Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Ogíjares, 19 de enero /46

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Ogíjares, 19 de enero /46"

Transcripción

1 Agujeros negros: vistoporfuera y pordentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Ogíjares, 19 de enero /46

2 Desde los años 60, los agujeros negros están en todas partes: en el cine: B. Janssen (UGR) Ogíjares, 19 de enero /46

3 En elarte: B. Janssen (UGR) Ogíjares, 19 de enero /46

4 en los tebeos: B. Janssen (UGR) Ogíjares, 19 de enero /46

5 en los juegos: B. Janssen (UGR) Ogíjares, 19 de enero /46

6 en internet: black hole: entradas agujero negro: entradas B. Janssen (UGR) Ogíjares, 19 de enero /46

7 Pero qué son realmente? 1. Ideas básicas 2. Agujeros negros en la teoría de la relatividad Relatividad general en 180 segundos Diagramas de espaciotiempo Agujeros negros de verdad 3. Cómo se observa un agujero negro? 4. Qué pasa sime acerco aunagujeronegro? B. Janssen (UGR) Ogíjares, 19 de enero /46

8 Interrumpidmecuando querais Laspreguntastontas no existen. Sólo existenlasrespuestastontas. B. Janssen (UGR) Ogíjares, 19 de enero /46

9 1. Ideas básicas Velocidad de escape = velocidad necesario paraunamasa mno vuelva acaer en latierra v v e = 2GN M R M m R Tierra: v e = 11, 1 km/s = km/h Luna: v e = 2, 38 km/s = km/h Jupiter: v e = 59, 5 km/s = km/h Sol:... v e = 600 km/s = km/h v e esindependiente de lamasa mdel objeto v e aumenta siaumenta lamasa M del planeta v e aumentasidisminuyeelradio R del planeta B. Janssen (UGR) Ogíjares, 19 de enero /46

10 F F = G N m M 2 r r B. Janssen (UGR) Ogíjares, 19 de enero /46

11 F F = G N m M 2 r r Laplace (1798): v e 2GN M R = c R = 2G NM c 2 Estrella negra B. Janssen (UGR) Ogíjares, 19 de enero /46

12 F F = G N m M 2 r r Laplace (1798): v e 2GN M R = c R = 2G NM c 2 Estrella negra Einstein (1905): c es velocidad máxima permitida Agujero negro: Imposible escapar! B. Janssen (UGR) Ogíjares, 19 de enero /46

13 Observación importante: La formación de un agujero negro: depende de la densidad del objeto NOdepende dela masa Radio de Schwarzschild = radio critico para formar un agujero negro R S = 2G NM c 2 Objeto Masa R s Sol kg = 1 M 3 km Tierra kg = M 9 mm Serhumano: 100 kg = M 1, mm Agujeronegrosupermasivo 10 9 M orbita desaturno Agujeronegroprimordial kg = M nucleo de átomo B. Janssen (UGR) Ogíjares, 19 de enero /46

14 2. Agujeros negros en la Teoría de la Relatividad Para entender bien los agujeros negros, hace falta la Relatividad General A. Einstein K. Schwarzschild Relatividad General (1915) es la teoría moderna de la gravedad Gravedad está descrita por las ecuación de Einstein B. Janssen (UGR) Ogíjares, 19 de enero /46

15 R µν 1 2 g µν R = 8πG N c 4 T µν B. Janssen (UGR) Ogíjares, 19 de enero /46

16 R µν 1 2 g µν R = 8πG N c 4 T µν B. Janssen (UGR) Ogíjares, 19 de enero /46

17 Cementerio de trenes, Uyuni, Bolivia B. Janssen (UGR) Ogíjares, 19 de enero /46

18 Gravedad = espacio curvo La materia indica como se curva el espacio. El espacio indica como se mueve la materia. B. Janssen (UGR) Ogíjares, 19 de enero /46

19 Partículas y luz siguen trayectorias curvas en el espacio curvo: B. Janssen (UGR) Ogíjares, 19 de enero /46

20 En general la curvatura es muy, muy complicada: B. Janssen (UGR) Ogíjares, 19 de enero /46

21 Diagramas de espaciotiempo: Evento =suceso en cierto momentoyen cierto lugar Lineas de universo= película de las trayectorias de las partículas t x y B. Janssen (UGR) Ogíjares, 19 de enero /46

22 Cono deluz=película delas trayectorias dela luz t x y B. Janssen (UGR) Ogíjares, 19 de enero /46

23 Cono de luz relaciones causales en entre eventos t Futuro p x B. Janssen (UGR) Ogíjares, 19 de enero /46

24 Cono de luz relaciones causales en entre eventos t Futuro p Pasado x B. Janssen (UGR) Ogíjares, 19 de enero /46

25 Espacio plano: La luz sigue lineas rectas t x influencias causales alcanzan el espacio entero (tarde o temprano) B. Janssen (UGR) Ogíjares, 19 de enero /46

26 Cerca de objetos masivos: el espacio se curva La luz sigue lineas curvas t... M... r M... r La luz está atraida por el campo gravitatorio Losconos deluzse inclinan hacia el objeto masivo B. Janssen (UGR) Ogíjares, 19 de enero /46

27 Objetos muy masivos: se forma un radio crítico = Radio de Schwarzschild.... M R s... la luz se queda atrapada dentro del radio de Schwarzschild Se forma un horizonte: no salen señales desde el interior Se forma un agujero negro B. Janssen (UGR) Ogíjares, 19 de enero /46

