Exámenes de álgebra básica de enero de Grupos 1 y 3.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Exámenes de álgebra básica de enero de Grupos 1 y 3."

Transcripción

1 Exámenes de álgebra básica de enero de Grupos 1 y 3. GRUPOS 1. Calcular razonadamente todos los subgrupos normales de S 4. Un subgrupo H de un grupo G es normal si y solamente si para cada g G se tiene que ghg 1 H Es decir si para cada h H se tiene que ghg 1 H. En nuestro caso G = S 4. Como sabemos que la conjugación no cambia la estructura de ciclos de una permutación cada vez que una permutación π pertenezca a un subgrupo para que este sea normal han de pertenecer también todas aquellas otras permutaciones con la misma estructura de ciclos. Las posibles estructuras de ciclos de las permutaciones en S 4 son (****) hay 6 permutaciones de este tipo todas de signo negativo. (***)(*) hay 8 permutaciones de este tipo todas de signo positivo. (**)(**) hay 3 permutaciones de este tipo todas de signo positivo. (**)(*)(*) hay 6 permutaciones de este tipo todas de signo negativo. (*)(*)(*)(*) hay 1 única permutación de este tipo la identidad que ha de pertenecer a cualquier subgrupo. Tiene signo positivo. Por otra parte S 4 tiene 24 elementos. El teorema de Lagrange nos dice que sus subgrupos sólo pueden tener cardinalidad ó 24. Los dos casos extremos {} y S 4 son triviamente normales. Por otra parte solo es posible conseguir conjuntos de 4 y de 12 sumando los números anteriores (y recordando que la identidad pertenece a cualquier subgrupo). Veamos si en efectotales subconjuntos tienen la estructura de subgrupos. (Nota: Por construcción estos conjuntos son uniones de clases de conjugación. Lo que falta ver es que son subgrupos). El subconjunto de cardinalidad 4 es V 4 = { (12)(13) (14)(23) (13)(24)}

2 es el grupo de Klein (cada elemento es su propia inversa) y el subconjunto de cardinalidad 12 está formado por las permutaciones partes (verificar) así que es A 4 el grupo alternado. 2. Demostrar que si N es un subgrupo normal de G tal que para cada par a b G se tiene que aba 1 b 1 N entonces G/N es abeliano. Como G puede ser no abeliano se utiliza la notación multiplicativa. Sean a b G. Si aba 1 b 1 N entonces aba 1 b 1 aba 1 b ab ba mód N mód N mód N Concluimos que el grupo cociente es abeliano. 3. Sea F q un cuerpo con q elementos. Denotamos por GL(2 F q )elgrupo de las matrices invertibles 2 2concoeficientesenF q y SL(2 F q )= {A GL(2 F q det(a) =1}. a) DemuestrequeSL(2 F q )esunsubgruponormaldegl(2 F q ). (sugerencia: Cómo asociamos de manera natural un escalar a cualquier matriz?) b) DemuestrequeGL(2 F q )/SL(2 F q )esisomorfoaf X q el grupo de las unidades de F q. c) Calcular GL(2 F 2. Consideramos el homomorfismo de grupos δ : GL(2 F q ) F q A det(a) Es un homomorfismo de grupo ya que sabemos que el determinante es multiplicativo y que el determinante de la identidad es 1. Calculemos el kernel de este homomorfismo. Por definición A ker δ si y solo si det A = 1. Esto es SL(2 F q ) = kerδ. Esto muestra que es un subgrupo normal. Ahora utilizamos el teorema fundamental de homomorfismos para ver que existe un isomorfismo de grupos entre GL(2 F q )/SL(2 F q ) y la imagen de δ. 2

3 Por una parte el determinante de una matriz invertible no puede ser cero. Por otra parte dado cualquier a diferente de cero en F q el determinante de la matriz a 0 det = a = 0. por lo que todos los elementos de F X q tienen preimagen. La imagen de δ es F X q. El teorema fundamental de homomorfismo nos asegura que GL(2 F q )/SL(2 F q ) = F X q Finalmente las matrices en GL(2 F 2 ) son ENTEROS Es fácil ver que si tenemos 0 3 ó 4 ceros las filas no pueden ser linealmente independientes. Y que las otras posibles matrices con 2 ceros también tienen filas linealmente dependientes. 1. Hallar todos los números naturales pares tales que x 1 mód 3 x 4 mód 673 La soluciones naturales pares al sistema de congruencia son s con s 2N. 2. Para que valores de a el siguiente sistema de congruencias tiene solución? x 10 mód 15 x 15 mód 25 x a mód 30 Analizamos primero el sistema x 10 mód 15 x a mód 30 3

