DIAGRAMAS DE FASE. La base de todo el trabajo sobre los diagramas de equilibrio es la regla de fases de Willard Gibbs.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "DIAGRAMAS DE FASE. La base de todo el trabajo sobre los diagramas de equilibrio es la regla de fases de Willard Gibbs."

Transcripción

1 DIAGRAMAS DE FASE 1. DEFINICIONES Los diagramas de fase son representaciones gráficas de cuales fases están presentes en un sistema material en función de la temperatura, la presión y la composición. Son representaciones gráficas de las condiciones termodinámicas de equilibrio. El estado de equilibrio de un sistema es aquel en el cual sus propiedades no cambian con el tiempo, a menos que se ejerza una alteración de la temperatura, la presión o la composición, o la aplicación de fuerzas externas de tipo eléctrico, magnético, etc. La base de todo el trabajo sobre los diagramas de equilibrio es la regla de fases de Willard Gibbs. El diagrama, también conocido como diagrama de fase o diagrama de equilibrio es esencialmente una expresión gráfica de la regla de fases. La ecuación siguiente presenta la regla de fases en la forma matemática usual: Donde: F + L = C + 2 C: Número de componentes del sistema F: Número de fases presentes en el equilibrio L: Varianza del sistema (grados de libertad) Los términos usados en la expresión anterior así como otros necesarios para entender los diagramas de fase se definen a continuación. SISTEMA: cualquier porción del universo material que pueda aislarse completa y arbitrariamente del resto, para considerar los cambios que puedan ocurrir en su interior y bajo condiciones variantes. FASE: cualquier porción del sistema físicamente homogénea y separada por una superficie mecánicamente separable de otras porciones. Por ejemplo, un vaso de agua con cubos de hielo constituye dos fases distintas de una misma sustancia (agua). Los cubos de hielo son una fase sólida y el agua líquida es una fase líquida. COMPONENTES: el menor número de variables individuales independientes (vapor, líquido o sólido) por medio de los cuales la composición del sistema puede expresarse cuantitativamente. Normalmente un componente es un elemento, compuesto o solución del sistema. Así por ejemplo, el vaso de agua con cubos de hielo, es un sistema en el que hay dos fases pero una sola componente. VARIANZA DEL SISTEMA (GRADOS DE LIBERTAD): Es el número de variables (presión, temperatura y composición) que se pueden cambiar independientemente sin 1

2 alterar el estado de la fase o de las fases en equilibrio del sistema elegido. Es la aplicación de la regla de las fases al tipo de sistemas bajo consideración. El número de las variables, las cuales se fijan de manera arbitraria para definir completamente el sistema, se llama varianza o grados de libertad del sistema Figura 1. Diagrama de equilibrio de fases P-T para el agua pura Si se aplica la regla de las fases de Gibbs al denominado punto triple del diagrama de la figura 1, teniendo en cuenta que en este punto coexisten tres fases en equilibrio y que hay un solo componente en el sistema (agua), se puede calcular el número de grados de libertad, así: F + L = C L = L = 0 Esto quiere decir que en este punto, ninguna de las variables (presión, temperatura o composición) se puede cambiar sin alterar el estado de las fases en equilibrio. Si se considera cualquier punto de la línea de solidificación sólido-líquido de la figura 1, en cualquier punto de esta línea habrá dos fases que coexisten. Al aplicar la regla de las fases, tenemos: 2

3 F + L = C L = L = 1 Esto quiere decir que sobre esta línea hay un grado de libertad, y por lo tanto, al especificar por ejemplo una presión, solo hay una temperatura a la que pueden coexistir las dos fases (sólido y líquido). Si se considera un punto sobre el diagrama de la figura 1 dentro de una única fase, por ejemplo en la fase vapor, al aplicar la regla de las fases de Gibss, tenemos: F + L = C L = L = 2 Este resultado indica que pueden cambiarse independientemente la temperatura y la presión y el sistema aun permanecerá en una única fase. La mayoría de los diagramas de fase binarios que se usan en Ciencia de los Materiales son diagramas temperatura-composición en los que la presión se mantiene constante, normalmente a 1 atm. En este caso se utiliza la regla de fases condensada, que viene dada por F + L = C INTERPRETACION DE LOS DIAGRAMAS DE FASE 2.1 SISTEMAS DE UN COMPONENTE Las variables independientes en sistemas de un componente están limitadas a la temperatura y la presión ya que la composición es fija. En un diagrama de fases de un sistema de un componente se pueden distinguir: - Zonas bivariantes, es decir, zonas del diagrama donde sólo está presente una fase, a diferentes presiones y temperaturas, tales como las zonas de líquido, sólido o vapor del diagrama de la figura 1. - Líneas univariantes, en las que hay dos fases presentes. Es el caso de las líneas solidificación, vaporización y sublimación del diagrama de la figura 1. En estas líneas coexisten dos fases y para cada temperatura existe una presión determinada. - Puntos invariantes, en los que coexisten tres fases. Algunos sistemas de un componente que son de interés a nivel industrial, son el del hierro puro, el del magnesio, que es un material notablemente liviano, el de la Sílice (SiO 2 ), el del Carbono (de especial interés en la fabricación de diamantes sintéticos), entre otros. La figura 2 recopila algunos de los diagramas de un componente de interés industrial. 3

4 A B Figura 2. Diagramas de fases de A. Carbono, B. SiO 2 Algunos cambios de una fase a otra en los diagramas de un solo componente, implican cambios volumétricos importantes que han de tenerse en cuenta en el momento de someter estos materiales a cambios de temperatura en un proceso de transformación. La figura 3 muestra la dilatación que tiene lugar en algunos cambios de fase de la sílice. Figura 3. Cambios de volumen de las fases de la sílice 2.2 SISTEMAS DE DOS COMPONENTES Los sistemas de dos componentes tienen tres variables independientes, nominalmente, temperatura, presión y composición. En los sistemas de importancia a nivel industrial, 4