28 Agujero negro: La luz queda atrapada t r 0 R S horizonte = membrana unidireccional Se forma una singularidad = punto de curvatura infinita todo acabará inevitablemente en la singularidad B. Janssen (UGR) Ogíjares, 19 de enero /46

29 ds 2 = ( ) ( ) 1dr ) 1 2GM r dt 2 1 2GM 2 r r (dθ 2 2 +sin 2 θdφ 2 Singularidad = punto de curvatura infinita = final del espaciotiempo = final de la física conocida B. Janssen (UGR) Ogíjares, 19 de enero /46

30 Dentro del agujero negro algo pasa con la dirección del tiempo: t Distancia Tiempo Tiempo Distancia r imposible quedarte en reposo dentro del horizonte horizonte es inevitable porque está en el futuro R S B. Janssen (UGR) Ogíjares, 19 de enero /46

31 3. Cómo se observa un agujero negro......yaque niseescapa laluz? B. Janssen (UGR) Ogíjares, 19 de enero /46

32 3. Cómo se observa un agujero negro Por los efectos en los alrededores:...yaque niseescapa laluz? Absorsión de materia cercana Discos de acreción B. Janssen (UGR) Ogíjares, 19 de enero /46

33 2. Por los efectos en los alrededores: Atracción de objetos cercanos trayectorias muy aceleradas Objeto de 3millones de masassolaresen el centro dela galaxia B. Janssen (UGR) Ogíjares, 19 de enero /46

34 3. Por los efectos en los alrededores: Efectos gravitatorios sobre la luz distorción de imágenes R f R s B. Janssen (UGR) Ogíjares, 19 de enero /46

35 Un agujero negro sobre un fondo de coordenadas... B. Janssen (UGR) Ogíjares, 19 de enero /46

36 ... severía así: B. Janssen (UGR) Ogíjares, 19 de enero /46

37 Efecto óptico: Anillos de Einstein (no sólo para agujeros negros) B. Janssen (UGR) Ogíjares, 19 de enero /46

38 caso especial: SDSSJ B. Janssen (UGR) Ogíjares, 19 de enero /46

39 Porlo tantolaimagen típica deunagujero negro estámal, porque notomaen cuenta ladistorción de imágenes. B. Janssen (UGR) Ogíjares, 19 de enero /46

40 Más realista seria: B. Janssen (UGR) Ogíjares, 19 de enero /46

41 4. Quépasa siuno se acerca al agujero negro? Depende desde donde semire: observador lejano observador cayendo... delogrande que seas: objeto puntual observador humano... detu manera de moverte: en caida libre en observador en reposo B. Janssen (UGR) Ogíjares, 19 de enero /46

42 B. Janssen (UGR) Ogíjares, 19 de enero /46 t... desde donde se mira: el observador lejano r R S Parece imposible cruzar el horizonte

43 B. Janssen (UGR) Ogíjares, 19 de enero /46 t... desde donde se mira: el observador cayendo R S r Se llega al horizonte y la singularidad en un tiempo finito

44 ...de lo grande que seas: observador puntual: historia anterior no pasa nada al cruzar el horizonte Principio de Equivalencia: observadores en caida libre se sienten localmente inerciales observador humano: fuerzas de marea F F ~ 1 r 2 F ~ 1 r 3 B. Janssen (UGR) Ogíjares, 19 de enero /46 r

45 las fuerza de marea actuan como un potro de tortura cósmico B. Janssen (UGR) Ogíjares, 19 de enero /46

46 ...de tu manera de moverte: en caida libre: historia anterior (Principio de Equivalencia: observadores en caida libre se sienten localmente inerciales) en reposo encima del agujero negro: radiación de Hawking B. Janssen (UGR) Ogíjares, 19 de enero /46

47 Radiación de Hawking: t R S r B. Janssen (UGR) Ogíjares, 19 de enero /46

48 ...de tu manera de moverte: en caida libre: historia anterior (Principio de Equivalencia: observadores en caida libre se sienten localmente inerciales) en reposo encima del agujero negro: radiación de Hawking agujero negro evapora radiación térmica: T H = c3 8πkGM observador cercano en reposo se achicharra B. Janssen (UGR) Ogíjares, 19 de enero /46

49 Radiación de Hawking es un proceso cuántico donde se unen la Relatividad General y la Mecánica Cuántica Terreno completamente desconocido!! B. Janssen (UGR) Ogíjares, 19 de enero /46

50 Radiación de Hawking es un proceso cuántico donde se unen la Relatividad General y la Mecánica Cuántica Terreno completamente desconocido!! Preguntas abiertas Los agujeros negros se evaporan completamente? Qué pasa con la singularidad? Qué pasa con la información? Qué importancia tienen los efectos cuánticos?... B. Janssen (UGR) Ogíjares, 19 de enero /46

51 Gracias porvuestra atención! B. Janssen (UGR) Ogíjares, 19 de enero /46

52 bla B. Janssen (UGR) Ogíjares, 19 de enero /46

53 Formación de agujeros negros Objeto Masa radio Enano blanco: M < 1, 4 M 5000 km Estrella de neutrones: 1, 4 M < M < 2, 3M 50 km Agujeronegro: M > 2, 3M R S B. Janssen (UGR) Ogíjares, 19 de enero /46