4 Como tenemos que x =30k + a 10 mód 15 sabemos que a 10 mód 15 y solo hay dos valores módulo 30 que satisfagan esta congruencia: a =10y a =25. Tenemos entonces que el primer sistema de congruencias es equivalente a x 15 mód 25 x 10 mód 30 ó x 15 mód 25 x 25 mód 30 El primer sistema tiene solución x =40 y el segundo x =115. No era necesario resolver el sistema solamente plantear los sistemas correspodientes y argumentar que hay solución. 3. Demostrar que n es compuesto 2 n 1tambiénloes. Recordemos primero la identidad: x b 1 x 1 =1+x xb 1 Ahora suponemos que n es compuesto. Esto es que existen a b > 1 tales que n = ab. Subtituyendo x =2 a en la ecuación anterior y despejando obtenemos que 2 n 1=(2 a ) b 1=(2 a 1)(1 + 2 a + +(2 a ) b 1 ) Finalmente ninguno de estos dos factores es uno ya que por hipótesis a b > 1. Concluimos que 2 n 1 es compuesto. 4. Demuestre razonadamente que si el máximo común divisor de a y b es d entonces existen enteros α y β tales que αa + βb = d Es la identidad de Bezout ver notas de clase. 5. Calcular los últimos dos dígitos de N = Veamos cada sumando separadamente. Es obvio que los últimos dos dígitos de son cero no contribuye en nada a los de N. Por otra parte mód 4 y mód 25. De manera que mód 4 y mód 25 (el exponente es par). 4

5 Finalmente mód 4 y mód 25. Como sabemos que 2 10 = mód = mód 25. Finalmente tenemos que N 3 mód 4 y N 4 mód 25. El teorema chino del resto nos dice que este sistema tiene una única solución módulo 100. Es sencillo ver cual es: Los número mód 100 que son congruentes con 4 mód 25 son y 79. De ellos el único congruente con 3 mód 4 es el 79. Los últimos dos dígitos de N son entonces Calcular el último dígito diferente de cero en 60! Primero veamos cuantos ceros hay al final de 60! para esto es suficiente calcular la multiplicidad de 5 en su descomposición en factores primos (es evidente que hay muchos mas 2 s que 5 s). Hay 14 cincos en tal descomposición 14 = 50/5+50/25. Ahora queremos obtener el l último dígito de 60!/14 N =60!/14 = 1 ( ) 5 ( ) ( ) Es obvio que N 0 mód 2. Queremos hallar su clase módulo 5. Por una parte cada uno de los grupos entre paréntesis tiene la forma (5k +1)(5k +2)(5k +3)(5k +4) para algún valor de k. Todos son congruentes con 1 mód 5. Como hay 12 de ellos el producto es congruente con 1 mód 5 Fuera de estos grupos si tomamos el 5 como factor común obtenemos ( ) 5 ( ) = 1 ( ) 1 ( ) Ahora podemos concluir que N =60!/ mód mód mód 5 (ya que 2 10 = mód 5y2 4 =16 1 mód 5). Tenemos que resolver el sistema N 0 mód 2 y N 1 mód 5. Como los módulos son coprimos el sistema tiene solución única. Hay solamente dos números mód 10 que son congruentes a 1 módulo 5 el 1 y el 6. De ellos sólo el segundo es par. 5

6 El último dígito no cero de 60! es Demuestre que para cualquier k N existen infinitas sucesiones formadas por k números compuestos consecutivos. Sea a = k +1. Considerese la sucesión a!+2a!+3...a!+a Esta sucesión tiene k elementos todos ellos compuestos ya que para cada i a se tiene que i a! y entonces i a!+i. El mismo razonamiento nos dice que para cada s si fijamos a = s(k+1) obtenemos una sucesión con las propiedades deseadas. POLINOMIOS 1. Factorizar el polinomio x 4 +6x 2 16 sobre Q. La manera más simple es completando cuadrados x 4 +6x 2 16 = x 4 +6x =(x 2 +3) 5 2 =(x )(x ) = (x 2 +8)(x 2 2) Finalmente falta ver que los dos polinomios obtenidos son irreducibles esto es una consecuencia de ser de grado dos y no tener raíces racionales. 2. Factorizar sobre Q el polinomio p(x) =x 8 1. Factorizar p(x) sobreel cuerpo con 2 elementos. La manera más simple es completando cuadrados: x 8 1=(x 4 1)(x 4 +1) =(x 2 1)(x 2 +1)(x 4 +1) =(x 1)(x +1)(x 2 +1)(x 4 +1) Falta verificar que los factores de grados 2 y 4 son irreducibles. x 2 +1 no tiene tienen raíces racionales (ni reales). Luego es irreducible. Por otra parte substituyendo x = y +1 en x 4 +1 obtenemos y 4 +4y 3 + 6y 2 +4y +2. Luego el criterio de Eisenstein implica que este polinomio también es irreducible. 6