5 donde la presión de vapor permanece muy baja para grandes variaciones en la temperatura, la variable presión y la fase gaseosa pueden no ser consideradas. Por lo tanto los diagramas pueden reducirse a dos dimensiones representando la composición en las abscisas y la temperatura en las ordenadas. En los sistemas binarios bajo estas condiciones pueden coexistir tres fases produciendo una condición invariante (punto triple); dos fases producen una condición univariante (línea) y una fase una condición bivariante (zona de equilibrio). Los puntos invariantes presentan nombres particulares: A. Sólido α + Sólido β Líquido EUTÉCTICO B. Sólido α Sólido β + Líquido PERITÉCTICO C. Sólido + Líquido 1 Líquido 2 MONOTÉCTICO D. Sólido Líquido 1 + Líquido 2 SINTÉCTICA E. Sólido α + Líquido Sólido β METATÉCTICO F. Sólido γ + Sólido β Sólido α EUTECTOIDE G. Sólido γ Sólido β + Sólido α PERITECTOIDE H. Sólido β + Sólido α 2 Sólido α 1 MONOTECTOIDE Existen varias opciones de mezclas entre dos componentes: INSOLUBILIDAD TOTAL Se presenta cuando dos compuestos A y B son totalmente insolubles entre si en estado sólido. Se pueden considerar las siguientes situaciones: A. Si A y B carecen de afinidad entre si.. Supóngase que se tiene un fundido homogéneo de A y B a una temperatura mayor que T B, donde cada uno de sus componentes tiene una temperatura de solidificación definida, T A y T B siendo T B > T A. Si se comienza a enfriar el fundido, los átomos de A obstaculizan la solidificación de B y se hace necesario un descenso de la temperatura hasta T B para que B pueda comenzar a solidificar. A pesar de que la temperatura de solidificación de B es T B, la presencia de una segunda fase (A) en un fundido inicial de composición A + B, hace que esa temperatura de solidificación no sea exactamente la misma en la práctica. La solidificación de la fase B en presencia de la fase A ocurre a una temperatura T B, que será más parecida a T A mientras más cantidad de fase A exista y más parecida a T B mientras más fase B exista. La acción perturbadora de A se debe tanto a la energía cinética de sus átomos como al efecto barrera que ellos oponen a los átomos de B para que ellos se adicionen al sólido que se está formando (figura 4). 5

6 T L (A + B) T B T B L (A) + S (B) T A S (A + B) A m B Figura 4. Diagrama de fases de dos componentes insolubles totalmente sin afinidad química Analicemos lo que sucede en la línea de composición m, si partimos de una temperatura mayor que T B. Inicialmente el fundido tiene una composición x % de B y 100% - x de A. Por encima de T B todo es líquido. La solidificación se iniciará con la formación de algunos cristales de B puro, ya que por no existir afinidad entre A y B en estado sólido, ningún átomo de A será retenido en la red de B. Entre T B y T A aparecen granos de B rodeados de líquido enriquecido en A. Este enriquecimiento del líquido en A, exigirá un nuevo descenso de la temperatura para que la solidificación pueda proseguir. Si el descenso de la temperatura se realiza de modo continuo y lento (en equilibrio) aumenta la cantidad de sólido B hasta que el líquido residual contenga solo átomos de A. Al llegar a la temperatura T A se inicia la solidificación de A. En este punto siguen habiendo granos de B y aparecen granos de A. El primer elemento que solidifica se conoce como COMPONENTE DISPERSO y el otro se llama COMPONENTE MATRIZ. B. Si entre A y B existe afinidad química para formar otro compuesto estequiométrico A x B y. La red cristalina del compuesto C (A x B y ) suele ser distinta de la red de A y de la red de B, y más estable que ellas. Esto se debe a que la agrupación de átomos de A y B obedece a una atracción entre ambos, enlace iónico, enlace covalente, etc. superior a la energía de enlace de los átomos de A entre sí y de B entre sí. La solidificación se inicia cuando se ha disminuido suficientemente la temperatura hasta equilibrar la energía cinética de los átomos (repulsión) con la afinidad química (fuerzas de atracción) que tiende a reagruparlos en forma de red sólida del compuesto. Dado que la atracción de los átomos A y B es superior a la energía de enlace de cada 6

7 elemento, esa temperatura de solidificación Tc, es más elevada que T A y T B. Cuando se ha llegado a Tc, la primera fracción que solidifica deja al líquido con la misma proporción de átomos A y B que había en el líquido inicial y por ello la solidificación proseguirá a temperatura constante dando una estructura constituida por granos del compuesto C. Cuando existe en el líquido un exceso de átomos de A respecto a la composición estequiométrica AxBy, la solidificación es similar a la de dos compuestos insolubles A y C (siendo C en este caso el compuesto AxBy). La solidificación de C se inicia a una temperatura Tc inferior a Tc (Tc es tanto menor, cuanto mayor sea el exceso de átomos de A). El líquido restante, enriquecido en A respecto a su composición inicial, requerirá un nuevo descenso de temperatura para que, disminuyendo la energía cinética de los átomos de A en el líquido, la solidificación de C pueda seguir (figura 5). La solidificación de C tiene lugar en un intervalo de temperatura hasta alcanzar la temperatura Ta, momento en el que el líquido residual, compuesto sólo por átomos de A, solidifica libremente a temperatura constante, como lo hacen los elementos puros. El resultado será un compuesto constituido por granos de C (constituyente primario), contorneados por una matriz de granos de A, solidificados a temperatura T A. La naturaleza del constituyente matriz determina siempre el comportamiento térmico del compuesto; claro está, que si la cantidad del compuesto químico primario fuera tan grande que los granos de C entraran en contacto entre sí, podría designarse a éste como constituyente matriz. T L (A+B) T l C l B T C l A L B +S C T B T B L A +S C T A S B +S C S B S A S A +S C A C B Figura 5. Diagrama de equilibrio de fases de dos componentes insolubles con afinidad química para formar un compuesto estequiométrico 7

8 C. Si A y B presentan afinidad eutéctica. Se presenta cuando A y B tienden a formar un compuesto de composición AxBy estable en estado líquido hasta temperaturas inferiores a T A y T B. Siendo T A y T B respectivamente las temperaturas de solidificación del compuesto A puro y B puro y teniendo la mezcla líquida exactamente a la proporción AxBy; suponiendo T A >T B, si desciende la temperatura hasta T A, los átomos de A no llegarán a solidificar, pues la afinidad eutéctica induce a que en el líquido la proporción siga siendo de x átomos de A y y átomos de B. Por consiguiente, nada de líquido A solidificará hasta tanto no pueda solidificar también B. Pero tampoco se inicia la solidificación al alcanzar la temperatura T B. La solidificación se inicia a una temperatura T E inferior tanto a T A como a T B en la que se equilibra el balance entre fuerzas de atracción y de repulsión. Puesto que a T E el compuesto A se halla en estado líquido, pero notablemente sobre enfriado respecto a la temperatura teórica de solidificación T A, en primer lugar comienzan a solidificar, al alcanzarse T E, algunos átomos de A, con gran velocidad de nucleación y tendiendo por tanto a dar una estructura muy fina. Pero de inmediato, y puesto que en el líquido la proporción de A y B debe seguir siendo x/y, solidifican también átomos de B, próximos, en cantidad proporcional a los de A ya solidificados (y átomos de B por cada x átomos de A). Dado que las condiciones de solidificación del líquido restante a la temperatura T E son idénticas a las iniciales, proseguirá la solidificación a temperatura constante. El resultado a escala microscópica será una mezcla de finos cristales de A puro y B puro (cada uno con su red peculiar propia) íntimamente mezclados que dan un agregado complejo de ambos compuestos, que recibe el nombre de estructura eutéctica. Cuando la mezcla líquida contiene un exceso de compuesto A, respecto a la composición eutéctica, la solidificación se inicia a la temperatura T A, menor que T A y tanto más próxima a ella, cuanto mayor sea el exceso de A que se tenga en la mezcla, con formación de granos de A. El proceso continúa con la formación de más cantidad de A sólido cuando desciende la temperatura. Al ir solidificando A, el líquido residual se enriquece en B y se va aproximando a la composición eutéctica. Una vez alcanzada la proporción AxBy, el líquido solidificará a temperatura constante T E cuando el enfriamiento llegue a este valor, a modo de matriz en la que quedan embebidos los granos de A solidificados previamente (en el intervalo de temperatura T A -T E ). En la figura 6 se indica como ejemplo el diagrama de solidificación de un sistema formado por dos elementos que cumplen la condición de ser insolubles en estado sólido, pero con afinidad para dar una eutéctica de composición atómica Y 8

