Origen y desenlace de la muerte de una estrella, Hoyos Negros

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Origen y desenlace de la muerte de una estrella, Hoyos Negros"

Transcripción

1 1 Origen y desenlace de la muerte de una estrella, Hoyos Negros Resumen El destino de una estrella está definido desde el momento de su creación, ya que la masa que se acumula dictará el comportamiento de la estrella durante su vida al igual que el tiempo de vida de la misma. Algunas de la características de una estrella, son su luminosidad y temperatura. La estrella puede encontrar varios finales, enana blanca, estrella de neutrones o agujero negro Los agujeros negros son producto del colapso gravitacional de una estrella causado por el agotamiento de combustible nuclear que mantiene su presión interna. Para que la estrella se pueda convertir en agujero negro tiene que cumplir con la característica fundamental de tener una masa mayor o igual a 10 masas solares. Un observador lejos del agujero negro solo podría ver a la estrella colapsar hasta el punto en que esta llega al radio de Schwarzschild, llegando a este punto las leyes de Newton predicen que la estrella colapsaría hasta un punto de densidad infinita llamado singularidad y si agregamos la teoria de relatividad esta predice que la luz no podría escapar. Problema de investigación A principios de siglo XIX en Francia, Pierre Simón Laplace propuso la posibilidad de un tipo de estrellas que tuvieran un radio crítico, que determinara una velocidad de escape superior a la de la luz y por lo cual, esta no escaparía de su superficie, llamándoles estrellas negras. Ya en el siglo XX los astrónomos han sugerido la hipótesis, de un objeto en el Universo, cuya masa extraordinariamente grande ocupa un espacio ínfimo, dándole la propiedad de tener una densidad enorme capaz de deformar el espacio-tiempo a niveles en los que, ni siquiera la luz pueda escapar. Estos objetos han sido bautizados con el nombre de Hoyos Negros, en los cuales, son llevadas al límite; la Teoría de la Relatividad y la Mecánica Cuántica. El descubrimiento de los hoyos negros y su difusión por los diferentes medios han plantado una semilla de curiosidad en todos los que han escuchado de ellos, pero la complejidad y difícil acceso a la información impone límites que pocas personas pueden superar ya sea estudiándolos a nivel universitario o consultando a conocedores del tema (e.g. Físicos y astrónomos) Es de nuestro interés comprender y divulgar a niveles comprensibles para cualquier púbico, estos cuestionamientos, que involucran un penetración en las Teorías más complejas de la Física., que son la Relatividad y la Mecánica Cuántica. Objetivos: 1. Realizar una investigación documental de la formación y características importantes de un hoyo negro Describir las características de las estrellas que llegan a formar un hoyo negro Características fundamentales de hoyo negro Cómo se logra detectar la presencia de un hoyo negro. Hipótesis:

2 2 1. Si investigamos el comportamiento de las estrellas muy masivas, esto es, varias masas solares, entonces podemos predecir que a partir de la teoría de la relatividad general se debe producir un colapso gravitacional que produce los llamados hoyos negros. Referentes Teóricos: 1. Relatividad Especial: 1.1. Principio de Relatividad. Las leyes que describen los cambios de los sistemas físicos no resultan afectadas si estos cambios de estado están referidos a uno u otro de dos sistemas de coordenadas en traslación con movimiento uniforme Principio de invariancia de la velocidad de la luz. Cualquier rayo de luz se mueve en el sistema estacionario con velocidad "c", tanto si el rayo es emitido por un cuerpo en reposo o en movimiento 2. Relatividad General: 2.1. Principio de Covariancia: que cualquiera que sea el movimiento de los observadores, las ecuaciones tendrán la misma forma matemática y contendrán los mismos términos Principio de Equivalencia: supone que un sistema que se encuentra en caída libre y otro que se mueve en una región del espacio-tiempo sin gravedad se encuentran en un estado físico sustancialmente similar: en ambos casos se trata de sistemas inerciales. 3. Curvatura del espacio tiempo: 3.1. Einstein propuso que la gravedad no debería ser considerada como una fuerza convencional, si no como una manifestación de la curvatura del espacio tiempo, siendo esta curvatura provocada por la presencia de materia. Como la gravedad es una consecuencia de la curvatura del espacio tiempo y no a la acción de un cuadrivector f en el espacio. Entonces la ecuación de movimiento de una partícula influenciada por la gravedad debe ser la de una partícula libre en el espacio curvo. Donde p es el cuadrimomento de la partícula y T es el tiempo. Por lo tanto su trayectoria bajo la acción de la gravedad es una geodésica en el espacio tiempo curvo. Metodología de la investigación: 1. Se realizará una investigación bibliográfica y hemerográfica: a. De las leyes de la mecánica clásica y relativista que permitan comprender el proceso dinámica de la generación y comportamiento de las estrellas a lo largo de su vida. b. Cuáles son las condiciones que necesita una estrella para convertirse en un hoyo negro? c. Las propiedades físicas que determinan las características de un hoyo negro. Resultados