7 Para factorizarlo sobre F 2 : Sabemos que x 8 1=(x 1)(x +1)(x 2 + 1)(x 4 +1) como sabemos que en F 2 (x+1) 2 = x 2 +1 y (x 2 +1) 2 = x 4 +1 tenemos que x 8 1=(x +1) 8 3. Construir un cuerpo con 4 elementos y calcular su tabla de multiplicación. Es el grupo de sus unidades un grupo cíclico? Como 4=2 2 necesitamos obtener un polinomio irreducible de grado 2 en F 2 [x]. Los polinomios (mónicos) de grado uno son x y x +1. A partir de ellos conseguimos los polinomios reducibles de grado 2: x 2 x(x +1) (x +1) 2 = x 2 +1 Por lo que x 2 + x +1 ha de ser el irreducible que buscamos. Tenemos entonces que K = F 2 [x]/x 2 + x +1 es un cuerpo ( el polinomio es irreducible) con cuatro elementos (ya que cualquier polinomio p en F 2 [x] el congruente con el resto obtenido al dividir por x 2 + x +1 que tiene grado < 2. Las clases de equivalencia en el cociente vienen representadas por 0 1 x x +1. Tabla de multiplicación:. x x x x+1 x 0 x x+1 1 x+1 0 x+1 1 x Por ejemplo como x 2 + x +1 0 mód x 2 + x +1 es inmediato que x 2 x +1 mód x 2 + x +1. Se deben justificar el resto de los cálculos. Finalmente como x+1 = {x+1 x 1} = K X el grupo de las unidades de K es cíclico. 4. Sea K un cuerpo finito. Demostrar que dado cualquier n>0existeun polinomio irreducible de grado mayor que n. El argumento de Euclides nos asegura que para cualquier cuerpo K existen un número infinito de polinomios irreducibles en K[x]. Ahora si el cuerpo es finito para cada n existen solamente un número finito de polinomios de grado n (tenemos un número finito de opciones para cada escoger a cada uno de sus coeficientes). Luego deben existir polinomios irreducibles de grado >n. 7

8 5. Demostrar que para cada primo p existe un polinomio irreducible de grado 2 en F p [x]. Utilizaremos un argumento de conteo. Los polinomios mónicos irreducible de grado 1 son de la forma x + α con α F p. Hay por lo tanto p de ellos. Por lo tanto los polinomios mónicos y reducibles de grado 2 son de una de las dos formas siguientes (recordar que hay unicidad en la factorización) (x + α) 2 hay p de ellos (x + α)(x + β) hay p(p 1) 2 de ellos En el segundo caso dividimos entre 2 por que el producto es conmutativo. Por otra parte el número de polinomios mónicos de grado 2 es p 2 ya que tienen la forma x 2 + αx + β y tenemos p elecciones para cada coeficiente. Finalmente el número de polinomios irreducibles es p(p 1) 2 : p 2 p + p(p 1) p 2 = 2 2 p 2 = p(p 1) 2 = p 1. Como p>1estasumaespositiva. 8

una aplicación biyectiva h : A A.

una aplicación biyectiva h : A A. Álgebra Básica Examen de septiembre 9-9-016 apellidos nombre Observaciones: -) Los cuatro ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global. -)

Más detalles

Álgebra Básica Primera parte

Álgebra Básica Primera parte Álgebra Básica Primera parte 21-1-2016 apellidos nombre Observaciones: -) Todos los ejercicios tienen el mismo valor. Cada ejercicio será puntuado sobre 10 para después calcular la nota global, según se

Más detalles

TEMA 4. Anillos de polinomios.

TEMA 4. Anillos de polinomios. TEMA 4 Anillos de polinomios. Ejercicio 4.1. Encontrar un polinomio f(x) de grado 3 tal que: f(0) = 6, f(1) = 12 y f(x) (3x + 3) mod (x 2 + x + 1). Ejercicio 4.2. Demostrar que en un D.E. todos los ideales

Más detalles

4.1 Anillo de polinomios con coeficientes en un cuerpo

4.1 Anillo de polinomios con coeficientes en un cuerpo Tema 4 Polinomios 4.1 Anillo de polinomios con coeficientes en un cuerpo Aunque se puede definir el conjunto de los polinomios con coeficientes en un anillo, nuestro estudio se va a centrar en el conjunto

Más detalles

Ejercicios de Álgebra Básica. Curso 2016/17

Ejercicios de Álgebra Básica. Curso 2016/17 Tema 4: Polinomios Ejercicios de Álgebra Básica. Curso 2016/17 El anillo k[x]. Divisibilidad Ejercicio 1. Sea A un anillo. Prueba que, si A es dominio de integridad, A[x] = A y demuestra con un contraejemplo

Más detalles

Álgebra Básica. Departamento de Álgebra.