9 T T T B T B l A L A+B T B T A S A L A+B + S A L A+B + S B S B T C A S A+C S C S B+C Y C=A+B Figura 6. Diagrama de equilibrio de fases de dos compuestos insolubles con afinidad química para dar un eutéctico de composición Y m B Si consideramos la línea m, tenemos: Por encima de T B hay líquido de composición A+B Entre T B y T C hay granos de B proeutéctico + líquido de composición A+B Por debajo de T C coexisten los mismos granos de B proeutéctico + sólido de composición C, que por ser eutéctico consiste de bandas de A + B intercaladas SOLUBILIDAD TOTAL. SISTEMAS ISOMORFOS En algunos sistemas binarios, los dos elementos son completamente solubles entre si tanto en estado sólido como líquido. En estos sistemas sólo existe un tipo de estructura cristalina para todas las composiciones de los componentes y, por tanto, se les denomina sistemas isomorfos. En relación a los dos elementos que se disuelven completamente entre si, normalmente satisfacen una o más de las condiciones formuladas por el metalúrgico inglés Hume-Rothery, conocidas como reglas de solubilidad: 1. La estructura cristalina de cada elemento de la solución sólida debe ser la misma 2. El tamaño de los átomos de cada uno de los dos elementos no debe diferir en más de un 15%. 3. Los elementos no deben formar compuestos entre si, o sea que no debe haber diferencias apreciables entre las electronegatividades de ambos elementos. 4. Los elementos deben tener la misma valencia. 9

10 En un diagrama de fases de un sistema isomorfo (figura 7) es posible distinguir el área sobre la línea superior del diagrama, corresponde a la región de estabilidad de la fase liquida. Para las temperaturas correspondientes a esta área cualquier composición habrá fundido completamente para dar lugar a un campo de fase líquida. A y B son completamente solubles entre sí en estado líquido. Se distingue también el área por debajo de la línea inferior, que representa la región de estabilidad para la fase sólida. A temperaturas relativamente bajas existe un campo correspondiente a una única fase de solución sólida. En este sistema A y B son completamente solubles en estado sólido. Entre ambas líneas, o sea entre los dos campos correspondientes a una sola fase se encuentra una región de dos fases en la que coexisten las fases líquida y sólida. El límite superior de la región de coexistencia de dos fases se llama la línea de liquidus, y es la línea por encima de la cual existe solo la fase líquida. El límite inferior de la región de dos fases se conoce como línea de solidus y es la línea por debajo de la cual el sistema ha solidificado completamente. Línea de liquidus Línea de solidus W l W 0 W s Figura 7. Diagrama de fases de sistemas isomorfos En las regiones monofásicas correspondientes a las zonas de líquido o sólido (solución sólida), tanto la temperatura como la composición se deben especificar con el fin de situar un punto en el diagrama de fases. 10

11 En un determinado punto de estado (un par de valores de temperatura y composición) dentro de la región bifásica, existe un equilibrio entre un líquido y un sólido. La composición de cada fase se establece de la forma como se indica en la figura 7. La línea horizontal (línea de temperatura constante L-S) que pasa por el punto de estado (O) corta tanto la línea de liquidus como la de solidus. La composición de la fase líquida viene dada por el punto de intersección con la línea de liquidus (punto L, composición W l ). Asimismo la composición de la fase sólida viene dada por el punto de intersección con la línea de solidus (punto S, Composición W s ). Los porcentajes en peso en las regiones bifásicas de un diagrama de fases en equilibrio binario se calculan mediante la regla de la palanca. En la figura 7, supongamos que x es la composición de interés y W 0 la fracción en peso de B en A de esa composición. Sea T la temperatura de interés. Si trazamos una isoterma a la temperatura T desde la línea de liquidus hasta la de solidus (linea LS), a la temperatura T la aleación x consta de una mezcla de líquido de fracción en peso W l de B y sólido de fracción en peso W s de B. Las ecuaciones de la regla de la palanca se obtienen usando balances de masa o peso. Una de dichas ecuaciones se obtiene al sumar la fracción de peso de la fase liquida X l, y la fracción de peso de la fase sólida, X s, e igualar dicha suma a la unidad, o sea que la masa total del sistema es igual a la suma de la masa de cada una de las dos fases. De este modo: X l + X s = 1 (1) X l = 1 X s (1A) X s X l (2A) Una segunda ecuación se obtiene por el balance de peso de B en la aleación y la suma de B en las dos fases por separado. Es decir, la cantidad de componente B en la fase líquida más la cantidad de dicho componente en la solución sólida debe ser igual a la cantidad del componente B en la composición total. Si se considera un gramo (1 g) de aleación y se efectua el balance de pesos, tenemos: Gramos de B en la mezcla bifásica = gramos de B en la fase liquida + gramos de B en la fase sólida. Reemplazando (1A) en (4) tenemos: Ordenando los términos: (1g)(1) (%W 0 /100) = (1g)X l (%W l /100) + (1g)X s (%W s /100) (3) W 0 = X l W l + X s W s (4) W 0 = (1-X s )W l + X s W s (5) W 0 = W l X s W l + X s W s (6) 11

12 Por lo tanto, la fracción de peso de la fase sólida está dada por X s W s X s W l = W 0 W l (7) Y análogamente: X s = W 0 W l / W s - W l (8) X l = W s W 0 / W s W l (9) Las ecuaciones 8 y 9 son las ecuaciones de la regla de la palanca. Estas ecuaciones afirman que, para calcular la fracción en peso de una fase de una mezcla bifásica, se debe usar el segmento de la isoterma que está al lado opuesto de la aleación que nos interesa y que esta lo mas alejado posible de la fase para la cual se desea calcular la fracción en peso. La relación entre este segmento de la isoterma y el total proporciona la fracción en peso de la fase que se quiere determinar. Asi en la figura 7, la fracción en peso de la fase líquida es la relacion OS/LS mientras que para la fase sólida esta fracción viene dada por la relación LO/LS. Equilibrios invariantes. Reacciones invariantes son aquellos cambios de fase que tienen lugar a temperatura constante. Para que este tipo de reacciones pueda darse en un sistema binario será preciso que, según la Ley de Gibbs, haya tres fases en equilibrio. Con anterioridad se ha comentado la constancia de temperatura durante la solidificación eutéctica formada por dos compuestos insolubles entre sí. Otro tanto ocurre cuando una fase líquida reacciona con otra fase sólida para producir otra fase sólida diferente (reacción peritéctica), o cuando una fase líquida origina otra fase líquida y una sólida (reacción monotéctica), o cuando dos líquidos reaccionan para dar un sólido (reacción sintéctica). En los sistemas binarios pueden producirse además, otros tipos de reacción invariante, por ejemplo transformaciones en que todas las fases en equilibrio son sólidas (reacción eutectoide, peritectoide, etc.) Reacción eutéctica binaria. En general se dice que un sistema binario presenta una reacción eutéctica, cuando un líquido de composición constante da lugar a dos sólidos de composiciones definidas. La reacción eutéctica puede esquematizarse como sigue: Líquido E Sólido 1 + Sólido 2 La reacción eutéctica se realiza en su totalidad, es decir, hasta la desaparición de todo el líquido a temperatura constante. A esta conclusión, empíricamente comprobable, se llega también teóricamente, por aplicación de la Ley de Gibbs. Una de las principales características de los sistemas eutécticos es que la temperatura a la que se forma la fase líquida es más baja que la de los dos componentes puros (figura 8). 12