3 3 1. Ciclo de vida de una estrella: Protoestrella: Esta densa masa de gas y polvo gira aumentando su temperatura. Cuando la temperatura es superior a los C los átomos se mueven rápidamente y al chocar unos con otros se unen, liberando energía. Las estrellas supermasivas son de vida corta, agotan rápidamente el material almacenado en su núcleo y su temperatura es muy superior a la del Sol. Las supergigantes azules pueden ser veces más luminosas que el sol y permanecer en la secuencia principal un millón de años. En cambio una estrella similar al sol puede permanecer decenas de miles de millones de años en esta etapa. Las estrellas más grandes tienen mayor temperatura, por lo tanto producen mayor energía. Su fuente de energía es el ciclo carbono-nitrógeno-oxigeno. Las estrellas pequeñas (menor a una masa solar) agotan lentamente el gas de su núcleo teniendo una vida muy larga, con temperaturas y luminosidad menores a la del sol. Las enanas marrones tienen un brillo menor que el sol y pueden permanecer en la secuencia principal cientos de miles de millones de años. La principal fuente de energía para estrellas de este tipo es la reacción en cadena protónprotón. Cuando una estrella es muy pequeña su núcleo no tiene la suficiente temperatura para iniciar el proceso de fisión simplemente se enfriará y se convertirá en una enana café. En una estrella con una masa solar, el agotamiento del combustible nuclear ocasiona el aumento en la presión interna de los gases, esto provoca un crecimiento de la estrella hasta convertirse en una gigante roja. Su atmósfera se expande y enfría formando una nebulosa planetaria. En su centro se observa finalmente una estrella enana blanca separada del resto de los gases. Una enana blanca no puede existir si su masa es mayor a la de Chandrasekhar (1.44) si la masa es mayor ya no estamos hablando de una enana blanca. Muerte estelar: la vida de una estrella termina cuando se agota el material en su núcleo. Dependiendo del tamaño de la estrella pueden ocurrir distintos eventos. En las estrellas supermasivas puede ocurrir una explosión violenta que origina una supernova, la que puede llegar a brillar más que la galaxia que la contiene. Alrededor de la explosión queda un material nebular disperso llamado remanente de supernova. Además la muerte de una estrella supermasiva puede formar una estrella de neutrones o un agujero negro dependiendo de la masa estelar. Para que una estrella pueda ser sostenida por efectos de presión de una estrella de neutrones debe de cumplir con la simple condición de tener más de 3. Si excede ese número el siguiente paso puede ser el colapso a un agujero negro. 2. Colapso gravitacional Las estrellas, al quemar el 12% de su hidrógeno llegan a un límite llamado Schonberg-Chandrasekhar donde se vuelve inestable, durante este proceso el núcleo de la estrella se contrae y lo que rodea a núcleo se expande para formar una estrella gigante (roja) durante estos cambios el helio que contiene la estrella se convierte en elementos más pesados como carbono, nitrógeno y oxígeno. 3. Propiedades físicas que imperan en un hoyo negro: Momento angular, carga y masa, cualquier otra propiedad caería hacia la singularidad. A esto se le conoce como el teorema del agujero negro sin cabello, desarrollado por B. Carter, S. Hawking, W. Israel y D.C. Robinson.

4 4 4. Efectos cuánticos que imperan en un Hoyo negro: Hay partículas que pueden ser creadas en los alrededores de un hoyo negro, ya que un cuerpo cargado eléctricamente al ser comprimido y se transforma en un hoyo negro su campo eléctrico ha sido aumentado que es capaz de crear pares de electrones-positrones. Estas partículas pueden ser creadas en la ergosfera de un hoyo negro que rota y sustraen algo de su energía rotacional. Hawking probó que existen procesos cuánticos donde se crean partículas en el mismo hoyo negro. Hawking propuso que un par de partículas se puede estar formando casi sobre el horizonte de sucesos, donde una partícula puede crearse dentro del horizonte y caer hacia el centro, y la otra justo por encima del mismo, permitiéndole escapar hacia el espacio llevando consigo parte de la energía del agujero negro, por consiguiente, parte de su masa. Este proceso de cierta forma es insignificante, ya que emitiría radiación al igual que un cuerpo con una baja temperatura. Si un hoyo negro de una masa solar fuera a emitir una partícula esta tendría una temperatura de un décimo de millón de grado y la longitud de onda sería equivalente a 10 km. Esto se llama evaporación cuántica, y nos dice que los hoyos negros si están libres de cualquier fuente externa de energía, lentamente se encogen, transformándose en energía térmica y desaparecen. Pero si un hoyo negro pierde masa, su temperatura va a aumentar al igual que el proceso de evaporación, el final de un hoyo negro es una gran explosión que libera una energía equivalente a un millón de bombas H. Esto pasa cuando un agujero sin molestar llega a su fin en un periodo de aproximadamente años para un hoyo negro de 10 masas solares. 5. Tipos de Hoyos Negros: 5.1. Reissner Nordstrom Hoyos Negros Cargados: El espacio-tiempo afuera de una esfera, que además de masa, posee una carga eléctrica. Posee dos parámetros, la masa M y la carga Q que deforma al espacio-tiempo, al igual que el espacio-tiempo de Schwarzchild el de Reissner Nordstrom posee un horizonte que sólo puede ser cruzado en un sentido. Una manera simple de cargar a un hoyo negro es inyectarle cargas eléctricas después de que se haya formado. Si, por ejemplo, un hoyo negro sin carga atrapa un haz de electrones que atraviesa el espacio; adquiere la carga de esos electrones; el espacio-tiempo alrededor de ese hoyo negro será; entonces el de Reissner-Nordstrom. Espacio-tiempo de Reissner-Nordstrom es que posee una infinidad de universos paralelos. No se puede viajar a través de un hoyo negro cargado, una vez más tenemos una solución matemáticamente valida pero inestable El espacio-tiempo de Kerr Hoyos negros rotantes: El movimiento de rotación de un cuerpo se mide por medio del momento angular que es el producto de tres factores: masa, radio y la velocidad de rotación del cuerpo, como la marca una de las leyes de la mecánica debido a la conservación del momento angular, una estrella que se contrae aumenta la velocidad con la que gira, asimismo un hoyo negro que se forma por el colapso gravitacional de una estrella debe preservar el momento angular inicial del astro. Este efecto conocido como el de Lense-Thirring hace que el espacio tiempo alrededor de un cuerpo rotante arrastre la materia alrededor.