Álgebra Básica. Departamento de Álgebra. Ejercicios de Álgebra Básica. Curso 2010/11 Ejercicio 1. Construir las tablas de verdad de las siguientes proposiciones: (1). p q (2). [(p q) q] p (3). [(p q) r] p (q r) (4). [(p q) q] p (5). [(p q) p]

Más detalles

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2,

Álgebra Básica. Departamento de Álgebra (2n 1) = n 2, Ejercicios de Álgebra Básica. Curso 2012/13 Ejercicio 1. Probar, usando el método de inducción, la fórmula de la suma de n términos de una progresión geométrica de razón r, S n = ra n a 1 r 1. Ejercicio

Más detalles

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd)

(n, a)(m, b) = (nm, ma + nb) (a, b) + (c, d) = (a + c, b + d) y (a, b)(c, d) = (ac, bd) TEMA 3 Anillos. Dominios euclídeos. Ejercicio 3.1. Sea X un conjunto no vacío y R = P(X), el conjunto de partes de X. Si se consideran en R las operaciones: A + B = (A B) (A B) A B = A B demostrar que

Más detalles

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017

Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/ de septiembre de 2017 Álgebra básica Soluciones del examen de segunda convocatoria Curso 2016/2017 12 de septiembre de 2017 Ejercicio 1. Se pide lo siguiente: 1. (2 puntos) Dados unos conjuntos X, Y, unos subconjuntos A X,

Más detalles

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II

Universidad Autónoma de Madrid Martes 19 de junio de Examen final: Álgebra II Universidad Autónoma de Madrid Martes 19 de junio de 2007 Examen final: Álgebra II Apellidos: D.N.I.: Nombre: Grupo: IMPORTANTE: Justifica todas tus respuestas. 1. Decide razonadamente si las siguientes

Más detalles

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas

Álgebra Lineal. Ejercicios de evaluación. Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas Álgebra Lineal Ejercicios de evaluación Grado en Ingeniería Informática Doble Grado en Ingeniería Informática y Administración de Empresas AUTORES: J. S ALAS, A. T ORRENTE Y E.J.S. V ILLASEÑOR Problema

Más detalles

La estructura de un cuerpo finito.

La estructura de un cuerpo finito. 9. CUERPOS FINITOS El objetivo de este capítulo es determinar la estructura de todos los cuerpos finitos. Probaremos en primer lugar que todo cuerpo finito tiene p n elementos, donde p es la característica

Más detalles

Anillo de polinomios con coeficientes en un cuerpo

Anillo de polinomios con coeficientes en un cuerpo Capítulo 2 Anillo de polinomios con coeficientes en un cuerpo En el conjunto Z se ha visto cómo la relación ser congruente módulo m para un entero m > 1, es compatible con las operaciones suma y producto.

Más detalles

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017

Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 Álgebra Básica 11/01/2017 Grado en Matemáticas. Grupo C. Curso 2016/2017 SOLUCIONES Ejercicio 1 (5 puntos). Sea A un anillo conmutativo y K un cuerpo. a) Definir: i) Unidad en A. ii) Elemento irreducible

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2016 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias

ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias ALGEBRA MODERNA Examen Parcial 1: Respuestas y Sugerencias 21 de abril de 2004 1 Da las definiciones de grupo, subgrupo normal y acción de un grupo G en un conjunto X. Definición. La pareja (G, ), donde

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2016 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 3 El anillo de los polinomios sobre un cuerpo 1. Divisibilidad Un

Más detalles

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I.

Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización. Aritmética I. Leandro Marín Septiembre 2010 Índice La División Entera El Máximo Común Divisor Algoritmo de Euclides Ecuaciones Diofánticas Factorización Los Números Enteros Llamaremos números enteros al conjunto infinito

Más detalles

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante

TIPOS DE GRUPOS. 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante TIPOS DE GRUPOS 1. Generadores Hemos visto que una buena idea para expresar un grupo es mediante generadores. Por ejemplo: C 8 = g 2π/8, D 6 = g 2π/6, r 0, S 3 = (12), (123), O(2, R) = g α, r 0 : α R y

Más detalles

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023

Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #8: jueves, 9 de junio de 2016. 8 Factorización Conceptos básicos Hasta

Más detalles

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo).

2. Obtener, por ensayo y error, una aproximación del entero más grande. Sugerencia: leer n y escribir n y n+1. (Puede ser muy largo el ensayo). En los ejercicios, cuando se hable de un entero (un número entero), se trata de un entero del lenguaje C. Por ejemplo, 10 20 es un número entero en el sentido matemático, pero muy posiblemente este entero

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2017 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

Algoritmos en teoría de números

Algoritmos en teoría de números Algoritmos en teoría de números IIC2283 IIC2283 Algoritmos en teoría de números 1 / 92 Para recordar: aritmética modular Dados dos números a, b Z, si b > 0 entonces existen α, β Z tales que 0 β < b y a

Más detalles

Ejercicios de Estructuras Algebraicas 1

Ejercicios de Estructuras Algebraicas 1 Ejercicios de Estructuras Algebraicas 1 Números enteros y polinomios 1. Para cada una de las siguientes parejas de números enteros, hallar el máximo común divisor, el mínimo común múltiplo y una identidad