13 Esto puede ser una ventaja o una desventaja, según las aplicaciones. Para aplicaciones de alta temperatura, como son los materiales refractarios, no interesa que se forme una fase líquida. Así la formación de eutécticos de bajo punto de fusión conduce a severas limitaciones en el uso de refractarios cuando la fase líquida aparece a temperaturas muy bajas debido a la existencia de una serie de eutécticos. En general óxidos fuertemente básicos como el CaO forman eutécticos de bajo punto de fusión con óxidos anfóteros o básicos y ese tipo de compuestos no pueden usarse adyacentemente, aunque ellos independientemente tengan alta refractariedad. Sin embargo, si las aplicaciones de alta temperatura no son las de mayor importancia, puede ser deseable la aparición de fase líquida como una ayuda para efectuar, por ejemplo, el proceso de cocción a bajas temperaturas, ya que la fase líquida facilita la densificación. La efectividad de los sistemas con punto eutéctico también se usa para la fusión a bajas temperaturas de vidrios. Figura 8. Diagrama de equilibrio de fases en equilibrio Pb-Sn. La reacción invariante eutéctica a un 61.9% de Sn y 183 C es el rasgo más importante de todo el sistema. En el punto eutéctico coexisten α (19.2% de Sn), β (97.5% de Sn) y líquido (61.9% de Sn) Reacción peritéctica binaria. 13

14 Cuando por reacción de un líquido y un sólido, a temperatura constante, se obtiene otro sólido, la reacción recibe el nombre de peritéctica (o periférica). Se trata de un sólido con un punto de fusión no congruente. Considérese el diagrama de la figura 9 y dentro de él, la composición 42.4% de plata y 1186 C de la mencionada curva. Por aplicación de la Ley de Gibbs, se desprende que esta temperatura se mantiene constante durante la reacción: Líquido + Sólido α Sólido β Figura 9. Diagrama de fases para el sistema Platino Plata. La característica mas importante de este diagrama es la reacción invariante peritectica a un 42.4% de Ag y 1186 C. En el punto peritectico puede existir la fase líquida (66.3%Ag), α (10.5% Ag) y β (42.4% Ag) El enfriamiento de equilibrio según la isopleta 42.4% Ag transcurre, al principio, como un sistema de solubilidad total, se van formando cristales de la solución sólida α y la composición del líquido sigue la curva liquidus. Al llegar a la temperatura peritéctica Tp (1186 C), el líquido de composición 66.3% Ag, reacciona con la solución sólida α para trasformarse completamente en la solución sólida β. Cuando comienza la reacción entre el líquido y α, los cristales de la solución sólida β se forman en la intercara líquido/α. Esta capa de cristales de β actúa de barrera e impide la reacción posterior entre el líquido y α. Para que la reacción sea completa hay que dar tiempo suficiente para la difusión de los átomos del componente A desde α hasta β. Tal difusión dará lugar al crecimiento de β en las intercaras α/β y β /líquido hasta que la formación de β sea completa. Como tal tiempo no se alcanza, los cristales primarios de α no se trasforman completamente en β y persistirán aunque no sea una fase de equilibrio (Figura 10). 14

15 Figura 10. Representación esquemática del desarrollo progresivo de la reacción peritéctica Líquido + α = β Este documento fue extractado de la siguiente bibliografía: Restrepo O.J. Discusión General sobre los diagramas de fase. Cuaderno Cerámicos y Vítreos No. 7, Septiembre 1998 Smith W. Fundamentos de la ciencia e ingeniería de materiales. Mc Graw Hill. Tercera edición Shackelford J. Introducción a la ciencia de materiales para ingenieros. Cuarta edición. Prentice may Betejtin A. Curso de Mineralogía Tercera edición. Moscú

Tema 5.- Diagramas de Equilibrio de Fases

Tema 5.- Diagramas de Equilibrio de Fases BLOQUE II.- ESTRUCTURA Tema 5.- Diagramas de Equilibrio de Fases * William F. Smith Fundamentos de la Ciencia e Ingeniería de Materiales. Tercera Edición. Ed. Mc-Graw Hill * James F. Shackerlford Introducción

Más detalles

Tema 6 Diagramas de fase.

Tema 6 Diagramas de fase. Tema 6 Diagramas de fase. Los materiales en estado sólido pueden estar formados por varias fases. La combinación de estas fases define muchas de las propiedades que tendrá el material. Por esa razón, se

Más detalles

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD

CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD CARACTERÍSTICAS DEL ESTADO VÍTREO BAJO LA AMPLIA DENOMINACIÓN GENÉRICA DE VIDRIOS O DE CUERPOS VÍTREOS QUEDA COMPRENDIDA UNA GRAN VARIEDAD DE SUSTANCIAS QUE, AUNQUE A TEMPERATURA AMBIENTE TIENEN LA APARIENCIA

Más detalles

Unidad6 ENDURECIMIENTO POR ALEACION. ALEACIONES CON SOLUBILIDAD PARCIAL EN ESTADO SOLIDO

Unidad6 ENDURECIMIENTO POR ALEACION. ALEACIONES CON SOLUBILIDAD PARCIAL EN ESTADO SOLIDO Unidad6 ENDURECIMIENTO POR ALEACION. ALEACIONES CON SOLUBILIDAD PARCIAL EN ESTADO SOLIDO 1 PRESENTACION En esta Unidad se analiza la casuística que aparece cuando en el estado sólido existen componentes

Más detalles

EJERCICIOS DIAGRAMA DE FASES

EJERCICIOS DIAGRAMA DE FASES EJERCICIOS DIAGRAMA DE FASES 1. Con el diagrama de equilibrio Cu - Ni. Determinar para una aleación con el 40 % de Ni: a) Curva de enfriamiento, intervalo de solidificación, fases presentes en cada una

Más detalles

Diagramas de fase en aleaciones metálicas

Diagramas de fase en aleaciones metálicas Diagramas de fase en aleaciones metálicas Sólidos Inorgánicos Diagramas de fase de sustancias puras 8000 Hielo VI 6000 Presión/atm Hielo V 0 2000 2 Hielo II Hielo III íquido Temperatura/ C 2000 1500 500

Más detalles

ESTADOS DE AGREGACIÓN DE LA MATERIA

ESTADOS DE AGREGACIÓN DE LA MATERIA ESADOS DE AGREGACIÓN DE LA MAERIA. Propiedades generales de la materia La materia es todo aquello que tiene masa y volumen. La masa se define como la cantidad de materia de un cuerpo. Se mide en kg. El

Más detalles

7.7 EL DIAGRAMA EQUILIBRIO DE FASES

7.7 EL DIAGRAMA EQUILIBRIO DE FASES 7.7 EL DIAGRAMA EQUILIBRIO DE FASES 7.7.1 CÓMO CONSTRUIR UN DIAGRAMA DE FASES Un diagrama de fases es una representación gráfica de las variables del sistema. Diagrama de fases binario: 2 componentes (r=2).