5 5 Este efecto es prácticamente imperceptible si la velocidad de rotación del cuerpo masivo es mucho menor que la velocidad de la luz. Kerr propuso una solución que se adecuaba a los hoyos negros rotantes, ésta posee dos parámetros: la masa M y el momento angular S del hoyo. En el caso particular en que S es cero, la solución se reduce a la de Schwarzchild, cualquier esfera masiva genera en su exterior un espacio-tiempo de Schwarzchild, pero no cualquier cuerpo rotante produce un espacio tiempo de Kerr. Una de las peculiaridades de los hoyos negros rotantes es la existencia de una zona llamada ergósfera situada afuera del horizonte interno, donde ningún cuerpo puede mantenerse inmóvil por mucha energía que invierta para aferrarse a la misma posición, la causa es el efecto Lense-Thirring donde el arrastre hace que todos los cuerpos se vean girados a girar junto a él El Espacio-Tiempo de Kerr-Newman. Hoyos negros rotantes y cargados: El Espacio-Tiempo de Kerr-Newman está determinado por tres parámetros: la masa M, el momento angular S y la carga Q. La forma de la solución es parecida a la de Kerr (donde a=s/m). Si la carga Q se hace cero, la solución se reduce a la de Kerr y si el momento angular S se anula, la solución se reduce a la de Reissner-Nordstrom, como se puede esperar Hoyos negros de Schwarzschild: Supongamos ahora que colocamos una esfera masiva en el espacio-tiempo. Afuera de la esfera el espacio-tiempo es el de Schwarzschild y dentro de ella es de alguna otra forma (esta no nos interesa ahora para nuestros fines). El plano de simultaneidad se vuelve una superficie de simultaneidad deformada. Si la esfera se contrae, la forma de la superficie de simultaneidad correspondiente a tiempos distintos no es la misma. Un observador lejano vera a la esfera contraerse y acercarse, sin alcanzar el radio de Schwarzschild correspondiente; en consecuencia, la superficie de simultaneidad correspondiente al tiempo del observador externo tendrá una forma que depende del tiempo considerado El colapso de una esfera masiva tiene apariencia muy distinta para un observador montado en ella; tal observador cruza el radio de Schwarzschild, penetra al hoyo negro, cuya formación presencia, y prosigue su viaje con la esfera hasta llegar a la singularidad en el centro del hoyo negro, donde termina su existencia. Si construimos las superficies de simultaneidad asociadas al tiempo del obseervador que penetra al hoyo negro,tendremos una sucesion como la que aparece en el interior del hoyo negro y, finalmente, surge la singularidad cuando la esfera masiva se concentra en un punto. 6. Singularidad: Una singularidad en la podemos definir como un punto en el espacio donde el volumen tiende a cero y la densidad a infinito, en un agujero negro la singularidad está cubierta por el horizonte de sucesos, lo que causa que nada de lo que entre pueda salir. El censor cósmico, impide que la singularidad pueda ser apreciada por un observador externo al hoyo negro. 7. Métodos para su detección: 7.1. Un sistema binario formado por una estrella normal y un agujero negro pueden ser detectados por el desplazamiento de Doppler en las líneas espectrales de la estrella.

6 Un sistema binario en donde la distancia entre la estrella y el agujero negro es comparable al diámetro de la estrella da origen a un nuevo fenómeno: el gas de la estrella será atraído hacia el agujero negro. Esto a su vez llevará a un incremento de la temperatura de varios millones de grados causando que el gas emita rayos x Aun agujeros negros solos, dan a conocer su existencia gradualmente capturando gas interestelar, el gas se calienta y emite luz. Esta luz es emitida antes de que alcance el radio de Schwarzschild. Viéndolo así podemos decir que algunas enanas blancas no son enanas blancas sino agujeros negros absorbiendo materia. Conclusiones: Con nuestra investigación comprobamos que la ecuaciones de Einstein al ser resueltas predicen la formación de una singularidad donde el tiempo es estático y se produce una deformación del espacio tiempo tal, que la luz no puede salir una vez que atraviesa el horizonte de sucesos. Hicimos una investigación simultánea donde se verificó que todas la estrellas mueren y depende de su masa el final de la misma y su tiempo de vida. Algunas estrellas mueren explotando o disminuyendo su tamaño significativamente y si es suficientemente masiva, colapsa, convirtiéndose en un hoyo negro. Aun estos tienen un fin debido a los efectos cuánticos que ocurren aleatoriamente. La investigación nos llevó a la profundización de ciertos temas matemáticos con el fin de poder entender dichos fenómenos físicos. Referencias: 1. Davies, P. (1989). The new physics Cambridge. Cambridge University Press. 2. Padmanabhan, T (1957). Theoretical astophysics: Stars and stellar systems. Edimburgo. Cambridge University Press. 3. Shipman, L. H. (1980). Black holes Quasars, and the universe. Boston. Houghton Mifflin Company. 4. Hawking, S. (1988). Historia del Tiempo. Critica. 5. Hacyan, S. (1997). Los hoyos Negros y la curvatura del espacio tiempo. México. Fondo de cultura económica 6. Shapiro, S. L. & Teukolsky, S. A. (1983) Black Holes White Dwarf, and neutrón stars. New York. John Wiley & Suns

1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo

1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo 1) Estellas de baja masa y masa intermedia (0.8 Mo < m < 8 Mo) 2) Estrellas de alta masa (8 Mo < m) a) 8 Mo < m < 25 Mo b) 25 Mo < m 25 Mo 0 Combustión del Carbono Estrellas supergigantes

Más detalles

Ayudantía 9. Astronomía FIA Ayudante: Camila Navarrete Silva

Ayudantía 9. Astronomía FIA Ayudante: Camila Navarrete Silva Ayudantía 9 Astronomía FIA 0111 Ayudante: Camila Navarrete Silva canavar2@uc.cl 1.- Si la estrella X tiene una magnitud aparente de 14 y la estrella Y tiene magnitud aparente de 4, cuál estrella es intrínsecamente

Más detalles

T 2 - La Tierra en el Universo Las Estrellas Evolución estelar

T 2 - La Tierra en el Universo Las Estrellas Evolución estelar Las Estrellas Evolución estelar Por qué son importantes las estrellas? Nuestro sol es una estrella, de él recibimos luz que calienta la Tierra y permite la fotosíntesis de la que depende mayor parte la

Más detalles

Estrellas, nebulosas y evolución estelar. Rosa Martha Torres y Ramiro Franco

Estrellas, nebulosas y evolución estelar. Rosa Martha Torres y Ramiro Franco Estrellas, nebulosas y evolución estelar Rosa Martha Torres y Ramiro Franco Curso Introducción a la Astronomía SAG 29.07.2017 1 Una estrella es una esfera luminosa de gas que brilla gracias a las reacciones

Más detalles

Ayudantía 8. Astronomía FIA Ayudante: Paulina González

Ayudantía 8. Astronomía FIA Ayudante: Paulina González Ayudantía 8 Astronomía FIA 0111 Ayudante: Paulina González paugondi@gmail.com 1.- La luminosidad de una estrella es su: a) Magnitud aparente b) Espectro c) Potencia total (energía por unidad de tiempo)

Más detalles

Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra

Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra Introducción Estrellas de neutrones y púlsares Primera detección El peculiar púlsar en la nebulosa del cangrejo. Cuántos púlsares hay en nuestra galaxia? Púlsar binario y Relatividad general Avance del

Más detalles

StreetLights of the Universe

StreetLights of the Universe Estrellas StreetLights of the Universe Introducción Sólo podemos ver pequeños puntos brillantes aún con telescopios! Muy pocas se encuentran lo suficientemente cerca para estudiarlas. Muy, muy lejos...