54 Coordenadas de Kruskal T r I II I t R II B. Janssen (UGR) Ogíjares, 19 de enero /46

55 Reissner-Nordström t r 0 R 2 R 1 B. Janssen (UGR) Ogíjares, 19 de enero /46

56 Agujero negro con rotación singularidad horizonte ergosfera B. Janssen (UGR) Ogíjares, 19 de enero /46

57 Proceso de Penrose singularidad horizonte ergosfera E E 2 3 E 1 E 1= E 2+ E 3 E 2< 0 E 3>E1 B. Janssen (UGR) Ogíjares, 19 de enero /46

58 B. Janssen (UGR) Ogíjares, 19 de enero /46

59 Agujero de gusano B. Janssen (UGR) Ogíjares, 19 de enero /46

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Granada, 5 de noviembre /44

Agujeros negros: vistoporfuera y pordentro. Bert Janssen. B. Janssen (UGR) Granada, 5 de noviembre /44 Agujeros negros: vistoporfuera y pordentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Granada, 5 de noviembre 2009 1/44 Desde los años 60, los agujeros negros están en todas partes:

Más detalles

Agujeros negros: vistoporfuera y pordentro. B. Janssen (UGR) Cádiz, 16 julio /49

Agujeros negros: vistoporfuera y pordentro. B. Janssen (UGR) Cádiz, 16 julio /49 Agujeros negros: vistoporfuera y pordentro B. Janssen (UGR) Cádiz, 16 julio 2009 1/49 Desde los años 60, los agujeros negros están en todas partes: en el cine: B. Janssen (UGR) Cádiz, 16 julio 2009 2/49

Más detalles

Agujeros negros: vistosporfuera ypor dentro. Bert Janssen. B. Janssen (UGR) Montefrío, 20 de marzo /49

Agujeros negros: vistosporfuera ypor dentro. Bert Janssen. B. Janssen (UGR) Montefrío, 20 de marzo /49 Agujeros negros: vistosporfuera ypor dentro Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Montefrío, 20 de marzo 2015 1/49 Interrumpidmecuando queráis Laspreguntastontas no existen. Sólo

Más detalles

Espaciotiempo curvo:

Espaciotiempo curvo: Espaciotiempo curvo: De los agujeros negros a las ondas gravitacionales Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Málaga, 13 de marzo 2015 1 Interrumpidmecuando querais Laspreguntastontas

Más detalles

Agujeros Negros. Andrés Aceña

Agujeros Negros. Andrés Aceña El programa Conos de luz. Estructura causal. Problema de valores iniciales. Diagramas de Penrose. Solución de Schwarzschild. Agujeros negros. Conjetura de censura cósmica. Teoremas de singularidades. La

Más detalles

AGUJEROS NEGROS 1.0. J.L.F. Barbón. IFT UAM/CSIC Madrid

AGUJEROS NEGROS 1.0. J.L.F. Barbón. IFT UAM/CSIC Madrid AGUJEROS NEGROS 1.0 J.L.F. Barbón IFT UAM/CSIC Madrid UN AGUJERO NEGRO es una región en la que la luz está atrapada por efecto de la gravedad m γ = E γ c 2 El concepto básico de agujero negro se

Más detalles

los agujeros negros no son tan negros... o sí

los agujeros negros no son tan negros... o sí los agujeros negros no son tan negros... o sí luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com

Más detalles

Las ideas físicas de la Relatividad General

Las ideas físicas de la Relatividad General Las ideas físicas de la Relatividad General 100,5 años de Relatividad General Bert Janssen Dpto. de Física Teórica y del Cosmos - UGR B. Janssen (UGR) Facultad de Ciencias, 8 de marzo 2016 1/50 0. Aclaración

Más detalles

agujeros negros luis j. garay

agujeros negros luis j. garay agujeros negros luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com Madrid, 20 de noviembre de 2009

Más detalles

agujeros negros luis j. garay

agujeros negros luis j. garay agujeros negros luis j. garay 1 Universidad Complutense de Madrid 2 Instituto de Estructura de la Materia, CSIC http://jacobi.fis.ucm.es/lgaray http://luisgaray.totalh.com Granada, 8 de septiembre de 2010

Más detalles

Agujeros negros Agujeros? Negros?

Agujeros negros Agujeros? Negros? [v.20161108] Agujeros negros Agujeros? Negros? luis j. garay Depto. de Física Teórica II, Universidad Complutense de Madrid IEM-CSIC https://sites.google.com/site/luisjgaray Semana de la Ciencia Madrid,

Más detalles

Existen realmente los agujeros negros?