Más detalles

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia.

INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA. La mecánica cuántica estudia la estructura atómica, los enlaces en moléculas y la espectroscopia. INTRODUCCIÓN A LA TERMODINÁMICA QUÍMICA 1. Qué es la Química Física? "La química física estudia los principios que gobiernan las propiedades el comportamiento de los sistemas químicos" El estudio de los

Más detalles

Completar: Un sistema material homogéneo constituido por un solo componente se llama.

Completar: Un sistema material homogéneo constituido por un solo componente se llama. IES Menéndez Tolosa 3º ESO (Física y Química) 1 Completar: Un sistema material homogéneo constituido por un solo componente se llama. Un sistema material homogéneo formado por dos o más componentes se

Más detalles

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO

PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO PROBLEMAS TEMA 2. FASES y TRANSFORMACIONES DE FASE. DIAGRAMAS DE EQUILIBRIO 1. Se adjunta el peso atómico y el radio atómico de tres hipotéticos metales. Determinar para cada una de ellas si su estructura

Más detalles

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL

UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL ROSARIO DEPARTAMENTO DE INGENIERIA QUIMICA CATEDRA DE QUIMICA GENERAL TRABAJO PRACTICO - PUNTO DE FUSION OBJETIVO: Determinar el punto de fusión (o solidificación)

Más detalles

III. DIFUSION EN SOLIDOS

III. DIFUSION EN SOLIDOS Metalografía y Tratamientos Térmicos III - 1 - III. DIFUSION EN SOLIDOS III.1. Velocidad de procesos en sólidos Muchos procesos de producción y aplicaciones en materiales de ingeniería están relacionados

Más detalles

Control Estadístico de Procesos

Control Estadístico de Procesos Control Estadístico de Procesos Gráficos de Control Los gráficos de control o cartas de control son una importante herramienta utilizada en control de calidad de procesos. Básicamente, una Carta de Control

Más detalles

CARACTERÍSTICAS DE LA MATERIA

CARACTERÍSTICAS DE LA MATERIA LA MATERIA CARACTERÍSTICAS DE LA MATERIA - Todo lo que existe en el universo está compuesto de Materia. - La Materia se clasifica en Mezclas y Sustancias Puras. - Las Mezclas son combinaciones de sustancias

Más detalles

Equilibrio de fases en sistemas binarios y ternarios

Equilibrio de fases en sistemas binarios y ternarios Equilibrio de fases en sistemas binarios y ternarios. Equilibrio líquido-vapor Desviaciones positivas y negativas de la ley de Raoult. Las desviaciones son debidas a factores de origen molecular. Recordemos

Más detalles

Solubilidad. y se representa por.

Solubilidad. y se representa por. Solubilidad Solubilidad. La solubilidad mide la cantidad máxima de soluto capaz de disolverse en una cantidad definida de disolvente, a una temperatura determinada, y formar un sistema estable que se denomina

Más detalles

Estudio de la evaporación

Estudio de la evaporación Estudio de la evaporación Volumen del líquido Tipo de líquido Superficie del recipiente Altura del recipiente Forma del recipiente Presencia de una sal disuelta Introducción Todos hemos observado que una

Más detalles

La Absorción del Agua

La Absorción del Agua La Absorción del Agua Importancia del Agua en las Plantas Es el cons5tuyente principal del protoplasma celular, en ocasiones representa hasta el 95% del peso total de la planta. Es el solvente en el que

Más detalles

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad

[1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad 1. INTRODUCCIÓN 1.1. MARCO TEÓRICO Distribución vertical del agua en el suelo [1] Si se analiza en un perfil del suelo la distribución vertical del agua en profundidad Figura 1 se pueden distinguir la

Más detalles

TEMA 3: MÉTODO CONTABLE. LAS CUENTAS

TEMA 3: MÉTODO CONTABLE. LAS CUENTAS TEMA 3: MÉTODO CONTABLE. LAS CUENTAS 1. HECHOS CONTABLES En el tema 1 se señalaba que, dentro de la función de elaboración de la información contable, la contabilidad se ocupaba, en una primera etapa,

Más detalles

Unidad IV: Cinética química

Unidad IV: Cinética química 63 Unidad IV: Cinética química El objetivo de la cinética química es el estudio de las velocidades de las reacciones químicas y de los factores de los que dependen dichas velocidades. De estos factores,

Más detalles

Química I. Objetivos de aprendizaje del tema

Química I. Objetivos de aprendizaje del tema Tema 3 Estados de la materia Objetivos de aprendizaje del tema Al finalizar el tema serás capaz de: Distinguir los estados físicos de la materia. Explicar los cambios de la materia en estado gaseoso identificando

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes.

Sistema formado por varias substancias en el que a simple vista se distinguen los diferentes componentes. PRINCIPIOS BASICOS Sistema homogéneo : ( DISOLUCIONES ) Sistema integrado por varias substancias no distinguibles a simple vista, pero que se pueden separar por procedimientos físicos. por Ejem. : cambios

Más detalles

Determinación del equivalente eléctrico del calor

Determinación del equivalente eléctrico del calor Determinación del equivalente eléctrico del calor Julieta Romani Paula Quiroga María G. Larreguy y María Paz Frigerio julietaromani@hotmail.com comquir@ciudad.com.ar merigl@yahoo.com.ar mapaz@vlb.com.ar

Más detalles

Actividad: Qué es la anomalía del agua?

Actividad: Qué es la anomalía del agua? Nivel: 1º Medio Subsector: Ciencias químicas Unidad temática: El agua Actividad: Seguramente ya has escuchado sobre la anomalía del agua. Sabes en qué consiste y qué es algo anómalo? Se dice que algo es

Más detalles

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE

EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Página: 1/7 DEPARTAMENTO ESTRELLA CAMPOS PRÁCTICO 8: EQUILIBRIO QUÍMICO: REACCIONES ÁCIDO-BASE Bibliografía: Química, La Ciencia Central, T.L. Brown, H. E. LeMay, Jr., B. Bursten; Ed. Prentice-Hall, Hispanoamérica,

Más detalles

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia.

