental de esta práctica es el conocimiento experimental

Más detalles

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos

Experimento 6 LAS LEYES DE KIRCHHOFF. Objetivos. Teoría. Figura 1 Un circuito con dos lazos y varios elementos Experimento 6 LAS LEYES DE KIRCHHOFF Objetivos 1. Describir las características de las ramas, los nodos y los lazos de un circuito, 2. Aplicar las leyes de Kirchhoff para analizar circuitos con dos lazos,

Más detalles

Prepárese. Siga paso a paso las instrucciones de esta guía y disfrute en unos minutos de la Suite Jurídica o del imemento en su ipad.

Prepárese. Siga paso a paso las instrucciones de esta guía y disfrute en unos minutos de la Suite Jurídica o del imemento en su ipad. Guía de Instalación Prepárese. Siga paso a paso las instrucciones de esta guía y disfrute en unos minutos de la Suite Jurídica o del imemento en su ipad. Para comenzar a trabajar, necesita: 1 Su ordenador

Más detalles

Guía paso a paso de la actualización de Windows 8.1

Guía paso a paso de la actualización de Windows 8.1 Guía paso a paso de la actualización de Windows 8.1 Instalación y actualización de Windows 8.1 Actualice el BIOS, las aplicaciones y los controladores, y ejecute Windows Update. Seleccione el tipo de instalación.

Más detalles

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO

PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO Ing. Gerardo Sarmiento Díaz de León CETis 63 PRACTICA LEY DE OHM CIRCUITOS EN SERIE, PARALELO Y MIXTO TRABAJO DE LABORATORIO Ley de Ohm Asociación de Resistencias OBJETO DE LA EXPERIENCIA: Comprobar la

Más detalles

Android 2.3 Tablet Manual de Usuario

Android 2.3 Tablet Manual de Usuario Contenido. Contenido....1 2. Contenido de la caja...2 3. Perspectiva del producto...3 4. Encendido y apagado...4 Hibernar: Pulsar el botón de encendido para que la tableta se ponga en modo de hibernación

Más detalles

CIRCUITOS CON RESISTENCIAS

CIRCUITOS CON RESISTENCIAS CIRCUITOS CON RESISTENCIAS Divisores de voltaje Videotutorial de la práctica A. DESCRIPCIÓN En esta práctica vamos a montar una serie de circuitos, con diferentes tipos de resistencias, para estudiar lo

Más detalles

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD DON BOSCO DEPARTAMENTO DE CIENCIAS BÁSICAS LABORATORIO DE FÍSICA ASIGNATURA: ELECTRICIDAD Y MAGNETISMO I. OBJETIVOS LABORATORIO 7: REGLAS DE KIRCHHOFF Comprobar experimentalmente que en un

Más detalles

Guía de instalación. 1. Paquete. Color Management LCD Monitor. Importante

Guía de instalación. 1. Paquete. Color Management LCD Monitor. Importante Guía de instalación Color Management LCD Monitor Importante Lea detenidamente el apartado PRECAUCIONES; la Guía de instalación y el Manual del usuario que encontrará en el CD-ROM para familiarizarse con

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO FÍSICA C Segunda evaluación SOLUCIÓN ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS I TÉRMINO 2012-2013 FÍSICA C Segunda evaluación SOLUCIÓN Pregunta 1 (3 puntos) Un globo de caucho tiene en su interior una carga puntual.

Más detalles

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA

Laboratorio de Electricidad PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA PRACTICA - 2 USO DEL MULTÍMETRO ELECTRÓNICO COMO ÓHMETRO Y COMO AMPERÍMETRO, PARA MEDIR LA CORRIENTE CONTINUA I - Finalidades 1.- Estudiar el código de color de las resistencias. 2.- Utilización del multímetro

Más detalles

Experimento #5 Introducción al Magnetismo

Experimento #5 Introducción al Magnetismo Experimento #5 Introducción al Magnetismo I. Objetivos: Calcular la constante de permeabilidad µ o utilizando una bobina. Comprender como una corriente induce un campo magnético Calcula el Campo Magnético

Más detalles

Guía 01. La ley de Ohm

Guía 01. La ley de Ohm Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física Laboratorio de Física II FI-5 A Guía 0 La ley de Ohm Objetivos Conocer la Ley de Ohm y las Leyes de Kirchoff - Estudiar

Más detalles

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura.