Más detalles

b) estrellas de alta masa: >4Ms

b) estrellas de alta masa: >4Ms evolución estelar evolución post-secuencia Principal b) estrellas de alta masa: >4Ms estrellas de SP con M > 4 Ms dejan remanentes > 1.4 Ms y no pueden ser sostenidos por la presión de los e- degenerados

Más detalles

Las estrellas. Las grandes masas de gases incandescentes

Las estrellas. Las grandes masas de gases incandescentes Las estrellas Las grandes masas de gases incandescentes I. Las estrellas en el universo 1. Definición a) Qué es una estrella? Las estrellas son unos cuerpos celestes formados por gases (mayoritariamente

Más detalles

EL UNIVERSO Cómo nació el universo

EL UNIVERSO Cómo nació el universo EL UNIVERSO Cómo nació el universo 1. Tiempo cero: sucede la Gran Explosión Se piensa que el Universo comenzó cuando algo infinitamente caliente e infinitamente pequeño explotó con una fuerza tal que dio

Más detalles

El Universo es todo, sin excepciones.

El Universo es todo, sin excepciones. El Universo es todo, sin excepciones. Materia, energía, espacio y tiempo, todo lo que existe forma parte del Universo. La teoría del Big Bang explica cómo se formó. Dice que hace unos 15.000 millones de

Más detalles

Giran alrededor del sol. - Los cometas son pequeños astros compuestos por polvo, rocas y

Giran alrededor del sol. - Los cometas son pequeños astros compuestos por polvo, rocas y 1 El Universo Tema 1 El Universo 1. El Sistema Solar 1.1. El Sol El Sol es una estrella mediana de color amarillo que está emitiendo continuamente una gran cantidad de energía. Esta energía ha hecho posible

Más detalles

Química Inorgánica Dra.Silvia E. Jacobo. Nucleogénesis

Química Inorgánica Dra.Silvia E. Jacobo. Nucleogénesis Nucleogénesis Big Bang 10-43 s 10-34 s 10-10 s 1 s 3 minutos 30 minutos 300.000 años 10 6 años 10 8 años 10 9 años 5x10 9 años 10 10 años Densidad infinita, volumen cero. Fuerzas no diferenciadas Sopa

Más detalles

9. Evolución Estelar 08 de mayo de 2009

9. Evolución Estelar 08 de mayo de 2009 9. Evolución Estelar 08 de mayo de 2009 1. La secuencia principal El diagrama de Hertzsprung-Russell Estrellas de la secuencia principal Gigantes Gigantes rojas Supergigantes Enanas blancas 1 El interior

Más detalles

Agujeros negros: vistoporfuera y pordentro. B. Janssen (UGR) Cádiz, 16 julio /49

Agujeros negros: vistoporfuera y pordentro. B. Janssen (UGR) Cádiz, 16 julio /49 Agujeros negros: vistoporfuera y pordentro B. Janssen (UGR) Cádiz, 16 julio 2009 1/49 Desde los años 60, los agujeros negros están en todas partes: en el cine: B. Janssen (UGR) Cádiz, 16 julio 2009 2/49

Más detalles

LA ESCALA DEL UNIVERSO

LA ESCALA DEL UNIVERSO LA ESCALA DEL UNIVERSO LA ESCALA DEL UNIVERSO Tierra Sistema solar Estrellas vecinas Vía Láctea Grupo Local galáctico Supercúmulo de Virgo Supercúmulo Local Universo observable DISPOSICIÓN DE LAS GALAXIAS

Más detalles

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Granada, 5 de noviembre /44

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Granada, 5 de noviembre /44 Agujeros negros: vistoporfuera y pordentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Granada, 5 de noviembre 2009 1/44 Desde los años 60, los agujeros negros están en todas partes:

Más detalles

Astrofísica, origen y evolución estelar

Astrofísica, origen y evolución estelar Astrofísica, origen y evolución estelar José Gregorio Portilla Observatorio Astronómico Nacional Universidad Nacional de Colombia Colóquenme entre las estrellas imperecederas para que no muera Texto de

Más detalles

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Ogíjares, 19 de enero /46

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Ogíjares, 19 de enero /46 Agujeros negros: vistoporfuera y pordentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Ogíjares, 19 de enero 2011 1/46 Desde los años 60, los agujeros negros están en todas partes:

Más detalles

La vida de las estrellas

La vida de las estrellas La vida de las estrellas Cambio de fase: Conceptos previos: Cambio de fase: Conceptos previos: Calor específico del hielo c h =2090 J/(kg K) Calor de fusión del hielo L f =334 103 J/kg Calor específico

Más detalles

Cómo se forman los elementos químicos?

Cómo se forman los elementos químicos? Cómo se forman los elementos químicos? Gerardo Martínez Avilés En la antigüedad las personas creían que las cosas en el mundo estaban constituidas de cuatro elsementos: la tierra, el agua, el aire y el

Más detalles

TEMA 6. Diagrama de Hertzsprung-Russell (H-R). Evolución estelar. Estados finales de las estrellas. CTE 2 - Tema 6 1

TEMA 6. Diagrama de Hertzsprung-Russell (H-R). Evolución estelar. Estados finales de las estrellas. CTE 2 - Tema 6 1 TEMA 6 Diagrama de Hertzsprung-Russell (H-R). Evolución estelar. Estados finales de las estrellas. CTE 2 - Tema 6 1 El diagrama de Hertzsprung-Russell Hacia 1910 Ejnar Herzsprung y Henry Norris Russell

Más detalles

los agujeros negros no son tan negros... o sí

los agujeros negros no son tan negros... o sí los agujeros negros no son tan negros... o sí luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com

Más detalles

Evolución estelar y agujeros negros

Evolución estelar y agujeros negros Evolución estelar y agujeros negros Gil Jannes Universidad Complutense de Madrid Semana de la Ciencia 2018 IEM CSIC Contenido El nacimiento de las estrellas Evolución estelar La muerte de las estrellas:

Más detalles

Gigante Roja vs Sol. Nebulosas planetarias. Evolución para masa baja (1 M )

Gigante Roja vs Sol. Nebulosas planetarias. Evolución para masa baja (1 M ) Durante su etapa de juventud y madurez, las estrellas consumen el Hidrógeno del que disponen en su núcleo y almacenan el Helio que obtienen como residuo. Recordemos que a este período de la vida de una

Más detalles

Qué se tendría que esperar si uno de los móviles es un Fotón (o partícula de luz)?