Estas propiedades toman el nombre de CONSTANTES FISICAS porque son prácticamente invariables características de la sustancia. DETERMINACION DE LAS CONSTANTES FISICAS I. OBJETIVOS - Determinar el punto de ebullición y el punto de fusión con la finalidad de identificar a un compuesto orgánico. II. MARCO TEORICO: CONSTANTES FISICAS:

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

Actividad V.53 Transiciones de fases Calor latente de transformación

Actividad V.53 Transiciones de fases Calor latente de transformación Actividad V.53 Transiciones de fases Calor latente de transformación Objetivo Estudio de transiciones de fase líquido vapor y sólido líquido. Medición de los calores latentes de evaporación y de fusión

Más detalles

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse.

TABLA DE DECISION. Consideremos la siguiente tabla, expresada en forma genérica, como ejemplo y establezcamos la manera en que debe leerse. TABLA DE DECISION La tabla de decisión es una herramienta que sintetiza procesos en los cuales se dan un conjunto de condiciones y un conjunto de acciones a tomar según el valor que toman las condiciones.

Más detalles

Facultad de Ciencias Experimentales Departamento de Ingeniería Química, Ambiental y de los Materiales. Cuaderno de prácticas de la asignatura

Facultad de Ciencias Experimentales Departamento de Ingeniería Química, Ambiental y de los Materiales. Cuaderno de prácticas de la asignatura UNIVERSIDAD DE JAÉN Facultad de Ciencias Experimentales Departamento de Ingeniería Química, Ambiental y de los Materiales Cuaderno de prácticas de la asignatura BASES DE LA INGENIERÍA AMBIENTAL Licenciatura

Más detalles

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA

DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA DEFORMACION DEL ACERO DEFORMACION = CAMBIOS DIMENSIONALES+CAMBIOS ENLA FORMA Según la norma DIN 17014, el término deformación se define como el cambio dimensional y de forma de un pieza del producto de

Más detalles

Electrólisis. Electrólisis 12/02/2015

Electrólisis. Electrólisis 12/02/2015 Electrólisis Dr. Armando Ayala Corona Electrólisis La electrolisis es un proceso mediante el cual se logra la disociación de una sustancia llamada electrolito, en sus iones constituyentes (aniones y cationes),

Más detalles

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013

Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 Condensación y ebullición ING Roxsana Romero Ariza Junio 2013 EBULLICIÓN La transferencia de calor a un líquido en ebullición es muy importante en la evaporación y destilación, así como en otros tipos

Más detalles

HOJA INFORMATIVA DE HORTICULTURA

HOJA INFORMATIVA DE HORTICULTURA HOJA INFORMATIVA DE HORTICULTURA COSECHA Y POST-COSECHA: Importancia y fundamentos Alejandro R. Puerta Ing. Agr. Agosto 2002 La cosecha y post - cosecha es una etapa de fundamental importancia en el proceso

Más detalles

Conceptos de Electricidad Básica (1ª Parte)

Conceptos de Electricidad Básica (1ª Parte) Con este artículo sobre la electricidad básica tenemos la intención de iniciar una serie de publicaciones periódicas que aparecerán en esta página Web de forma trimestral. Estos artículos tienen la intención

Más detalles

CAMBIO DE FASE : VAPORIZACIÓN

CAMBIO DE FASE : VAPORIZACIÓN CAMBIO DE FASE : VAPORIZACIÓN Un líquido no tiene que ser calentado a su punto de ebullición antes de que pueda convertirse en un gas. El agua, por ejemplo, se evapora de un envase abierto en la temperatura

Más detalles

LA MATERIA Materia sustancias. Propiedades Propiedades generales. Propiedades características. Densidad

LA MATERIA Materia sustancias. Propiedades Propiedades generales. Propiedades características. Densidad LA MATERIA La materia son todos los sólidos, líquidos, gases que nos rodean (los árboles, los perros, el agua, una mesa de madera, aire, las personas, una silla de hierro, el refresco de una botella, las

Más detalles

Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla

Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla Diagrama de Fases Temperatura de Ebullición-Composición de una Mezcla Líquida Binaria. Fundamentos teóricos. 1.- Equilibrios líquido-vapor en sistemas binarios: Disoluciones ideales. 2.- Diagramas de fase

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

ESTUDIO DEL CICLO DE RANKINE

ESTUDIO DEL CICLO DE RANKINE ESTUDIO DEL CICLO DE RANKINE 1. INTRODUCCIÓN El ciclo de Rankine es el ciclo ideal que sirve de base al funcionamiento de las centrales térmicas con turbinas de vapor, las cuales producen actualmente la

Más detalles

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA

UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA UNIVERSIDAD NACIONAL ABIERTA Y A DISTANCIA PROGRAMA DE INGENIERIA DE ALIMENTOS 211612 TRANSFERENCIA DE MASA ACTIVIDAD 11 RECONOCIMIENTO UNIDAD 3 BOGOTA D.C. Extracción líquido - líquido La extracción líquido-líquido,

Más detalles

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL

TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL TIPO DE CAMBIO, TIPOS DE INTERES Y MOVIMIENTOS DE CAPITAL En esta breve nota se intentan analizar las relaciones existentes en el sector español entre tipo de cambio, tasa de inflación y tipos de interés,

Más detalles

Ciencias Naturales 5º Primaria Tema 7: La materia

Ciencias Naturales 5º Primaria Tema 7: La materia 1. La materia que nos rodea Propiedades generales de la materia Los objetos materiales tienes en común dos propiedades, que se llaman propiedades generales de la materia: Poseen masa. La masa es la cantidad

Más detalles

Ablandamiento de agua mediante el uso de resinas de intercambio iónico.

Ablandamiento de agua mediante el uso de resinas de intercambio iónico. Ablandamiento de agua por intercambio iónica página 1 Ablandamiento de agua mediante el uso de resinas de intercambio iónico. (Fuentes varias) Algunos conceptos previos: sales, iones y solubilidad. Que

Más detalles

Diciembre 2008. núm.96. El capital humano de los emprendedores en España

Diciembre 2008. núm.96. El capital humano de los emprendedores en España Diciembre 2008 núm.96 El capital humano de los emprendedores en España En este número 2 El capital humano de los emprendedores Este cuaderno inicia una serie de números que detallan distintos aspectos

Más detalles

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN

TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN TEMA 11. MÉTODOS FÍSICOS DE SEPARACIÓN Y PURIFICACIÓN 1. Destilación 2. Extracción 3. Sublimación 4. Cristalización 5. Cromatografía 6. Fórmulas empíricas y moleculares 2 Tema 11 TEMA 11. Métodos físicos

Más detalles

Capítulo 6. Valoración respiratoria

Capítulo 6. Valoración respiratoria 498 Capítulo 6. Valoración respiratoria 6.19. La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 6.19 La respiración. Intercambio gaseoso y modificaciones durante el esfuerzo 499

Más detalles

342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO.