Existen realmente los agujeros negros? AGUJEROS NEGROS Existen realmente los agujeros negros? Movimiento de las estrellas orbitando entorno a un agujero negro masivo Predicción Movimiento de las estrellas orbitando entorno a un agujero negro

Más detalles

T10. RELATIVIDAD GENERAL (II): GRAVEDAD Y ESPACIOTIEMPO

T10. RELATIVIDAD GENERAL (II): GRAVEDAD Y ESPACIOTIEMPO T10. RELATIVIDAD GENERAL (II): GRAVEDAD Y ESPACIOTIEMPO 1. Relatividad de las medidas del tiempo 2. Relatividad de las medidas espaciales 3. Métrica, curvatura y geodésicas 3.1 Concepto de métrica 3.2

Más detalles

LA FÍSICA DE LOS AGUJEROS NEGROS

LA FÍSICA DE LOS AGUJEROS NEGROS LA FÍSICA DE LOS AGUJEROS NEGROS O sólo ficción? Ciencia-ficción? Ciencia? SECCIÓN 1. Un poco de historia 1/SECCIÓN 1 1728 Isaac Newton (1642-1727) Un Tratado del Sistema del Mundo 2/SECCIÓN 1 Velocidad

Más detalles

Agujeros negros: fronteras del espacio-tiempo

Agujeros negros: fronteras del espacio-tiempo Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad Nacional de Córdoba, CONICET 5 de agosto de 2009 Agujeros negros: fronteras del espacio-tiempo Sergio Dain FaMAF-Universidad

Más detalles

Viajes en el tiempo: Relatividad y ficción

Viajes en el tiempo: Relatividad y ficción Viajes en el tiempo: Relatividad y ficción Bert Janssen Dpto. de Física Teórica y del Cosmos B. Janssen (UGR) IES Generalife, 20 de mayo 2016 1/34 San Agustín de Hipona (354-430): Qué pues es el tiempo?

Más detalles

CAMPO GRAVITATORIO TERRESTRE

CAMPO GRAVITATORIO TERRESTRE CAMPO GRAVITATORIO TERRESTRE 1. Introducción 2. Campo gravitatorio 3. Magnitudes físicas que caracterizan el campo gravitatorio: Intensidad y Potencial 4. Aplicaciones de la Teoría de Gravitación Universal:

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco

FÍSICA RELATIVISTA. Relatividad especial. José Luis Rodríguez Blanco FÍSICA RELATIVISTA Relatividad especial José Luis Rodríguez Blanco RELATIVIDAD EN LA FÍSICA CLÁSICA Principio de relatividad de Galileo. [Diálogo sobre los dos máximos sistemas del mundo ptolemaico y copernicano

Más detalles

Estructura espacio-temporal: física y geometría I Gravitación: un asunto muy grave I Cuatro interacciones fundamentales I Campos definidos en el espac

Estructura espacio-temporal: física y geometría I Gravitación: un asunto muy grave I Cuatro interacciones fundamentales I Campos definidos en el espac Agujeros negros y de gusano en Hollywood: análisis de Contact e Interstellar UMNG, 13 marzo 2017 Estructura espacio-temporal: física y geometría I Gravitación: un asunto muy grave I Cuatro interacciones

Más detalles

Introducción a la Relatividad General. Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013

Introducción a la Relatividad General. Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013 Introducción a la Relatividad General Patricio Mella Castillo Universidad del BíoBío Escuela de verano 2013 Conceptos básicos Evento: Algo que ocurre instantáneamente en un punto específico del espacio

Más detalles

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD

T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD T9. RELATIVIDAD GENERAL (I): EL PRINCIPIO DE EQUIVALENCIA DE INERCIA Y GRAVEDAD 1. Introducción 2. El principio de equivalencia A. La relatividad general B. La igualdad de masa inercial y masa gravitatoria

Más detalles

FISICA RELATIVISTA FISICA 2º BACHILLERATO

FISICA RELATIVISTA FISICA 2º BACHILLERATO FISICA RELATIVISTA FISICA º BACHILLERATO En 1905, Albert Einstein, a la edad de 6 años, publica su Teoría Especial de la Relatividad, a cerca del movimiento en sistemas inerciales. En 1916 amplió su teoría

Más detalles

Relatividad Especial

Relatividad Especial Introducción a la Relatividad Especial Bert Janssen Dpto. defísicateórica ydel Cosmos B. Janssen (UGR) Introducción a la Relatividad Especial 1 Interrumpidmecuando queráis Laspreguntastontas no existen.

Más detalles

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista

Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Introducción a Física de Partículas y Cosmología Un mundo cuántico y relativista Angel M. Uranga Instituto de Física Teórica UAM/CSIC, Madrid angel.uranga@uam.es Un mundo relativista Relatividad General

Más detalles

RELATIVIDAD PARA TODOS

RELATIVIDAD PARA TODOS RELATIVIDAD PARA TODOS Oviedo, 7 Septiembre 2005 Desarrollo Histórico Documento Audiovisual Introducción conceptual. Como ha cambiado nuestro entendimiento sobre el espacion tiempo La Geometría como herramienta

Más detalles

[Análisis e Interpretación] [PELÍCULA INTERESTELAR ]

[Análisis e Interpretación] [PELÍCULA INTERESTELAR ] [Análisis e Interpretación] [PELÍCULA INTERESTELAR ] Javier Cepeda Alumno III Medio Colegio Rubén Castro Viña del Mar [Física Electivo 11 de noviembre de 2014 Introducción: Interestelar se sitúa en un

Más detalles

StreetLights of the Universe

StreetLights of the Universe Estrellas StreetLights of the Universe Introducción Sólo podemos ver pequeños puntos brillantes aún con telescopios! Muy pocas se encuentran lo suficientemente cerca para estudiarlas. Muy, muy lejos...