Se agrupan ambos generadores de corriente, obteniéndose el circuito equivalente de la figura. EJEMPLO Obtener el circuito equivalente Thevenin del circuito de la figura, mediante transformaciones Thevenin-Norton RESOLUCIÓN: Para agrupar los generadores de tensión V 1 y V 2 se aplica la transformación

Más detalles

Experimento 1 E = q o LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES. Objetivos. Teoría

Experimento 1 E = q o LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES. Objetivos. Teoría Experimento 1 LÍNEAS DE FUERZA Y LÍNEAS EQUIPOTENCIALES Objetivos 1. Describir el concepto de campo, 2. Describir el concepto de líneas de fuerza, 3. Describir el concepto de líneas equipotenciales, 4.

Más detalles

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS)

FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) FUERZA DE FRICCIÓN CINÉTICA (SISTEMA DE FOTOCOMPUERTA Y POLEAS) Physics Labs with Computers. PASCO. Actividad Práctica 21. Teacher s Guide Volumen 1. Pág.199. Student Workbook Volumen 1. Pág. 145. EQUIPOS

Más detalles

Laboratorio práctico Realización de un relevamiento del sitio inalámbrico

Laboratorio práctico Realización de un relevamiento del sitio inalámbrico Laboratorio práctico 3.4.3 Realización de un relevamiento del sitio inalámbrico Designación de dispositivo Nombre del dispositivo Dirección Máscara de subred PC1 PC1 192.168.2.2 255.255.255.0 Router inalámbrico

Más detalles

TuBot 2014 GUIA DE MONTAJE Y PROGRAMACIÓN MOTORES. Dpto. de Electrónica - Universidad de Alcalá TuBot

TuBot 2014 GUIA DE MONTAJE Y PROGRAMACIÓN MOTORES. Dpto. de Electrónica - Universidad de Alcalá TuBot TuBot 2014 GUIA DE MONTAJE Y PROGRAMACIÓN MOTORES Dpto. de Electrónica - Universidad de Alcalá TuBot 2014 1 Conectamos los motores Conecta los conectores de los servos. CUIDADO! Podemos romper los motores.

Más detalles

Amplificador de transconductancia 52120A

Amplificador de transconductancia 52120A Amplificador de transconductancia 52120A Expanda la capacidad de carga de trabajo de sus calibradores eléctricos y de potencia 52120A Transconductance Amplifier Fluke Calibration 2 2 Fluke Calibration

Más detalles

Manual de Instalación

Manual de Instalación Amplificador Nemesis 804 Manual de Instalación Por favor lea cuidadosamente este manual antes de instalar y usar el producto. Planeación del Sistema Una apropiada planeación del sistema es la mejor manera

Más detalles

Medidor de potencia de fibras ópticas Fuente luminosa de fibras ópticas

Medidor de potencia de fibras ópticas Fuente luminosa de fibras ópticas FOM, FOS-850, FOS-1300, FOS-850/1300 Medidor de potencia de fibras ópticas Fuente luminosa de fibras ópticas Instrucciones Introducción El medidor de potencia de fibras ópticas (FOM) mide la potencia óptica

Más detalles

Medidor de Electrostática

Medidor de Electrostática Medidor de Electrostática Medidor idóneo para la medición de carga electrostática en superficies, objetos en movimiento e incluso en entornos ionizados. ÍNDICE 1. Introducción 2. Seguridad 3. Uso y funcionamiento

Más detalles

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla

Figura 1. Circuito simple con una batería, dos pedazos de alambre conductor y una bombilla Experimento 3 BATERÍAS, BOMBILLAS Y CORRIENTE ELÉCTRICA Objetivos 1. Construir circuitos sencillos con baterías, bombillas, y cables conductores, 2. Interpretar los esquemáticos de circuitos eléctricos,

Más detalles

11 LDR LDR 01rsp.indd /30/13 9:56 AM

11 LDR LDR 01rsp.indd /30/13 9:56 AM 11 LDR 01rsp.indd 131 131 12/30/13 9:56 AM Los insectos, pequeños robots biológicos Generalmente los insectos tienen seis patas y dos antenas. Los insectos pueden percibir en muchos casos más que los humanos

Más detalles

Práctica de laboratorio Conexión y configuración de hosts

Práctica de laboratorio Conexión y configuración de hosts Práctica de laboratorio 3.6.4 Conexión y configuración de hosts Objetivos Conectar una PC a un router mediante un cable directo Configurar la PC con una dirección IP adecuada Configurar la PC con un nombre

Más detalles

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA

CURSO TALLER ACTIVIDAD 3 PROTOBOARD MULTÍMETRO MEDICIÓN DE VOLTAJES Y CORRIENTES DE CORRIENTE DIRECTA CUSO TALLE ACTIIDAD 3 POTOBOAD MULTÍMETO MEDICIÓN DE OLTAJES Y COIENTES DE COIENTE DIECTA FUENTE DE OLTAJE DE COIENTE DIECTA Como su nombre lo dice, una fuente de voltaje de corriente directa (C.D) es

Más detalles

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE

CORRIENTE CONTINUA I : RESISTENCIA INTERNA DE UNA FUENTE eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

GUÍA DEL PROCESO Y PROCEDIMIENTO DE CALIBRACIÓN EN EL ALMACÉN

GUÍA DEL PROCESO Y PROCEDIMIENTO DE CALIBRACIÓN EN EL ALMACÉN 1 GUÍA DEL PROCESO Y PROCEDIMIENTO DE CALIBRACIÓN EN EL ALMACÉN TABLA DE CONTENIDO Dispositivos que requieren calibración.... 4 Dispositivos autorizados de calibración.... 4 Prueba de Amperios del Probador

Más detalles

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas.