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r

AMPLIACIÓN DE MATEMÁTICAS. a = qm + r AMPLIACIÓN DE MATEMÁTICAS CONGRUENCIAS DE ENTEROS. Dado un número natural m N\{0} sabemos (por el Teorema del Resto) que para cualquier entero a Z existe un único resto r de modo que con a = qm + r r {0,

Más detalles

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición

Teorema de Lagrange. En esta sección demostramos algunos hechos básicos sobre grupos, que se pueden deducir de la definición Teorema de Lagrange Capítulo 3 3.1 Introducción En este capítulo estudiaremos uno de los teoremas más importantes de toda la teoría de grupos como lo es el Teorema de Lagrange. Daremos en primer lugar

Más detalles

Otros ejemplos de grupos

Otros ejemplos de grupos Capítulo 4 Otros ejemplos de grupos Después del capítulo precedente, podemos dar algunos ejemplos de grupos que no hemos visto antes. Los siguientes ejemplos son banales en el sentido de que ciertas estructuras

Más detalles

Polinomios II. I. Regla de Ruffini

Polinomios II. I. Regla de Ruffini Polinomios II En las matemáticas se define el polinomio como una expresión que está formada por un número finito de variables (no conocidas) y constantes (coeficientes) siendo muy utilizados en las matemáticas

Más detalles

Objetivos formativos de Álgebra

Objetivos formativos de Álgebra Objetivos formativos de Álgebra Para cada uno de los temas el alumno debe ser capaz de hacer lo que se indica en cada bloque. Además de los objetivos que se señalan en cada tema, se considera como objetivo

Más detalles

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero.

0. Enteros. 10. Prueba que el cuadrado de todo número impar deja resto 1 al dividirlo por 8. es un número entero. Introducción al Álgebra (curso 00-003) 1 0. Enteros 1. Para los números enteros a y b que se citan, halla su máximo común divisor y mínimo común múltiplo, así como enteros n y m tales que na + mb sea el

Más detalles

ÁLGEBRA LINEAL Problemas, 2006/2007

ÁLGEBRA LINEAL Problemas, 2006/2007 ÁLGEBRA LINEAL Problemas, 2006/2007 Nota: si no se especifíca lo contrario suponemos que las matrices y espacios vectoriales están definidos sobre un cuerpo K arbitrario 1 Una matriz A de orden n n se

Más detalles

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios

OPERACIONES CON MONOMIOS Y POLINOMIOS. Suma de monomios OPERACIONES CON MONOMIOS Y POLINOMIOS Suma de monomios Sólo podemos sumar monomios semejantes. La suma de los monomios es otro monomio que tiene la misma parte literal y cuyo coeficiente es la suma de

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 2 cíclicos 3 Subgrupos 4 Algoritmos 5 ElGamal Definición Un grupo es un conjunto de elementos sobre los cuales

Más detalles

Capítulo 3: El anillo de los números enteros

Capítulo 3: El anillo de los números enteros Capítulo 3: El anillo de los números enteros Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Noviembre de 2017 Olalla (Universidad de Sevilla) El anillo de

Más detalles

Estructuras algebraicas. Departamento de Álgebra. Apuntes de teoría

Estructuras algebraicas. Departamento de Álgebra.  Apuntes de teoría ESTRUCTURAS ALGEBRAICAS GRADO EN MATEMÁTICAS. CURSO 2015/2016 Apuntes de teoría Tema 1: Grupos y subgrupos. 1.1. Introducción Definición 1.1. Un grupo es un par (G, ), donde G es un conjunto no vacío,

Más detalles

Polinomios (lista de problemas para examen)

Polinomios (lista de problemas para examen) Polinomios (lista de problemas para examen) En esta lista de problemas el conjunto de los polinomios de una variable con coeficientes complejos se denota por P(C). También se usa la notación C[x], si la

Más detalles

Anillo de Polinomios.

Anillo de Polinomios. Capítulo 6 Anillo de Polinomios. Una forma de definir los polinomios en forma intuitiva es la siguiente: Sea (K,+, ) un cuerpo, entonces un polinomio con coeficiente en K es de la siguiente forma p(x)

Más detalles

Álgebra I Práctica 7 - Polinomios

Álgebra I Práctica 7 - Polinomios FCEyN - UBA - 1er cuatrimestre 2016 Generalidades Álgebra I Práctica 7 - Polinomios 1. Calcular el grado y el coeficiente principal de f Q[X] en los casos i) f = (4X 6 2X 5 + 3X 2 2X + 7) 77. ii) f = (

Más detalles

Peter Ludwig Mejdell Sylow, matemático noruego ( ).