342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO. 342 SOBRE FORMAS TERNARIAS DE SEGUNDO GRADO. ALGUNAS APLICACIONES A LA TEORIA DE LAS FORMAS BINARIAS. Encontrar una forma cuya duplicación produce una forma dada del género principal. Puesto que los elementos

Más detalles

PRÁCTICA 18 DIAGRAMA DE MISCIBILIDAD DEL SISTEMA AGUA-FENOL

PRÁCTICA 18 DIAGRAMA DE MISCIBILIDAD DEL SISTEMA AGUA-FENOL PRÁCTICA 18 DIAGRAMA DE MISCIBILIDAD DEL SISTEMA AGUA-FENOL OBJETIVOS Comprensión cualitativa del equilibrio líquido-líquido en un sistema binario con miscibilidad parcial. Observación de la separación

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

1. INTRODUCCIÓN 1.1 INGENIERÍA

1. INTRODUCCIÓN 1.1 INGENIERÍA 1. INTRODUCCIÓN 1.1 INGENIERÍA Es difícil dar una explicación de ingeniería en pocas palabras, pues se puede decir que la ingeniería comenzó con el hombre mismo, pero se puede intentar dar un bosquejo

Más detalles

PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES

PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES PROCESOS FÍSICOS Y PROCESOS QUÍMICOS EN LA SEPARACIÓN DE SISTEMAS MATERIALES AUTORÍA MARÍA FRANCISCA OJEDA EGEA TEMÁTICA CLASIFICACIÓN DE LOS SISTEMAS MATERIALES, SEPARACIÓN DE MEZCLAS, SEPARACIÓN DE COMPUESTOS,

Más detalles

3 MERCADO SECUNDARIO DE DEUDA DEL ESTADO

3 MERCADO SECUNDARIO DE DEUDA DEL ESTADO 3 MERCADO SECUNDARIO DE DEUDA DEL ESTADO 3 Mercado secundario de deuda del Estado 3.1 Descripción general La negociación en el mercado de deuda del Estado volvió a experimentar un descenso en 2009: a

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación

Más detalles

ALEACIONES BINARIAS. Julio Alberto Aguilar Schafer

ALEACIONES BINARIAS. Julio Alberto Aguilar Schafer ALEACIONES BINARIAS Julio Alberto Aguilar Schafer ALEACIONES BINARIAS Homogeneas: Solución sólida (SS): ej. Latones α Compuesto químico definido (CQD): ej. Cementita (Fe3C) Heterogeneas: SS + SS: el. Latones

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción B Reserva 1, Ejercicio 2, Opción A Reserva, Ejercicio 2, Opción A Reserva 4, Ejercicio, Opción B

Más detalles

Extracción sólido-líquido

Extracción sólido-líquido Extracción sólido-líquido Objetivos de la práctica! Determinar la concentración de saturación del soluto en el disolvente en un sistema ternario arena-azúcar-agua, estableciendo la zona operativa del diagrama

Más detalles

Unidad 8. Estado de Perdidas y Ganancias o Estados de Resultados

Unidad 8. Estado de Perdidas y Ganancias o Estados de Resultados Unidad 8 Estado de Perdidas y Ganancias o Estados de Resultados Al termino de cada ejercicio fiscal, a todo comerciante no solo le interesa conocer la situación financiera de su negocio, sino también el

Más detalles

TEMA 1 Conceptos básicos de la termodinámica

TEMA 1 Conceptos básicos de la termodinámica Bases Físicas y Químicas del Medio Ambiente TEMA 1 Conceptos básicos de la termodinámica La termodinámica es el estudio de la transformación de una forma de energía en otra y del intercambio de energía

Más detalles

UNIDAD 4 INICIACIÓN A LA CONTABILIDAD

UNIDAD 4 INICIACIÓN A LA CONTABILIDAD 4.1 INTRODUCCIÓN 4.2 EL PATRIMONIO EMPRESARIAL 4.3 EL INVENTARIO 4.4 MASAS PATRIMONIALES 4.5 LAS CUENTAS 4.6 SALDO DE CUENTA INICIACIÓN A LA CONTABILIDAD 4.1 Introducción Si un empresario conociera el

Más detalles

A N Á L I S I S D E C O N S T I T U C I O N E S S O C I E T A R I A S E N L A C I U D A D D E B A D A J O Z A T R A V É S D E L B O L E T Í N

A N Á L I S I S D E C O N S T I T U C I O N E S S O C I E T A R I A S E N L A C I U D A D D E B A D A J O Z A T R A V É S D E L B O L E T Í N A N Á L I S I S D E C O N S T I T U C I O N E S S O C I E T A R I A S E N L A C I U D A D D E B A D A J O Z A T R A V É S D E L B O L E T Í N A N Á L I S I S D E 2 0 0 9, 2 0 1 0, 2 0 1 1 Y 2 0 1 2 En

Más detalles

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006

BATERIA AUTOMOTRIZ. HECTOR CISTERNA MARTINEZ Profesor Técnico. Duoc UC, Ingenería Mecánica Automotriz y Autotrónica 16/11/2006 BATERIA AUTOMOTRIZ HECTOR CISTERNA MARTINEZ Profesor Técnico 1 Introducción La batería es un acumulador de energía que cuando se le alimenta de corriente continua, transforma energía eléctrica en energía

Más detalles

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV)

Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) POTENCIA Se define la potencia en general, como el trabajo desarrollado en la unidad de tiempo. Potencia teórica o térmica W F e P = = = F v t t 1 CV = 0,736 kw 1kW = 1,36 CV 100 kw (136 CV) Se denomina

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA

LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA LAS PROPIEDADES DE LOS POLÍMEROS DEPENDEN FUERTEMENTE DE LA TEMPERATURA LAS TRANSICIONES TÉRMICAS EN UN MATERIAL POLIMÉRICO ESTÁN ÍNTIMAMENTE LIGADAS A LA ESTRUCTURA LAS TRANSICIONES TÉRMICAS TOMAN UNOS

Más detalles

LÍNEAS DEL DIAGRAMA DE MOLLIER

LÍNEAS DEL DIAGRAMA DE MOLLIER DIAGRAMA DE MOLLIER El refrigerante cambia de estado a lo largo del ciclo frigorífico como hemos visto en el capítulo anterior. Representaremos sobre el diagrama de p-h las distintas transformaciones que

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO

UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN DESCUENTO - 1 - UNIDAD 1 LAS LEYES FINANCIERAS DE CAPITALIZACIÓN Y DESCUENTO Tema 1: Operaciones financieras: elementos Tema 2: Capitalización y descuento simple Tema 3: Capitalización y descuento compuesto Tema

Más detalles

Lubricantes a base de Polyalkylene Glycol (PAG) usados con HFC134a (R134a)

Lubricantes a base de Polyalkylene Glycol (PAG) usados con HFC134a (R134a) LUBRICANTES SINTÉTICOS PARA SISTEMAS DE AIRE ACONDICIONADO ( SL AIR FREEZE LUBRICANT A & B ) Introducción En los países industrializados, la producción del refrigerante CFC12 (R12) cesó desde 1995 debido

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

PRESENTACIÓN GRÁFICA DE LOS DATOS

PRESENTACIÓN GRÁFICA DE LOS DATOS PRESENTACIÓN GRÁFICA DE LOS DATOS Una imagen dice más que mil palabras, esta frase explica la importancia de presentar los datos en forma gráfica. Existe una gran variedad de gráficos y la selección apropiada

Más detalles

Circuito RL, Respuesta a la frecuencia.