Tema 3: Criterios serie paralelo y mixto. Resolución de problemas. Tema 3. Circuitos serie paralelo y mixto. Resolución de problemas En el tema anterior viste como se comportaban las resistencias, bobinas y condensadores cuando se conectaban a un circuito de corriente

Más detalles

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física.

FS-200 Física General II UNAH. Universidad Nacional Autónoma de Honduras. Facultad de Ciencias Escuela de Física. Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Leyes de Kirchoff Objetivos 1. Establecer la relación matemática que existe entre diferencia de potencial, resistencia y

Más detalles

PRACTICA 4: CAPACITORES

PRACTICA 4: CAPACITORES 1 PRACTICA 4: CAPACITORES 1.1 OBJETIVO GENERAL Determinar qué factores influyen en la capacitancia de un condensador y las formas de hallar dicha capacitancia 1.2 Específicos: Determinar la influencia

Más detalles

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO

Laboratorio de Electricidad PRACTICA - 3 LEY DE OHM. PROPIEDADES DE LOS CIRCUITOS DE RESISTENCIAS SERIE Y PARALELO Laboratorio de lectricidad PCIC - 3 LY D OHM. POPIDDS D LOS CICUIOS D SISNCIS SI Y PLLO I - Finalidades 1.- Comprobar experimentalmente la ley de Ohm. 2.- Comprobar experimentalmente que en un circuito

Más detalles

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4

ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 5 CIRCUITOS ELÉCTRICOS. LEYES Y TEOREMAS Electrónica Analógica ÍNDICE OBJETIVOS... 3 INTRODUCCIÓN... 4 1.1. CIRCUITO EQUIVALENTE... 5 1.. leyes de hirchhoff... 9 1.3. teorema de thevenin... 11 1.4. teorema

Más detalles

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES

INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROFESOR: ING. Juan Omar IBAÑEZ ÁREA: TECNOLOGÍA CARRERA: PROFESORADO EN EDUCACIÓN TECNOLÓGICA ESPACIO CURRICULAR: ELECTRICIDAD Y ELECTRÓNICA INSTITUTO DE FORMACIÓN DOCENTE CONTINUA VILLA MERCEDES PROGRAMA

Más detalles

Práctica de medidas eléctricas. Uso del poĺımetro.

Práctica de medidas eléctricas. Uso del poĺımetro. Departamento de Física Aplicada I, E.U.P, Universidad de Sevilla http://euler.us.es/ niurka/ Plan 1 Objetivos. Asociación de resistencias 2 Realización de medidas Asociación de resistencias Objetivos 1

Más detalles

MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre.

MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre. MANEJO DE CIRCUITOS ELÉCTRICOS. 1ª unidad. Segundo semestre. 1. IDENTIFICACIÓN DE COMPONENTES ELÉCTRICOS. A Identificación de los conceptos básicos de la electricidad. Investiga que es la Carga eléctrica.

Más detalles

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO

Grado de Óptica y Optometría Asignatura: FÍSICA Curso: Práctica nº 5. MEDIDAS DE RESISTENCIAS, VOLTAJES Y CORRIENTES: MULTÍMETRO FCULTD DE CIENCIS UNIERSIDD DE LICNTE Grado de Óptica y Optometría signatura: FÍSIC Curso: 200- Práctica nº 5. MEDIDS DE RESISTENCIS, OLTJES Y CORRIENTES: MULTÍMETRO Material Fuente de alimentación de

Más detalles

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales

Práctica No 0: Parte C El Osciloscopio y el Generador de Señales Universidad Nacional Experimental del Táchira. Departamento de Ingeniería Electrónica. Núcleo de Instrumentación y Control. Bioinstrumentación I Revisada por: Prof. Rafael Volcanes, Prof. Lisbeth Román.