Peter Ludwig Mejdell Sylow, matemático noruego ( ). CONCURSO ÁLGEBRA Y LÓGICA 473426 PRUEBA DE OPOSICIÓN: DR. MARCO ANDRÉS FARINATI Teoremas de Sylow [1872, Math. Ann.] Peter Ludwig Mejdell Sylow, matemático noruego (1832-1918). Sea G un grupo finito y

Más detalles

Capítulo 4: Polinomios

Capítulo 4: Polinomios Capítulo 4: Polinomios Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 010 011). Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí. Demostrar

Más detalles

GUÍA DE EJERCICIOS. Área Matemática - Polinomios

GUÍA DE EJERCICIOS. Área Matemática - Polinomios GUÍA DE EJERCICIOS Área Matemática - Polinomios Resultados de aprendizaje. Realizar operaciones entre polinomios. Aplicar Regla de Ruffini, para determinar raíces de un polinomio. Aplicar los procedimientos

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Anexo: CUERPOS FINITOS Mayo de 2017 Anexo: CUERPOS FINITOS A.1. Algunas

Más detalles

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES)

TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) TERCER EXAMEN PARCIAL ALGEBRA LINEAL I 23 DE MAYO DE 2014 (CON SOLUCIONES) Instrucciones: Resolver los 5 problemas justificando todas sus afirmaciones y presentando todos sus cálculos. 1. Sea F un campo.

Más detalles

Anexo: El anillo de polinomios K[x].

Anexo: El anillo de polinomios K[x]. El anillo de polinomios K[x] 1 Anexo: El anillo de polinomios K[x]. 1. Construcción del anillo de polinomios K[x]. Dado un cuerpo K, se define m K[x] = { a i x i a i K, i = 0,..., m, m N {0}}, i=0 donde

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Álgebra I Práctica 5 - Polinomios Números complejos 1. Para los siguientes z C, hallar Re(z), Im(z), z, Re(z 1 ), Im(z 1 ), Re( i z) e Im(i z). i) z = (2 + i)(1 + 3 i). ii) z = 5 i(1 + i) 4. iii) z = (

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Números complejos Álgebra I Práctica 5 - Polinomios 1. Para los siguientes z C, hallar Re(z), Im(z), z, Re(z 1 ), Im(z 1 ), Re( i z) e Im(i z). i) z = (2 + i)(1 + 3 i). ii) z = 5 i(1 + i) 4. iii) z = (

Más detalles

Veamos que la operación multiplicación heredada de Z m es interna:

Veamos que la operación multiplicación heredada de Z m es interna: Tema 3 El cuerpo (, +,.) (p número primo) 3.1 El grupo multiplicativo En el tema anterior se vio que (Z m, +,.) es un anillo conmutativo con elementos identidad. No preguntamos ahora para qué elementos

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

Ejercicios de Álgebra Básica. Curso 2015/16

Ejercicios de Álgebra Básica. Curso 2015/16 Ejercicios de Álgebra Básica. Curso 2015/16 Tema 3: El anillo de los números enteros Divisibilidad en Z Ejercicio 1. Probar que para todo número n, n y n + 1 son primos entre sí. Ejercicio 2. Probar que

Más detalles

Álgebra I Práctica 3 - Números enteros (Parte 1)

Álgebra I Práctica 3 - Números enteros (Parte 1) Divisibilidad Álgebra I Práctica 3 - Números enteros (Parte 1 1. Decidir cuáles de las siguientes afirmaciones son verdaderas para todo a, b, c Z i a b c a c y b c, ii 4 a a, iii a b a ó b, iv 9 a b 9

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA 3º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

Ejercicios de Álgebra Básica. Curso 2018/19

Ejercicios de Álgebra Básica. Curso 2018/19 Ejercicios de Álgebra Básica Curso 2018/19 Tema 2: Introducción a la teoría de grupos Introducción Ejercicio 1 Probar que Z con la operación a b = a + b + 1 es un grupo Ejercicio 2 En Z consideramos la

Más detalles

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3 Matrices y determinantes (Curso 2011 2012) 2. Sea A una matriz diagonal n n y supongamos que todos los elementos de su diagonal son distintos entre sí.

Más detalles

Lista de problemas de álgebra, 2016

Lista de problemas de álgebra, 2016 Instituto Politécnico Nacional Escuela Superior de Física y Matemáticas Posgrado en Ciencias Físicomatemáticas Línea de Matemáticas Lista de problemas de álgebra 2016 Egor Maximenko: En mi opinión cualquier

Más detalles

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois.

Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 1 Tema 9.-. Homomorfismos de cuerpos. Extensiones normales. Teorema fundamental de la teoría de Galois. 9.1. Caracteres de un grupo. A la hora de resolver una ecuación f(x) = 0 con f(x) k[x], tomamos un

Más detalles

Anillos finitos locales

Anillos finitos locales Anillos finitos locales XXVII Escuela Venezolana de Matemáticas EMALCA Edgar Martínez-Moro Sept. 2014 Estructura de los anillos finitos Un anillo conmutativo A es local si tiene un único ideal maximal

Más detalles

TEMA: 5 ÁLGEBRA 3º ESO

TEMA: 5 ÁLGEBRA 3º ESO TEMA: 5 ÁLGEBRA º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x

Más detalles

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR

UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR UNIVERSIDAD AUTÓNOMA CHAPINGO DIVISIÓN DE CIENCIAS FORESTALES CARRERA DE: Licenciado en Estadística PROGRAMA DE LA ASIGNATURA DE ÁLGEBRA SUPERIOR DATOS GENERALES Departamento (División): División de Ciencias

Más detalles

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Matrices. En este capítulo: matrices, determinantes. matriz inversa Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a

Más detalles

Algebra I Segundo Cuatrimestre 2006

Algebra I Segundo Cuatrimestre 2006 Algebra I Segundo Cuatrimestre 2006 Práctica 7: Polinomios 1. Calcular el coeficiente de X 20 de f si: a) f = (X 3) 133 ; b) f = (X 1) 4 (X + 5) 19 + X 33 5X 20 + 7; c) f = (X 5 + 4) 7 (X + 1) 25 3; d)

Más detalles

AMPLIACIÓN DE MATEMÁTICAS

AMPLIACIÓN DE MATEMÁTICAS AMPLIACIÓN DE MATEMÁTICAS TEOREMA DE EXTENSIÓN DE KRONECKER. Los polinomios irreducibles sobre un cuerpo no tienen raíces sobre ese cuerpo, salvo que sean de grado uno. Ya hemos visto que Ejemplo 1. x

Más detalles

ÁLGEBRA II Primer Cuatrimestre 2017

ÁLGEBRA II Primer Cuatrimestre 2017 ÁLGEBRA II Primer Cuatrimestre 2017 Práctica 1: Grupos - Primera Parte Definiciones y ejemplos 1.1. Probar que los siguientes conjuntos son grupos abelianos con el producto de números complejos. Determinar

Más detalles

2.1 Introducción. Propiedades.

2.1 Introducción. Propiedades. 19 2 MATRICES II: DETERMINANTES En este segundo capítulo de matrices, aprenderemos a utilizar una herramienta muy importante como son los determinantes Gracias a ellos, podremos calcular la inversa de

Más detalles

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos

Algebra II. Relación 2. Curso Grupos: generalidades y ejemplos. Ejercicio 2. Describir explícitamente la tabla de multiplicar de los grupos Algebra II Relación 2 Curso 2017-2018 Grupos: generalidades y ejemplos Ejercicio 1. Describir explícitamente la tabla de multiplicar de los grupos Z n para n = 4, n = 6 y n = 8, donde por Z n denotamos

Más detalles

Tema 2: Introducción a la teoría de grupos

Tema 2: Introducción a la teoría de grupos Tema 2: Introducción a la teoría de grupos Miguel Ángel Olalla Acosta miguelolalla@us.es Departamento de Álgebra Universidad de Sevilla Octubre de 2018 Olalla (Universidad de Sevilla) Tema 2: Introducción

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Álgebra I Práctica 7 - Polinomios

Álgebra I Práctica 7 - Polinomios FCEyN - UBA - 2do cuatrimestre 2016 Generalidades Álgebra I Práctica 7 - Polinomios 1. Calcular el grado y el coeficiente principal de f Q[X] en los casos i) f = (4X 6 2X 5 + 3X 2 2X + 7) 77. ii) f = (

Más detalles

Introducción a la Teoría de Códigos

Introducción a la Teoría de Códigos Introducción a la Teoría de Códigos M.A. García, L. Martínez, T. Ramírez Facultad de Ciencia y Tecnología. UPV/EHU Resumen Teórico Tema 4: CÓDIGOS CÍCLICOS Mayo de 2017 Tema 4 Códigos cíclicos 1 Definición

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios

Semana 14 [1/19] Polinomios. 8 de junio de Polinomios Semana 14 [1/19] 8 de junio de 2007 División Semana 14 [2/19] Teorema de la División Al ser (K[x], +, ) un anillo, ocurre un fenómeno similar al de : Las divisiones deben considerar un posible resto. Teorema

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 3: Anillos Ejemplos construcciones 1. Probar que los siguientes conjuntos son anillos con las operaciones indicadas. Decidir en cada caso si son conmutativos,

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2008 2009) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x y) IR 2 x 2 + y 2 = 1}. (b) B = {(x y) IR 2 x = 3y}.

Más detalles

Álgebra I Práctica 5 - Polinomios

Álgebra I Práctica 5 - Polinomios Álgebra I Práctica 5 - Polinomios 1. Para los siguientes z C, hallar Rez), Imz), z, Rez 1 ), Imz 1 ), Re i z) e Imi z). i) z = 2 + i)1 + 3 i). ii) z = 5 i1 + i) 4. iii) z = 2 + 3 i) 2 1 3 i). iv) z = i

Más detalles

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto...

Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales Ejercicios Orden y valor absoluto... ÍNDICE Capítulo 1. Numeración 1 Variables... 2 Números naturales... 2 Números enteros... 3 Números reales... 3 Ejercicios... 5 Orden y valor absoluto... 6 Ejercicios... 7 Suma de números reales... 9 Reglas

Más detalles

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS

REPASO DE LA FACTORIZACIÓN DE POLINOMIOS REASO DE LA FACTORIZACIÓN DE OLINOMIOS OLINOMIO IRREDUCIBLE O RIMO.- Un polinomio ( x se llama irreducible o primo, si ( x o más polinomios con grado. Según esta definición: o Todos los polinomios de grado

Más detalles

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15

Aritmética entera. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Aritmética entera AMD Grado en Ingeniería Informática AMD Grado en Ingeniería Informática (UM) Aritmética entera 1 / 15 Objetivos Al finalizar este tema tendréis que: Calcular el máximo común divisor de

Más detalles

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada

Álgebra Lineal y Estructuras Matemáticas. J. C. Rosales y P. A. García Sánchez. Departamento de Álgebra, Universidad de Granada Álgebra Lineal y Estructuras Matemáticas J. C. Rosales y P. A. García Sánchez Departamento de Álgebra, Universidad de Granada Capítulo 2 Aritmética entera y modular 1. Los números enteros Dado un entero

Más detalles

Álgebra II Primer Cuatrimestre 2016

Álgebra II Primer Cuatrimestre 2016 Álgebra II Primer Cuatrimestre 2016 Práctica 1: Grupos - Primera parte Notaciones usuales Z n D n H = {±1, ±i, ±j, ±k} Enteros módulo n Grupo diedral de orden 2n Grupo de cuaterniones Definiciones y ejemplos

Más detalles

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b

Anillos. 3.1 Anillos. a b c d e a a a a a a b a b c d e c a c e b d d a d b e c e a e d c b Capítulo 3 Anillos Hemos utilizado estructuras en las que hay dos operaciones, como la suma y el producto en Z. El objeto más básico de este tipo es un anillo, cuyos axiomas son bastante parecidos a los

Más detalles

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12

Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Grado en Ciencias Ambientales. Matemáticas. Curso 11/12 Problemas Tema 1. Espacios Vectoriales. 1 Repaso de Estructuras Algebraicas 1.1. Construye explícitamente el conjunto A B, siendo A = {1, 2, 3},

Más detalles

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e

a, b G a b G a (b c) = (a b) c a, b, c G (g4) Todo elemento de G tiene elemento simétrico para la operación : a G a G tal que a a = a a = e Grupos Este segundo cuatrimestre lo dedicaremos al estudio de estructuras algebraicas. Primero, las estructuras de grupo, anillo y cuerpo, y más adelante, la estructura de espacio vectorial y todo lo que

Más detalles

Espacios vectoriales (Curso )

Espacios vectoriales (Curso ) ÁLGEBRA Práctica 5 Espacios vectoriales (Curso 2009 2010) 1. En el espacio vectorial real IR 2 consideramos los siguientes subconjuntos: (a) A = {(x, y) IR 2 x 2 + y 2 = 1}. (b) B = {(x, y) IR 2 x = 3y}.

Más detalles

Ampliación Matemática Discreta. Justo Peralta López

Ampliación Matemática Discreta. Justo Peralta López Justo Peralta López UNIVERSIDAD DE ALMERíA DEPARTAMENTO DE ÁLGEBRA Y ANÁLISIS MATEMÁTICO 1 Sea f(x) = x 2 + x + 1 sobre GF(2). Como se puede observar no tiene raíces en GF(2), pero si en la extensión del

Más detalles

Estructuras Algebraicas

Estructuras Algebraicas Tema 1 Estructuras Algebraicas Definición 1 Sea A un conjunto no vacío Una operación binaria (u operación interna) en A es una aplicación : A A A Es decir, tenemos una regla que a cada par de elementos

Más detalles

Valores y vectores propios

Valores y vectores propios Valores y vectores propios Tareas adicionales Algunos de estos problemas compuso Gustavo Antonio Sandoval Angeles (como parte de su servicio social). Estos problemas son más difíciles o más laboriosos

Más detalles

Ejercicio 1 de la Opción A del modelo 6 de Solución

Ejercicio 1 de la Opción A del modelo 6 de Solución Ejercicio 1 de la Opción A del modelo 6 de 2007 [2 5 puntos] Determina la función f : R R sabiendo que f (x) = x 2 1 y que la recta tangente a la gráfica de f en el punto de abscisa x = 0 es la recta y

Más detalles

El Teorema Fundamental del Álgebra

El Teorema Fundamental del Álgebra El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia

Más detalles