Qué se tendría que esperar si uno de los móviles es un Fotón (o partícula de luz)? 4.1 Relatividad 4.1.1 Relatividad del Espacio y del Tiempo. Parte IV: Física Moderna a) El experimento de Michelson Morley (1887) Introducción a la Física Cómo se calcula la velocidad relativa de un móvil

Más detalles

Formación estelar. Gerardo Martínez Avilés. Las estrellas son componentes fundamentales de las estructuras más

Formación estelar. Gerardo Martínez Avilés. Las estrellas son componentes fundamentales de las estructuras más Formación estelar Gerardo Martínez Avilés Las estrellas son componentes fundamentales de las estructuras más grandes de nuestro universo: las galaxias y los cúmulos de galaxias. Pese a que estas estructuras

Más detalles

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación.

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. FÍSICA RELATIVISTA 1. Relatividad.. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. Física º bachillerato Física relativista 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos

Más detalles

Estructura Estelar: Eddington y Chandrasekhar.

Estructura Estelar: Eddington y Chandrasekhar. Universidad de Chile Observatorio Astronómico Nacional Cerro Calán Estructura Estelar: Eddington y Chandrasekhar. Profesor: José Maza Sancho 27 Diciembre 2013 Introducción n Las ecuaciones básicas que

Más detalles

agujeros negros luis j. garay

agujeros negros luis j. garay agujeros negros luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com Granada, 8 de septiembre de 2010

Más detalles

agujeros negros luis j. garay

agujeros negros luis j. garay agujeros negros luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com Madrid, 20 de noviembre de 2009

Más detalles

11: La Vida de las Estrellas

11: La Vida de las Estrellas 11: La Vida de las Estrellas Nacimiento Evolución Muerte L. Infante 1 Medio Interestelar Espacio entre las estrellas no es vacío. Existe un medio (ISM) Baja densidad 100 átomos/cc Como sabemos que ISM

Más detalles

Qué hay entre las estrellas? MEDIO INTERESTELAR.

Qué hay entre las estrellas? MEDIO INTERESTELAR. Qué hay entre las estrellas? Nuestra galaxia contiene unos 100.000 millones de estrellas en las que está contenida el 90% de su masa. Sin embargo las estrellas solo ocupan una pequeña parte del volumen

Más detalles

Agujeros negros: fronteras del espacio-tiempo

Agujeros negros: fronteras del espacio-tiempo Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET 5 de agosto de 2009 Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad

Más detalles

Las Estrellas: Su Vida y Muerte

Las Estrellas: Su Vida y Muerte Las Estrellas: Su Vida y Muerte Jane Arthur IRyA, UNAM: Morelia Escuela de Verano en Astrofísica, 2017 El Cielo de Noche: Estrellas Inmutables? Medir la luz de las estrellas: Fotometría Mediciones del

Más detalles

BIOGRAFIA DE LAS ESTRELLAS. Dra. Ma.. Eugenia Contreras

BIOGRAFIA DE LAS ESTRELLAS. Dra. Ma.. Eugenia Contreras BIOGRAFIA DE LAS ESTRELLAS Dra. Ma.. Eugenia Contreras Martínez Octubre 2008 Peeerooo NO vamos a hablar de ESTAS estrellas Para esto ya hay suficientes programas de televisiόn!! Sino de ESTAS estrellas

Más detalles

QUÍMICA INORGÁNICA I

QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

Verónica Ruiz* Introducción

Verónica Ruiz* Introducción La vida de las estrellas Introducción Verónica Ruiz* Desde tiempos ancestrales, el ser humano se ha maravillado con las estrellas, agrupándolas en el cielo en constelaciones para identificarlas con facilidad

Más detalles

Agujeros negros Agujeros? Negros?

Agujeros negros Agujeros? Negros? [v.20161108] Agujeros negros Agujeros? Negros? luis j. garay Depto. de Física Teórica II, Universidad Complutense de Madrid IEM-CSIC https://sites.google.com/site/luisjgaray Semana de la Ciencia Madrid,

Más detalles

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco FÍSICA RELATIVISTA Relatividad especial José Luis Rodríguez Blanco RELATIVIDAD EN LA FÍSICA CLÁSICA Principio de relatividad de Galileo. [Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano

Más detalles

Astrofísica " Extragaláctica! INTRODUCCIÓN!

Astrofísica  Extragaláctica! INTRODUCCIÓN! Astrofísica " Extragaláctica! INTRODUCCIÓN! INTRODUCCIÓN Un sistema estelar es un grupo de estrellas ligadas gravitacionalmente. Varian en ~14 ordenes de magnitud en tamaños y masas: desde estrellas binarias

Más detalles

Nacimiento, vida y muerte de las estrellas

Nacimiento, vida y muerte de las estrellas 1 Nacimiento, vida y muerte de las estrellas Por Juanjo Gabiña La galaxia Andrómeda también conocida como Galaxia espiral M31 como todas las demás galaxias, es un colosal sistema cósmico integrado por

Más detalles

Existen realmente los agujeros negros?

Existen realmente los agujeros negros? AGUJEROS NEGROS Existen realmente los agujeros negros? Movimiento de las estrellas orbitando entorno a un agujero negro masivo Predicción Movimiento de las estrellas orbitando entorno a un agujero negro

Más detalles

Nebulosas. Las estrellas (I) Nubes Moleculares. Extensiones de gas y polvo de decenas de años luz y mayor densidad que la media.

Nebulosas. Las estrellas (I) Nubes Moleculares. Extensiones de gas y polvo de decenas de años luz y mayor densidad que la media. Las estrellas (I) Nebulosas Extensiones de gas y polvo de decenas de años luz y mayor densidad que la media. Nubes Moleculares Se clasifican en muchos tipos según su composición, condiciones de temperatura,

Más detalles

Termodinámica de Agujeros Negros

Termodinámica de Agujeros Negros Termodinámica de Agujeros Negros Seba Gómez R Doctorado en Matemática, Universidad de Talca, Chile January 28, 2017 Relatividad General (Einstein 1915) Relatividad General (Einstein 1915) Principio de

Más detalles

Astronomía. Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González

Astronomía. Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González Astronomía Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González 1.- La cantidad fundamental que determina la presión y temperatura central de una estrella es: a) Masa. b) Luminosidad. c) Temperatura

Más detalles

Astronomía Planetaria

Astronomía Planetaria Astronomía Planetaria Clase 21 Objetos Compactos Mauricio Suárez Durán Escuela de Física Grupo Halley de Astronomía y Ciencias Aeroespaciales Universidad Industrial de Santander Bucaramanga, II semestre