Más detalles

Qué es una partícula II: Hawking versus Unruh

Qué es una partícula II: Hawking versus Unruh Qué es una partícula II: Hawking versus Unruh Fenómenos de radiación en Teoría Cuántica de Campos en espacios curvos Luis Cortés Barbado Departamento de Astronomía Extragaláctica Instituto de Astrofísica

Más detalles

LOS AGUJEROS NEGROS agujero negro hoyo negro

LOS AGUJEROS NEGROS agujero negro hoyo negro LOS AGUJEROS NEGROS Un agujero negro1 u hoyo negro es una región finita del espacio en cuyo interior existe una concentración de masa lo suficientemente elevada como para generar un campo gravitatorio

Más detalles

Evaporación de Agujeros Negros

Evaporación de Agujeros Negros Evaporación de Agujeros Negros Gonzalo J. Olmo Instituto de Estructura de la Materia - CSIC (Spain) Gonzalo J. Olmo Sobre esta charla... Por qué esta charla? Las propiedades físicas y matemáticas de los

Más detalles

El Filósofo ante la Teoría de la Relatividad General

El Filósofo ante la Teoría de la Relatividad General El Filósofo ante la Teoría de la Relatividad General Carl Hoefer ICREA/UB 19/11/2015 1915-2015 100 años de la Relatividad General Qué tiene que ver la filosofía con la física? A juzgar por el ejemplo de

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

b) estrellas de alta masa: >4Ms

b) estrellas de alta masa: >4Ms evolución estelar evolución post-secuencia Principal b) estrellas de alta masa: >4Ms estrellas de SP con M > 4 Ms dejan remanentes > 1.4 Ms y no pueden ser sostenidos por la presión de los e- degenerados

Más detalles

5 Noviembre IES José Hierro, San Vicente de la Barquera

5 Noviembre IES José Hierro, San Vicente de la Barquera Contenidos Qué es un agujero negro? Se pueden er los agujeros negros? Un agujero negro en el centro de la Vía Láctea Agujeros negros gigantes en todas las galaxias Velocidad de escape Velocidad mínima

Más detalles

El Universo entre planetas, estrellas y galaxias. Prof. Dr. Michael Gebinoga

El Universo entre planetas, estrellas y galaxias. Prof. Dr. Michael Gebinoga El Universo entre planetas, estrellas y galaxias Prof. Dr. Michael Gebinoga Estructuracion Distancias y dimensiones Que significa interplanetario, interstellario e intergalactico? Voyager, nuestra sistema

Más detalles

Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados.

Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados. Tema 3.3. Relatividad general de Einstein, agujeros negros y universos abiertos y cerrados. Laplace Pierre Simón de Laplace (1749-1827) desarrolló potentes métodos para calcular las posiciones de los astros

Más detalles

Origen y desenlace de la muerte de una estrella, Hoyos Negros

Origen y desenlace de la muerte de una estrella, Hoyos Negros 1 Origen y desenlace de la muerte de una estrella, Hoyos Negros Resumen El destino de una estrella está definido desde el momento de su creación, ya que la masa que se acumula dictará el comportamiento

Más detalles

Agujeros Negros Astrofísicos; en la enseñanza de las ciencias Héctor Aceves Instituto de Astronomía, UNAM Ensenada, BC

Agujeros Negros Astrofísicos; en la enseñanza de las ciencias Héctor Aceves Instituto de Astronomía, UNAM Ensenada, BC Agujeros Negros Astrofísicos; en la enseñanza de las ciencias Héctor Aceves aceves@astro.unam.mx Instituto de Astronomía, UNAM Ensenada, BC CONTENIDO 1. INTRODUCCIÓN 2. AGUJEROS NEGROS ASTROFISICOS 3.

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

Agujeros negros por Miguel Alcubierre. Fronteras de lafísicaenelsiglo XXI

Agujeros negros por Miguel Alcubierre. Fronteras de lafísicaenelsiglo XXI Agujeros negros por Miguel Alcubierre Este es un capítulo separado que integra el libro Fronteras de lafísicaenelsiglo XXI Octavio Miramontes y Karen Volke (Editores) CopIt-arXives, 2013 México, D.F. ISBN:

Más detalles

Agujeros Negros. Traducción de Priscilla Nowajewsky B. 21 de agosto de 2005

Agujeros Negros. Traducción de Priscilla Nowajewsky B. 21 de agosto de 2005 Agujeros Negros Traducción de Priscilla Nowajewsky B. pnowajew@das.uchile.cl 21 de agosto de 2005 1 Índice 1. Qué es un agujero negro? 3 2. Cómo se forma un agujero negro? 6 3. Cómo se observan los agujeros

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

Introducción a Física de Partículas y Teoría de Cuerdas Gravedad y Mecánica Cuántica (2)

Introducción a Física de Partículas y Teoría de Cuerdas Gravedad y Mecánica Cuántica (2) Introducción a Física de Partículas y Teoría de Cuerdas Gravedad y Mecánica Cuántica (2) Angel M. Uranga Instituto de Física Teórica UAM/CSIC, Madrid angel.uranga@uam.es Gravedad Semiclásica Plan - El

Más detalles

Las ondas gravitacionales

Las ondas gravitacionales Las ondas gravitacionales Qué son? De dónde vienen? Qué hacen? Por qué son interesantes? Tomás Ortín Miguel Instituto de Física Teórica UAM/CSIC Todos hemos oído que LIGO ha detectado ondas gravitacionales

Más detalles

Relatividad general cuántica. J. Fernando Barbero G., Instituto de Estructura de la Materia.