Circuito RL, Respuesta a la frecuencia. Circuito RL, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se estudia

Más detalles

ENERGÍA INTERNA PARA GASES NO IDEALES.

ENERGÍA INTERNA PARA GASES NO IDEALES. DEPARTAMENTO DE FISICA UNIERSIDAD DE SANTIAGO DE CHILE ENERGÍA INTERNA PARA GASES NO IDEALES. En el caso de los gases ideales o cualquier cuerpo en fase no gaseosa la energía interna es función de la temperatura

Más detalles

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos.

De cualquier manera, solo estudiaremos en esta unidad los compuestos inorgánicos. Unidad 3 Ácidos, Hidróxidos y Sales: óxidos básicos, óxidos ácidos, hidróxidos, hidrácidos o ácidos binarios, ácidos ternarios, sales binarias, ternarias y cuaternarias. Formación y nomenclatura. Enlaces

Más detalles

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1

Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 Administración de Empresas. 11 Métodos dinámicos de evaluación de inversiones 11.1 TEMA 11: MÉTODOS DINÁMICOS DE SELECCIÓN DE INVERSIONES ESQUEMA DEL TEMA: 11.1. Valor actualizado neto. 11.2. Tasa interna

Más detalles

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT.

Señal de Referencia: Es el valor que se desea que alcance la señal de salida. SET POINT. EL ABC DE LA AUTOMATIZACION ALGORITMO DE CONTROL PID; por Aldo Amadori Introducción El Control automático desempeña un papel importante en los procesos de manufactura, industriales, navales, aeroespaciales,

Más detalles

MEDICIÓN DE LA ACTIVIDAD DEL AGUA

MEDICIÓN DE LA ACTIVIDAD DEL AGUA MEDICIÓN DE LA ACTIVIDAD DEL AGUA El concepto actividad del agua (AW) La definición de la actividad del agua es la relación entre la presión de vapor del aire alrededor de un alimento (p) y la presión

Más detalles

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión...

8.1. Introducción... 1. 8.2. Dependencia/independencia estadística... 2. 8.3. Representación gráfica: diagrama de dispersión... 3. 8.4. Regresión... Tema 8 Análisis de dos variables: dependencia estadística y regresión Contenido 8.1. Introducción............................. 1 8.2. Dependencia/independencia estadística.............. 2 8.3. Representación

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.4 Ley de Enfriamiento de Newton Si un cuerpo u objeto que tiene una temperatura T 0 es depositado en un medio ambiente que se mantiene a una temperatura T a constante,

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO

Elementos de Física - Aplicaciones ENERGÍA. Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Elementos de Física - Aplicaciones ENERGÍA Taller Vertical 3 de Matemática y Física Aplicadas MASSUCCO ARRARÁS MARAÑON DI LEO Energía La energía es una magnitud física que está asociada a la capacidad

Más detalles

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética.

SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. SISTEMA MONOFÁSICO Y TRIFÁSICO DE C.A Unidad 1 Magnetismo, electromagnetismo e Inducción electromagnética. A diferencia de los sistemas monofásicos de C.A., estudiados hasta ahora, que utilizan dos conductores

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 3: ENLACES QUÍMICOS

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA 3: ENLACES QUÍMICOS PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio 2, Opción B Reserva 2, Ejercicio 2, Opción A Reserva, Ejercicio 2, Opción A Reserva, Ejercicio, Opción B

Más detalles

Fracción másica y fracción molar. Definiciones y conversión

Fracción másica y fracción molar. Definiciones y conversión Fracción másica y fracción ar. Definiciones y conversión Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

PRACTICA N 2 SEPARACION DE MEZCLAS

PRACTICA N 2 SEPARACION DE MEZCLAS PRACTICA N 2 SEPARACION DE MEZCLAS I. OBJETIVO GENERAL Adquirir las destrezas necesaria en métodos de separación de mezclas. Específicamente los métodos de filtración, evaporación y sublimación. II. OBJETIVOS

Más detalles

Determinación del calor latente de fusión del hielo

Determinación del calor latente de fusión del hielo Determinación del calor latente de usión del hielo Apellidos, nombre Atarés Huerta, Lorena (loathue@tal.upv.es) Departamento Centro Departamento de Tecnología de Alimentos ETSIAMN (Universidad Politécnica

Más detalles

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos.

Los gases combustibles pueden servir para accionar motores diesel, para producir electricidad, o para mover vehículos. PIRÓLISIS 1. Definición La pirólisis se define como un proceso termoquímico mediante el cual el material orgánico de los subproductos sólidos se descompone por la acción del calor, en una atmósfera deficiente

Más detalles

Circuito RC, Respuesta a la frecuencia.

Circuito RC, Respuesta a la frecuencia. Circuito RC, Respuesta a la frecuencia. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (13368) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se armó un

Más detalles

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte

Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte Profesores Básica / Media / Recursos Procesos científicos básicos: Comunicar (Cómo trabajar en la sala de clases), 2ª. Parte 1 [Nota: material previsto para 8º básico y enseñanza media] Cómo construir

Más detalles

Capítulo VI. Diagramas de Entidad Relación

Capítulo VI. Diagramas de Entidad Relación Diagramas de Entidad Relación Diagramas de entidad relación Tabla de contenido 1.- Concepto de entidad... 91 1.1.- Entidad del negocio... 91 1.2.- Atributos y datos... 91 2.- Asociación de entidades...

Más detalles

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE

CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE CAPÍTULO 3. HERRAMIENTA DE SOFTWARE DE PLANEACIÓN DE INVENTARIO Y PROCESO Objetivos del capítulo Desarrollar una herramienta de software de planeación de inventario con los datos obtenidos del capítulo

Más detalles

Sistema termodinámico

Sistema termodinámico IngTermica_01:Maquetación 1 16/02/2009 17:53 Página 1 Capítulo 1 Sistema termodinámico 1.1 Introducción En sentido amplio, la Termodinámica es la ciencia que estudia las transformaciones energéticas. Si

Más detalles

El plan de clase sobre el efecto invernadero y el sistema climático global

El plan de clase sobre el efecto invernadero y el sistema climático global Para los docentes El plan de clase sobre el efecto invernadero y el sistema climático global El siguiente plan de clase se diseñó para ser usado con la sección de Cambio Climático del sitio web La evidencia

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00

La explicación la haré con un ejemplo de cobro por $100.00 más el I.V.A. $16.00 La mayor parte de las dependencias no habían manejado el IVA en los recibos oficiales, que era el documento de facturación de nuestra Universidad, actualmente ya es formalmente un CFD pero para el fin

Más detalles