Más detalles

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS

TEMA 1 DISPOSITIVOS ELECTRONICOS ANALISIS DE CIRCUITOS Tema. Dispositivos Electrónicos. Análisis de Circuitos. rev TEMA DSPOSTVOS ELECTONCOS ANALSS DE CCUTOS Profesores: Germán Villalba Madrid Miguel A. Zamora zquierdo Tema. Dispositivos Electrónicos. Análisis

Más detalles

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID PRUEBA DE ACCESO A LAS ENSEÑANZAS UNIVERSITARIAS MATERIA: ELECTROTECNIA OFICIALES DE GRADO (MODELO DE EXAMEN) Curso 2013-2014 INSTRUCCIONES GENERALES Y

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2009-2010 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

TECLADO TACTIL CAPACITIVO SIGMA ELECTRONICA

TECLADO TACTIL CAPACITIVO SIGMA ELECTRONICA TECLADO TACTIL CAPACITIVO SIGMA ELECTRONICA Imagen 1: Teclado Táctil Capacitivo. 1 DESCRIPCION. Teclado táctil capacitivo basado en la tecnología QMatrix de Atmel. El usuario debe disponer de 6 líneas

Más detalles

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio

Laboratorio de Microondas, Satélites y Antenas. Práctica #1. Introducción al Equipo de Laboratorio Laboratorio de Microondas, Satélites y Antenas Práctica #1 Introducción al Equipo de Laboratorio Objetivo Familiarizar al alumno con los instrumentos básicos con que se cuenta, para suministrar potencia

Más detalles

Procedimiento para alambrar una Función

Procedimiento para alambrar una Función Procedimiento para alambrar una Función Función para visualizar la salida en un Display 7 Segmentos. Ing. Ma. Del Socorro Guevara Rdz. Materia Necesario: Proto- Board (tarjeta de Prototipos) Alambre tipo

Más detalles

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS

PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS UNIVERSIDAD SIMON BOLIVAR DPTO. ELECTRONICA Y CIRCUITOS CIRCUITOS ELECTRONICOS I EC1177 PRACTICA Nº 1 MEDICIONES SOBRE CIRCUITOS ELECTRONICOS OBJETIVO Familiarizar al estudiante con los conceptos fundamentales

Más detalles

IRISPen Air 7. Guía rápida del usuario. (ios)

IRISPen Air 7. Guía rápida del usuario. (ios) IRISPen Air 7 Guía rápida del usuario (ios) Esta Guía rápida del usuario le ayudará a empezar a utilizar el IRISPen TM Air 7. Le recomendamos que la lea antes de utilizar el escáner y el software. Toda

Más detalles

RED DE DISCRIMINACION ELECTRONICA PARA UN ALTAVOZ DE FRECUENCIA BAJA AUXILIAR CON 45Hz PARA INCREMENTAR LOS SONIDOS GRAVES

RED DE DISCRIMINACION ELECTRONICA PARA UN ALTAVOZ DE FRECUENCIA BAJA AUXILIAR CON 45Hz PARA INCREMENTAR LOS SONIDOS GRAVES MANUAL DEL USUARIO RED DE DISCRIMINACION ELECTRONICA PARA UN ALTAVOZ DE FRECUENCIA BAJA AUXILIAR CON 45Hz PARA INCREMENTAR LOS SONIDOS GRAVES Por favor lea el manual antes de usar este equipo. Cat. No.

Más detalles

Bienvenido Gracias por elegir un conversor D/A Marantz. En esta guía encontrará instrucciones paso a paso que le ayudarán a configurar su conversor D/

Bienvenido Gracias por elegir un conversor D/A Marantz. En esta guía encontrará instrucciones paso a paso que le ayudarán a configurar su conversor D/ ENGLISH FRANÇAIS ESPAÑOL D/A Converter HD-DAC1 Quick Start Guide Guide de démarrage rapide Guía de inicio rápido Bienvenido Gracias por elegir un conversor D/A Marantz. En esta guía encontrará instrucciones

Más detalles

Tablet PC Modelo NEO TV

Tablet PC Modelo NEO TV Tablet PC Modelo NEO TV Lea cuidadosamente el manual de uso antes de conectar o poner en marcha el equipo. www.master- g.com Índice Índice 2 Un Vistazo a la Unidad 3 Comenzando: Desbloqueando la pantalla

Más detalles

CAPITULO VI: Generadores de Sonido

CAPITULO VI: Generadores de Sonido CAPITULO VI GENERADORES DE SONIDOS GENERADOR DE CODIGO MORSE En el circuito de la fig. 6.1 se observa un 555 en configuración de multivibrador astable, funcionando como un práctico oscilador para código

Más detalles

ELECTRODINAMICA. Nombre: Curso:

ELECTRODINAMICA. Nombre: Curso: 1 ELECTRODINAMICA Nombre: Curso: Introducción: En esta sesión se estudiara los efectos de las cargas eléctricas en movimiento en diferentes tipos de conductores, dando origen al concepto de resistencia

Más detalles