Relatividad general cuántica. J. Fernando Barbero G., Instituto de Estructura de la Materia. Relatividad general cuántica J. Fernando Barbero G., Instituto de Estructura de la Materia. La física clásica y la teoría cuántica. La crisis de la física clásica, la radiación de cuerpo negro, efecto

Más detalles

VIAJE A UN AGUJERO NEGRO Pablo de Vicente Abad

VIAJE A UN AGUJERO NEGRO Pablo de Vicente Abad 289 Este artículo apareció publicado en el Anuario Astronómico del Observatorio de Madrid para el año 1996. Su apariencia puede haber cambiado al ser reprocesado con pdflatex y nuevos ficheros de estilo.

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG-UCLM)

Ejercicios de Interacción Gravitatoria (PAEG-UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms -2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación.

FÍSICA RELATIVISTA 1. Relatividad. 2. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. FÍSICA RELATIVISTA 1. Relatividad.. Consecuencias de la relatividad. 3. Teoría relativista de la gravitación. Física º bachillerato Física relativista 1 0. CONOCIMIENTOS PREVIOS Los conocimientos previos

Más detalles

DM y DE. Probablemente, los bariones son una componente minoritaria del Universo. DM y DE Pero... DE no es la energía de la DM.

DM y DE. Probablemente, los bariones son una componente minoritaria del Universo. DM y DE Pero... DE no es la energía de la DM. DM y DE Probablemente, los bariones son una componente minoritaria del Universo. DM y DE Pero... DE no es la energía de la DM. Es otra cosa Materia oscura Hay razones científicas y sentimentales para pensar

Más detalles

El Universo a gran escala como un movimiento armónico

El Universo a gran escala como un movimiento armónico El Universo a gran escala como un movimiento armónico Juan J. Salamanca Departamento de Matemáticas Universidad de Córdoba 14071 - Córdoba Email: jjsalamanca@uco.es J.J. Salamanca (U. Córdoba) 1 / 46 Índice

Más detalles

UNIDAD I. EL MUNDO EN QUE VIVIMOS

UNIDAD I. EL MUNDO EN QUE VIVIMOS ÍNDICE UNIDAD I. EL MUNDO EN QUE VIVIMOS Capítulo 1. Estructura de la materia 3 1-1. La materia, 3. 1-2. Los elementos químicos, 3. 1-3. Atomos, 5. 1-4. Isótopos, 7. 1-5. Moléculas, 8. 1-6. Partículas

Más detalles

Origen del tiempo: relatividad y emergencia. Gil Jannes

Origen del tiempo: relatividad y emergencia. Gil Jannes Origen del tiempo: relatividad y emergencia Gil Jannes El tiempo Newtoniano diagrama espacio-temporal referencial (observador) Newton (Galileo) 1a ley de Newton (ley de inercia): Corpus omne perseverare

Más detalles

Ejercicios de Interacción Gravitatoria (PAEG UCLM)

Ejercicios de Interacción Gravitatoria (PAEG UCLM) 1. En la superficie de un planeta de 1000 km de radio, la aceleración de la gravedad es de 2 ms 2. Calcula: a) La masa del planeta. b) La energía potencial gravitatoria de un objeto de 50 kg de masa situado

Más detalles

1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se mueve en una línea recta(o está en reposo).

1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se mueve en una línea recta(o está en reposo). Leyes de Newton Sea = pr mvr el momentum lineal de una partícula.m es la masa (inercial) y la velocidad. vr 1) Principio de Inercia. Todo cuerpo que se mueve libremente(no está sometido a una fuerza) se

Más detalles

Gravitatorio PAU Andalucía

Gravitatorio PAU Andalucía Andalucía AND 01. Un meteorito de 1000 kg colisiona con otro, a una altura sobre la superficie terrestre de 6 veces el radio de la Tierra, y pierde toda su energía cinética. a) Cuánto pesa el meteorito

Más detalles

Gravitación y Geometría Marc Mars

Gravitación y Geometría Marc Mars Gravitación y Geometría Marc Mars Encuentros Relativistas Españoles, Mallorca 2006 Gravitación a principios del siglo XX Isaac Newton Gran éxito para describir el movimiento planetario Ley de la gravitación

Más detalles

Ecuaciones de Einstein

Ecuaciones de Einstein Ecuaciones de Einstein Cynthia Guadalupe De Loza Aguilar Resumen.- Albert Einstein en 1905 publico su teoría de la relatividad especial, más tarde en 1915 publico otra de sus teorías llamada relatividad

Más detalles

Los agujeros negros y la estructura del espacio-tiempo

Los agujeros negros y la estructura del espacio-tiempo Los agujeros negros y la estructura del espacio-tiempo Juan Maldacena Institute for Advanced Study, Princeton, New Jersey 08540, EEUU Resumen La relatividad general predice la existencia de agujeros negros,

Más detalles

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios

Física y Química 4º ESO: guía interactiva para la resolución de ejercicios FUERZAS Y MOVIMIENTO Física y Química 4º ESO: guía interactiva para la resolución de ejercicios I.E.S. Élaios Departamento de Física y Química EJERCICIO 1 (a) Cuál es la fuerza gravitatoria o peso de una

Más detalles

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante.

Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Leyes de Newton Primera Ley: En ausencia de una fuerza externa neta, todo cuerpo permanece en reposo o en movimiento con velocidad constante. Sistema Inercial de Referencia Es uno donde se cumple la primera

Más detalles

PRINCIPIO Y FIN DEL UNIVERSO

PRINCIPIO Y FIN DEL UNIVERSO PRINCIPIO Y FIN DEL UNIVERSO J. J. Ruiz-Lorenzo Dep. Física, Universidad de Extremadura http://www.unex.es/fisteor/juan/juan_talks.html http://www.unex.es/eweb/astrono http://www.astronomia2009.es Badajoz,

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

Principales características de los planetas. Sol desde la Tierra. Características Sol. Movimiento Mercurio

Principales características de los planetas. Sol desde la Tierra. Características Sol. Movimiento Mercurio Sol desde la Tierra Distancia media de la Tierra 1.000 AU ( 1.496E8 km) Distancia máxima desde la Tierra 1.017 AU ( 1.521E8 km) Distancia mínima desde la Tierra 0.983 AU ( 1.471E8 km) Diámetro angular

Más detalles

Tema 10. RELATIVIDAD GENERAL (II): Gravedad y espaciotiempo Relatividad de las medidas del tiempo. , foton

Tema 10. RELATIVIDAD GENERAL (II): Gravedad y espaciotiempo Relatividad de las medidas del tiempo. , foton Tema 10 RELATIVIDAD GENERAL (II): Gravedad y espaciotiempo 10.1 Relatividad de las medidas del tiempo Por la relatividad especial sabemos que cuando un reloj se mueve rápidamente respecto a un observador,

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

10 años luz SN Históricas

10 años luz SN Históricas AST 0111 1 La Nebulosa del Cangrejo (SN1054ac) es una SN que explotó en el año 1054. Se expandió ~10 años luz en unos 900 años. La velocidad medida, la fecha de explosión, y el tamaño son consistentes.

Más detalles

VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO

VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO VIVIENDO EN LA FRONTERA: UNA INTRODUCCION AL PRINCIPIO HOLOGRAFICO Esperanza López Instituto de Física Teórica UAM/CSIC Materia e interacciones nuestro mundo se compone de materia e interacciones Materia

Más detalles

La Teoría General de la Relatividad

La Teoría General de la Relatividad La Teoría General de la Relatividad En 1905, Albert Einstein publicó la teoría de la relatividad espacial, una teoría sobre el espacio y el tiempo. En los años siguientes, Einstein trabajó en el hecho

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

Origen y evolución inicial del Universo: Los mensajeros cósmicos

Origen y evolución inicial del Universo: Los mensajeros cósmicos Real Academia de Ciencias, Bellas Artes y Buenas Letras Luis Vélez de Guevara de Écija Origen y evolución inicial del Universo: Los mensajeros cósmicos Francisco González de Posada Écija, 11 de diciembre

Más detalles

Materia oscura. Eduardo Battaner EFE 2009

Materia oscura. Eduardo Battaner EFE 2009 Materia oscura Eduardo Battaner EFE 2009 Por qué no? Creemos en agujeros negros, neutrinos, machos, planetas... qque serían DM (o casi) Por qué todas las partículas deben interaccionar con la luz? No

Más detalles

9. Evolución Estelar 08 de mayo de 2009

9. Evolución Estelar 08 de mayo de 2009 9. Evolución Estelar 08 de mayo de 2009 1. La secuencia principal El diagrama de Hertzsprung-Russell Estrellas de la secuencia principal Gigantes Gigantes rojas Supergigantes Enanas blancas 1 El interior

Más detalles

CAMPO GRAVITATORIO. JUNIO

CAMPO GRAVITATORIO. JUNIO CAMPO GRAVITATORIO. JUNIO 1997: 1.- La Tierra, en su órbita elíptica alrededor del Sol, presenta dos puntos, el afelio y el perihelio, en los que su velocidad es perpendicular a su vector de posición respecto

Más detalles

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m Fuerza entre dos masas Sím F=- G. M. m/r 2. ur F Fuerza N M masa kg r Distancia entre las dos masas m ur Vector unitario cuya dirección es la de la recta que une las dos masas y sentido saliente de la

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO

TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO QUIÉN PREGUNTA? La humanidad NEOLÍTICO H.NEANDERTHAL LA CIVILIZACIÓN H. HABILIS LAS PREGUNTAS -Quiénes somos? -De dónde venimos? Porqué estamos aquí?

Más detalles

Campo gravitatorio Ejercicios de la PAU Universidad de Oviedo Página 1

Campo gravitatorio Ejercicios de la PAU Universidad de Oviedo Página 1 Página 1 Junio 1998 1. Un astronauta, con 100 kg de masa (incluyendo el traje) está en la superficie de un asteroide de forma prácticamente esférica, con 2,4 km de diámetro y densidad media 2,2 g cm 3.