Más detalles

Agujeros Negros: los motores centrales de los Núcleos Activos de Galaxias

Agujeros Negros: los motores centrales de los Núcleos Activos de Galaxias Agujeros Negros: los motores centrales de los Núcleos Activos de Galaxias Antxon Alberdi Odriozola Dpto. de Radioastronomía y Estructura Galáctica Instituto de Astrofísica de Andalucía (IAA-CSIC) antxon@iaa.es

Más detalles

TEMA 1: ORIGEN Y COMPOSICIÓN DEL UNIVERSO

TEMA 1: ORIGEN Y COMPOSICIÓN DEL UNIVERSO TEMA 1: ORIGEN Y COMPOSICIÓN DEL UNIVERSO GLOSARIO Agujero negro: región finita del espacio-tiempo provocada por una gran concentración de masa en su interior, con enorme aumento de la densidad, lo que

Más detalles

primeras etapas nube de gas interestelar rotante inestabilidad de Jeans fuerza de gravedad > presión del gas colapso gravitatorio fragmento de la nube

primeras etapas nube de gas interestelar rotante inestabilidad de Jeans fuerza de gravedad > presión del gas colapso gravitatorio fragmento de la nube evolución estelar primeras etapas nube de gas interestelar rotante inestabilidad de Jeans fuerza de gravedad > presión del gas colapso gravitatorio fragmento de la nube protoestrellas brillan por el calor

Más detalles

prevista por Einstein. Los instrumentos perciben la

prevista por Einstein. Los instrumentos perciben la SESION ADICIONAL 6 AGUJEROS NEGROS Y CUASARS. Algunos de los Objetos que hay "ahí arriba", no pudieron ser catalogados por Charles Messier a finales del siglo XVIII en su famoso catálogo de Objetos Celestes

Más detalles

Introducción a la Relatividad General. Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013

Introducción a la Relatividad General. Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013 Introducción a la Relatividad General Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013 Conceptos básicos Evento: Algo que ocurre instantáneamente en un punto específico del espacio

Más detalles

Las Supernovas. Las estrellas nacen violentamente, y mueren también de forma violenta

Las Supernovas. Las estrellas nacen violentamente, y mueren también de forma violenta Las Supernovas Las estrellas nacen violentamente, y mueren también de forma violenta La muerte de una estrella crea las explosiones más grandes del universo. Solo unas pocas explotan, pero cuando lo hacen,

Más detalles

Algunos de los Objetos que hay "ahí arriba", no pudieron ser. catalogados por Charles Messier a finales del siglo XVIII en su famoso

Algunos de los Objetos que hay ahí arriba, no pudieron ser. catalogados por Charles Messier a finales del siglo XVIII en su famoso Y Además de las estrellas,qué? AGUJEROS NEGROS Y CUASARS. Algunos de los Objetos que hay "ahí arriba", no pudieron ser catalogados por Charles Messier a finales del siglo XVIII en su famoso catálogo de

Más detalles

Estructura del Universo. Expansión de Universo Ley de Hubble Cosmología

Estructura del Universo. Expansión de Universo Ley de Hubble Cosmología Estructura del Universo Expansión de Universo Ley de Hubble Cosmología Preguntas (parciales) Que es el Universo? Tuvo el Universo un inicio? Tendrá el Universo un fin? Cielo Nocturno es oscuro Como se

Más detalles

CAMPO GRAVITATORIO TERRESTRE

CAMPO GRAVITATORIO TERRESTRE CAMPO GRAVITATORIO TERRESTRE 1. Introducción 2. Campo gravitatorio 3. Magnitudes físicas que caracterizan el campo gravitatorio: Intensidad y Potencial 4. Aplicaciones de la Teoría de Gravitación Universal:

Más detalles

10 años luz SN Históricas

10 años luz SN Históricas AST 0111 1 La Nebulosa del Cangrejo (SN1054ac) es una SN que explotó en el año 1054. Se expandió ~10 años luz en unos 900 años. La velocidad medida, la fecha de explosión, y el tamaño son consistentes.

Más detalles

TEMA 12. CTE 2 - Tema 12 1

TEMA 12. CTE 2 - Tema 12 1 TEMA 12 Nuestro sistema solar. La búsqueda de planetas más allá del sistema solar. Observación de discos protoplanetarios. El descubrimiento de planetas extrasolares. Métodos de detección de planetas extrasolares.

Más detalles

producción de energía en las estrellas interiores estelares

producción de energía en las estrellas interiores estelares producción de energía en las estrellas interiores estelares porqué brillan las estrellas? la energía emitida por las estrellas tiene su origen en reacciones termonucleares que tienen lugar en su interior

Más detalles

Ayudantía 10. Astronomía FIA Ayudante: María Luisa Alonso Tagle

Ayudantía 10. Astronomía FIA Ayudante: María Luisa Alonso Tagle Ayudantía 10 Astronomía FIA 0111 Ayudante: María Luisa Alonso Tagle mlalonso@uc.cl Noticias: Nadie Anotado Hoy... 1.-Inmediatamente después de que el hidrógeno del núcleo se ha convertido en helio, el

Más detalles

Qué se entiende por curvatura de un objeto?

Qué se entiende por curvatura de un objeto? MEMORIA DE LAS ACTIVIDADES DE LA ACADEMIA DE CIENCIAS EN LA SEMANA DE LA CIENCIA Y LA TECNOLOGÍA 2008 La Academia de Ciencias de la Región de Murcia ha participado en la Semana de la Ciencia y la Tecnología

Más detalles

LA FÍSICA DE LOS AGUJEROS NEGROS

LA FÍSICA DE LOS AGUJEROS NEGROS LA FÍSICA DE LOS AGUJEROS NEGROS O sólo ficción? Ciencia-ficción? Ciencia? SECCIÓN 1. Un poco de historia 1/SECCIÓN 1 1728 Isaac Newton (1642-1727) Un Tratado del Sistema del Mundo 2/SECCIÓN 1 Velocidad

Más detalles

Prof. Elba M. Sepúlveda, MA.Ed.

Prof. Elba M. Sepúlveda, MA.Ed. Introducción Teorías del Origen del Universo Astronomía El hombre siempre ha tenido la necesidad de descubir el origen del Universo, pero, lamentablemente desde el punto científico todavía no se ha logrado.

Más detalles

Nebulosas planetarias

Nebulosas planetarias Nebulosas planetarias Brenda Julián Torres Muchos astrónomos coinciden en que las nebulosas planetarias están entre los objetos más hermosos que nos presenta el cosmos, se encuentran entre los más fotogénicos

Más detalles

Las estrellas. Evolución Estelar. Cuando la estrella se estabiliza entra en la etapa más larga de su vida: la Secuencia Principal.