Más detalles

Tema 2: Propiedades y medición de la radiación electromagnética

Tema 2: Propiedades y medición de la radiación electromagnética Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo

Más detalles

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER

LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER LEY DE GRAVITACIÓN UNIVERSAL Y TERCERA LEY DE KEPLER Ejercicio 1. Septiembre 2.011 a. Exprese la aceleración de la gravedad en la superficie de un planeta en función de la masa del pianeta, de su radio

Más detalles

Teoría de la Relatividad y Hoyos Negros

Teoría de la Relatividad y Hoyos Negros Teoría de la Relatividad y Hoyos Negros Martha Guadalupe del Consuelo Ulloa Calzonzin, Óscar Gerardo Loaiza Brito, Juan Pablo Aranda Lozano 1 [Colegio de nivel medio superior de León, Universidad de Guanajuato]

Más detalles

AP Física B de PSI Gravitación Universal

AP Física B de PSI Gravitación Universal AP Física B de PSI Gravitación Universal Preguntas de Multiopción 1. La fuerza gravitacional entre dos objetos es proporcional a A) la distancia entre los dos objetos. B) el cuadrado de la distancia entre

Más detalles

Física Examen Final 20/05/05

Física Examen Final 20/05/05 Física Examen Final 20/05/05 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre [6 Ptos.] 1. Una partícula de 500 g describe un M.A.S. con una frecuencia de 1,59 Hz. Las energías iniciales

Más detalles

Astronomía. Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González

Astronomía. Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González Astronomía Ayudantía 10 Prof. Jorge Cuadra Ayudante: Paulina González 1.- La cantidad fundamental que determina la presión y temperatura central de una estrella es: a) Masa. b) Luminosidad. c) Temperatura

Más detalles

CAMPO GRAVITATORIO SELECTIVIDAD

CAMPO GRAVITATORIO SELECTIVIDAD CAMPO GRAVITATORIO SELECTIVIDAD EJERCICIO 1 (Sept 2000) a) Con qué frecuencia angular debe girar un satélite de comunicaciones, situado en una órbita ecuatorial, para que se encuentre siempre sobre el

Más detalles

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa)

Equilibrio de fuerzas Σ F z = 0. Σ M y = 0 Σ M x = 0 Σ M z = 0. Equilibrio de momentos. Segunda ley de Newton (masa) Estática: leyes de Newton: equilibrio, masa, acción y reacción Primera ley de Newton (equilibrio) Un cuerpo permanece en reposo o en movimiento rectilíneo uniforme (M.R.U. = velocidad constante) si la

Más detalles

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER 8 03 FUERZAS CENRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER j Actividades. La masa m de la figura siguiente describe una trayectoria circular situada en un plano horizontal. Cuántas fuerzas actúan

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Modelo 2014. Pregunta 1B.- Los satélites Meteosat son satélites geoestacionarios, situados sobre el ecuador terrestre y con un periodo orbital de 1 día. a) Suponiendo que la órbita que describen es circular

Más detalles

Teoría de la Relatividad Especial

Teoría de la Relatividad Especial Teoría de la Relatividad Especial Albert Einstein 1.905 Página1 Postulados de la Teoría de la Relatividad Especial Un sistema de referencia es inercial si está en reposo o se mueve con movimiento rectilíneo

Más detalles

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?.

de 2/(3) 1/2 de lado y en el tercero hay una la Tierra?. 1. Calcula la altura necesaria que hay que subir por encima de la superficie terrestre para que la intensidad del campo Determinar la velocidad de una masa m' cuando partiendo del reposo del primero de

Más detalles

Movimientos planetarios complejos Movimientos retrogrados. Un poco de historia

Movimientos planetarios complejos Movimientos retrogrados. Un poco de historia Gravedad Movimientos planetarios complejos Movimientos retrogrados Un poco de historia Un poco de historia Ya en el 400 a.c. Eudoxo desarrolla un modelo para explicar el movimiento planetario, con esferas

Más detalles

AST Temario. Distancias Movimientos y tiempos La Radiación Los Planetas Las Estrellas Las Galaxias El Universo

AST Temario. Distancias Movimientos y tiempos La Radiación Los Planetas Las Estrellas Las Galaxias El Universo AST 0111 Temario Distancias Movimientos y tiempos La Radiación Los Planetas Las Estrellas Las Galaxias El Universo Distribución de Cúmulos Abiertos en la Vía Láctea Distribución de Cúmulos Globulares en

Más detalles

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L.

JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. JOEL ROCHA BAROCIO CIÉNEGA DE FLORES N.L. Alumno: Alan Francisco Hernández Cisneros Grupo: 303 P.S.P. Lic. Miriam de la Rosa Díaz Carrera: Técnico-Bachiller en Informática QUÉ ES LA FÍSICA? Es una ciencia

Más detalles

UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS. Esperanza López Manzanares

UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS. Esperanza López Manzanares UN VIAJE DE IDA Y VUELTA ENTRE PARTICULAS Y CUERDAS Esperanza López Manzanares EL CORAZON DE LA MATERIA: EL NUCLEO ATOMICO átomos en un cristal EL CORAZON DE LA MATERIA: EL NUCLEO ATOMICO átomos en un

Más detalles

EL MISTERIO DE LOS AGUJEROS NEGROS

EL MISTERIO DE LOS AGUJEROS NEGROS EL MISTERIO DE LOS AGUJEROS NEGROS Noelia San Emeterio Rodríguez Licenciada. en Física y Química Son muchos los interrogantes que existen hoy en día acerca de este tema. Esta inquietud no sólo se plantea

Más detalles

Nota adicional: Mareas terrestres de origen solar

Nota adicional: Mareas terrestres de origen solar Nota adicional: Mareas terrestres de origen solar Consideremos que en su movimiento alrededor del la describe unircunferencia (en lugar de una elipse), y que el centro de masa del sistema está en el centro

Más detalles