Las estrellas. Evolución Estelar. Cuando la estrella se estabiliza entra en la etapa más larga de su vida: la Secuencia Principal. Las estrellas La nube es inestable gravitatoriamente y colapsa. Distintos nucleos empiezan a colapsar por separado (fragmentación). Consecuencia la estrellas no nacen solas, nacen en grupos (cúmulos).

Más detalles

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL El universo y el sistema solar

SOLUCIONARIO GUÍA ESTÁNDAR ANUAL El universo y el sistema solar SOLUCIONARIO GUÍA ESTÁNDAR ANUAL El universo y el sistema solar SGUICES028CB32-A16V1 Solucionario guía El universo y el sistema solar Ítem Alternativa Habilidad 1 B Reconocimiento 2 A Reconocimiento 3

Más detalles

2

2 El D iagrama de Hert z s prung Russ ell Este es un dibujo de luminosidad ( magnitud absoluta) y color de las estrellas que cubre desde las altas temperaturas de las estrellas blanca-azules en el lado izquierdo

Más detalles

COMPONENTES BÁSICOS DEL UNIVERSO

COMPONENTES BÁSICOS DEL UNIVERSO COMPONENTES BÁSICOS DEL UNIVERSO MEDIDA DE LAS DISTANCIAS EN EL UNIVERSO El Sol 1 unidad astronómica (U.A.) equivale aproximadamente a 150 millones de kilómetros La Tierra 0 1 año-luz equivale aproximadamente

Más detalles

AGUJEROS NEGROS 1.0. J.L.F. Barbón. IFT UAM/CSIC Madrid

AGUJEROS NEGROS 1.0. J.L.F. Barbón. IFT UAM/CSIC Madrid AGUJEROS NEGROS 1.0 J.L.F. Barbón IFT UAM/CSIC Madrid UN AGUJERO NEGRO es una región en la que la luz está atrapada por efecto de la gravedad m γ = E γ c 2 El concepto básico de agujero negro se

Más detalles

CÓMO PODEMOS SABER LA COMPOSICIÓN DE LAS ESTRELLAS?

CÓMO PODEMOS SABER LA COMPOSICIÓN DE LAS ESTRELLAS? CÓMO PODEMOS SABER LA COMPOSICIÓN DE LAS ESTRELLAS? ESPECTRO DE LA LUZ VISIBLE EL UNIVERSO ESTÁ EN EXPANSIÓN QUÉ PASARÍA SI RETROCEDEMOS EN EL TIEMPO? UNIVERSO EN EXPANSIÓN: MODELO DE GLOBO UNIVERSO EN

Más detalles

El Lado Oscuro del Universo

El Lado Oscuro del Universo Encuentro Peruano de Astronomía y Astrofísica 2009 El Lado Oscuro del Universo Wiliam Santiago Hipólito Ricaldi Grupo de Gravitação e Cosmologia Centro de Ciências Exatas Universidade Federal do Espírito

Más detalles

Teorías sobre la formación del sistema Solar y la Tierra

Teorías sobre la formación del sistema Solar y la Tierra Teorías sobre la formación del sistema Solar y la Tierra Objetivo de aprendizaje Comprender las teorías que explican la formación del sistema solar. Cómo se originó nuestro sistema solar? Origen del sistema

Más detalles

1. El universo. 2. Las galaxias y las estrellas. 3. El sistema solar. 4. Las constelaciones

1. El universo. 2. Las galaxias y las estrellas. 3. El sistema solar. 4. Las constelaciones 1. El universo 1.1. Origen del universo: teoría del big bang 1.2. Medida del universo 1.3. Evolución histórica Teoría geocéntrica Teoría heliocéntrica Ley de la gravitación universal 2. Las galaxias y

Más detalles

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Angel M. Uranga Instituto de Física Teórica UAM/CSIC, Madrid angel.uranga@uam.es Un mundo relativista Relatividad General

Más detalles

Qué es la energía nuclear? Tema1

Qué es la energía nuclear? Tema1 Toda la materia del universo está formada por moléculas que a su vez están constituidas por átomos, pequeñísimas unidades que durante mucho tiempo se consideraron invisibles. En la actualidad sabemos que

Más detalles

El Sistema Solar. Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A.

El Sistema Solar. Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A. . Amparo Herrera Ruiz. Colegio C.E.I.P.Sebastián de Córdoba.Úbeda. 3º A. está formado por el Sol y 8 planetas. Los planetas son Mercurio,Venus, Tierra, Marte, Jupiter, Saturno y Urano. Nuestra estrella,

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar SGUICTC028TC32 - A16V1 Solucionario guía El universo y el sistema solar Ítem Alternativa Habilidad 1 B Reconocimiento 2 A Reconocimiento

Más detalles

Ciencias del Mundo Contemporáneo - 1º Bachillerato. Apuntes Tema 1. Parte 2. Lo que sabemos del Universo.

Ciencias del Mundo Contemporáneo - 1º Bachillerato. Apuntes Tema 1. Parte 2. Lo que sabemos del Universo. Ciencias del Mundo Contemporáneo - 1º Bachillerato. Apuntes Tema 1. Parte 2. Lo que sabemos del Universo. 1. Composición del Universo. Por visible se entiende que ningún telescopio o radiotelescopio puede

Más detalles

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones

MATERIA OSCURA. Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones MATERIA OSCURA Motivos de su existencia Distribución Candidatos a materia oscura Formas de medida Conclusiones Segunda Ley de Kepler: Cuando el planeta está más alejado del Sol (afelio) su velocidad es

Más detalles

Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados.

Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados. Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados. Laplace Pierre Simón de Laplace (1749-1827) desarrolló potentes métodos para calcular las posiciones de los astros

Más detalles

SUPERNOVA! Jane Arthur. Centro de Radioastronomía y Astrofísica UNAM, Morelia

SUPERNOVA! Jane Arthur. Centro de Radioastronomía y Astrofísica UNAM, Morelia SUPERNOVA! Jane Arthur Centro de Radioastronomía y Astrofísica UNAM, Morelia El Cielo de Noche Hemisferio norte de la Tierra: Oso Mayor Jane Arthur (CRyA-UNAM) SUPERNOVA! 19 febrero 2010 2 / 53 El Cielo

Más detalles

Agujeros negros: vistosporfuera ypor dentro. Bert Janssen. B. Janssen (UGR) Montefrío, 20 de marzo /49

Agujeros negros: vistosporfuera ypor dentro. Bert Janssen. B. Janssen (UGR) Montefrío, 20 de marzo /49 Agujeros negros: vistosporfuera ypor dentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Montefrío, 20 de marzo 2015 1/49 Interrumpidmecuando queráis Laspreguntastontas no existen. Sólo

Más detalles

Nuestra galaxia: la Vía Láctea

Nuestra galaxia: la Vía Láctea Nuestra galaxia: la Vía Láctea Las estrellas y los cúmulos de estrellas, el gas y el polvo, rayos cósmicos, radiación, campos magnéticos se agrupan en estructuras denominadas Galaxias. Nosotros formamos

Más detalles

QUÍMICA INORGÁNICA I

QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I QUÍMICA INORGÁNICA I 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 0 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA 1 22/08/17 FUNDAMENTOS DE LA MECÁNICA CUÁNTICA

Más detalles

En busca de la materia oscura (I)

En busca de la materia oscura (I) En busca de la materia oscura (I) Iniciamos con este artículo una serie dedicada a uno de los temas más intrigantes de la Astrofísica: la mayor parte de la materia del Universo (cerca de un 80%) nos es

Más detalles

Supernovas y sus remanentes

Supernovas y sus remanentes Supernovas y sus remanentes Jane Arthur VII Escuela de Verano Julio 2011 Walter Baade y Fritz Zwicky diferenciaron novas comunes de super-novas. Novas comunes Brillo máximo corresponde a 20,000 luminosidades

Más detalles

Qué son nebulosas Nebulosas

Qué son nebulosas Nebulosas Qué son nebulosas Nebulosas son nubes de polvo, hidrógeno y plasma. Son regiones de constante formación de estrellas, como la Nebulosa del Águila. Esta nebulosa forma una de las más bellas y famosas fotos

Más detalles

Dr. Tabaré Gallardo Departamento de Astronomía Facultad de Ciencias

Dr. Tabaré Gallardo Departamento de Astronomía Facultad de Ciencias Desde el Big Bang Dr. Tabaré Gallardo Departamento de Astronomía Facultad de Ciencias Épocas del Universo Materia-antimateria, antimateria, partículas y átomos Galaxias (H, He) Estrellas (nuevos elementos:

Más detalles

Tema 1. Universo y Sistema Solar

Tema 1. Universo y Sistema Solar Tema 1. Universo y Sistema Solar Qué es el Universo? Teorías sobre su origen. El Universo es el conjunto formado por todo el espacio, la materia y la radiación que existe. Contiene una gran variedad de

Más detalles

Desde el Big Bang. Dr. Tabaré Gallardo Departamento de Astronomía Instituto de Física Facultad de Ciencias

Desde el Big Bang. Dr. Tabaré Gallardo Departamento de Astronomía Instituto de Física Facultad de Ciencias Desde el Big Bang Dr. Tabaré Gallardo Departamento de Astronomía Instituto de Física Facultad de Ciencias www.fisica.edu.uy www.semanacyt.org.uy Olimpíadas 2014 olimp-fisica.blogspot.com olimp-astro.blogspot.com

Más detalles

La Tierra en el Universo

La Tierra en el Universo La Tierra en el Universo Ideas antiguas sobre el Universo Teoría o modelo geocéntrico: la Tierra ocupa el centro. Teoría o modelo heliocéntrico: el Sol ocupa el centro Teoría, modelo o sistema geocéntrico

Más detalles

Tema 2: El UNIVERSO. Cultura Científica_ curso 2016/2017 Centro de Bachillerato Fomento Fundación

Tema 2: El UNIVERSO. Cultura Científica_ curso 2016/2017 Centro de Bachillerato Fomento Fundación Tema 2: El UNIVERSO Cultura Científica_ curso 2016/2017 Centro de Bachillerato Fomento Fundación 1. Qué es el Universo? Una definición de universo o cosmos El universo o cosmos es el conjunto de toda la

Más detalles

Vida de una aestrellae Cano Paredes Aidali Lucer

Vida de una aestrellae Cano Paredes Aidali Lucer Vida de una aestrellae Cano Paredes Aidali Lucer Ortega Jiménez Ireri Yolanda Ramírez Enríquez Alejandro Ramírez Martínez Surya Anaid Villavicencio Arzola Pedro Omar Semestre 2009-1 UNA ESTRELLA son los

Más detalles

Evolución estelar: introducción y formación estelar Introducción

Evolución estelar: introducción y formación estelar Introducción Evolución estelar: introducción y formación estelar Introducción Se puede dividir la evolución estelar en tres etapas: la formación estelar y la evolución antes de la secuencia principal, la evolución

Más detalles

La masa, ni se crea ni se destruye, seguro?

La masa, ni se crea ni se destruye, seguro? La masa, ni se crea ni se destruye, seguro? Muchos estudiantes de primer curso y de segundo curso de bachiller me preguntan por qué se estudia Física clásica, es decir, las concepciones físicas de los

Más detalles

2g.4 ) Origen de la energía Estelar Parte III

2g.4 ) Origen de la energía Estelar Parte III ASTRONOMÍA CURSO : 4º AÑO UNIDAD 2 Las Estrellas Prof: Claudio Pastrana L AS ESTRELLAS 2g.4 ) Origen de la energía Estelar Parte III La mecánica cuántica es la descripción del comportamiento de la materia

Más detalles

Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant

Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant Estrellas de Neutrones: en los límites de la Física José A. Pons Departament de Física Aplicada Universitat d Alacant El Átomo Ernest Rutherford (1910) * El átomo está formado por electrones y protones

Más detalles

El Efecto Mössbauer en la Relatividad Especial

El Efecto Mössbauer en la Relatividad Especial El Efecto Mössbauer en la Relatividad Especial Hugo A. Fernández INTRODUCCIÓN Una de las predicciones más notables de la Teoría General de Relatividad fue el efecto conocido como corrimiento al rojo gravitatorio,

Más detalles

Claudio Ptolomeo (90 168) -La Tierra ocupa el centro del universo. -Todos los planetas giran alrededor de la Tierra. -La Tierra no tiene movimiento.

Claudio Ptolomeo (90 168) -La Tierra ocupa el centro del universo. -Todos los planetas giran alrededor de la Tierra. -La Tierra no tiene movimiento. Claudio Ptolomeo (90 168) -La Tierra ocupa el centro del universo. -Todos los planetas giran alrededor de la Tierra. -La Tierra no tiene movimiento. Nicolás Copérnico (1473-1543) -La Tierra no ocupa el

Más detalles