Práctica 02. Antena de ferrita
|
|
|
- Aarón Rey Peralta
- hace 10 años
- Vistas:
Transcripción
1 2011 Práctica 02. Antena de ferrita MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_08_02_03
2 2
3 3 Objetivos: 1. Implementar un circuito tanque-preselector con una antena de ferrita y un capacitor. 2. Que el alumno logre sintonizar una antena de ferrita a frecuencias de radio AM. 3. Que el alumno pueda apreciar una señal de radio AM comercial en el osciloscopio. 4. Observar el comportamiento de la antena de ferrita como transductor de energía electromagnética a energía eléctrica. 5. Que el alumno construya un amplificador de RF que acople la señal del secundario de la antena de ferrita a cualquier carga. Lista de experimentos 1. Sintonizar la antena de ferrita 2. Recepción de una señal de AM 3. Amplificador de RF para acoplamiento Apéndices 1. Apéndice A. El patrigrama del TBJ BF494B 2. Apéndice B. Espectro radio eléctrico 3. Apéndice C. Antena de ferrita
4 4 Equipamiento y material Osciloscopio Multímetro 2 generadores de funciones Analizador de espectros Fuente de poder dual Adaptadores BNC-Banana Adaptadores BNC-Caimán Cables Banana-Caimán Cables Caimán-Caimán Pinzas de punta Pinzas de corte Destornilladores de joyero plano o de cruz 1 protoboard 3[m] de alambre rojo (o cualquier otro color) del número 20 3[m] de alambre blanco del número 20 Un trimmer de 50pF Dos antenas de ferrita 1 JFET MPF102 1 TBJ BF494B 15 metros de alambre del numero 18 o 20 (El laboratorio ya cuenta con este alambre) Banco de capacitores o 2 capacitores de polyester de 220[ F ] o 1 capacitor electrolítico de 4700[ F ] (es para la polaización) Banco de resistencias o 1 resistencia de 1 MΩ a 1/2W o o 1 resistencia de 470Ω 1 resistencia de 1KΩ
5 5 Instrucciones para el cuestionario previo y el reporte Tanto para el cuestionario previo como para el reporte: Copie la carátula de la práctica presente anotando los nombres de los integrantes del equipo por apellido. o o Puede rehacer la carátula para tenerla en formato digital. Se resta un punto de la calificación si no anota su nombre por apellido. Puede realizar su propio formato de carátula siempre y cuando tenga un logo, un lema y la información obligatoria. Anote el número de grupo de laboratorio. El cuestionario previo se evalúa aparte de la realización de la práctica. Anote en su reporte lo que se pide reportar en cada pregunta de los experimentos. Sus respuestas deben estar numeradas de acuerdo a la pregunta que intentan responder. No olvide expresar sus comentarios tal como se indica al final de la práctica. Cuestionario previo 1. Investigue y reporte que es una antena [Tomasi]. 2. Investigue y reporte que es una antena dipolo [Tomasi]. 3. Investigue y reporte cómo se calcula la longitud de la antena dipolo para transmitir un tono puro a una cierta frecuencia [Tomasi]. 4. Cuál es la longitud de la antena dipolo para captar la señal de una estación transmisora de AM cuya frecuencia de portadora es de. 5. Investigue y reporte que es una antena monopolo [Tomasi]. 6. Investigue y reporte cual es el circuito ideal de un transformador. 7. Investigue y reporte cuales son las relaciones entre voltajes de entrada y salida con respecto a la relación de los números de espiras del primario y del secundario. 8. Investigue y reporte que es una antena de ferrita y cómo funciona (investigación por parte del alumno).
6 6 Experimento 1. Sintonizar la antena de ferrita 1. Para lograr la sintonización requerimos de la antena a sintonizar o receptora y de otra antena llamada maestro o emisora 2. Arme el circuito de la figura 1 (en esta figura, sólo se ilustra el primario de cada antena de ferrita) a. En este circuito, las dos antenas están paralelas y los más cercanas posible. b. La antena emisora, que opera con una señal senoidal de pico y. c. La antena sensor tiene un varistor o trimmer de en paralelo para sintonizarla. Figura 1. Circuito de antena sintonizada. Las antenas debe estar lo más cercanas posible. 3. Con un destornillador de relojero ajuste el trimmer para lograr una señal con la máxima amplitud posible en el osciloscopio: para realizar una lectura en la pantalla del osciloscopio debe retirar el destornillador de joyero. 4. (1 pt) Reporte el diagrama del circuito. 5. (1 pt) Reporte una fotografía del circuito 6. (1 pt) Reporte el voltaje de alimentación a la antena emisora (imagen en el osciloscopio). 7. (1 pt) Reporte el voltaje máximo obtenido en la antena sensor (imagen en el osciloscopio).
7 7 Experimento 2. Recepción de una señal de AM 1. El circuito de la figura 2 ilustra una antena construida con un alambre largo y al preselector realizado con una antena de ferrita y un trimer de. 2. Arme el circuito de la figura 5. a. En el caso del plano de tierra, usaremos la tierra del osciloscopio. Figura Es posible que tenga que reajustar la posición del trimer con un destornillador de relojero para poder observar una señal en su osciloscopio. 4. (1 pt) Reporte el diagrama del circuito. 5. (1 pt) Reporte una fotografía del circuito 6. (1 pt) Reporte una fotografía de la pantalla del osciloscopio. 7. (1 pt) Reporte una fotografía de la pantalla del analizador de espectros.
8 8 Experimento 3. Amplificador de RF para acoplamiento 1. El circuito de la figura 3 ilustra el uso de dos transistores, en cascada, a modo de amplificador de RF a. El JFET provee la alta impedancia de entrada. b. El TBJ actúa en modo colector común, es decir, como amplificador de corriente y provee la capacidad de impulsar la señal de la antena a otro circuito en cascada. 2. Arme el circuito de la figura 6 sin conectar la antena. a. Verifique que el voltaje a la salida del drenaje esté arriba de. b. Verifique que el voltaje de salida del emisor sea de. Figura 3. Circuito antena-preselector-am0plificador de RF. 3. (1 pt) Conecte la antena al amplificador (no olvide el capacitor de paso a 200nF) a. (1 pt) Reporte la imagen del osciloscopio b. (1pt) Compare la amplitud de la señal entregada por la antena sintonizada (experimento 2) con la señal entregada por el amplificador. Reporte su observación. 4. (1 pt) Reporte el diagrama del circuito. 5. (1 pt) Reporte una fotografía del circuito armado.
9 9 Apéndice A. El patrigarma del TBJ BF494B Apéndice B. El patigrama del FET PF102 Apéndice B. El espectro radio eléctrico El espectro radio eléctrico es un mapa en el que se puede localizar un servicio de comunicaciones: radio, tv, telefonía celular, etc, en una banda de frecuencias en particular. Por ejemplo, las portadoras de radio AM abarcan frecuencias de a, en intervalos de con anchos de banda de por estación. La figura 4 ilustra una vista burda del espectro de AM. Figura 4. Espectro radio eléctrico de AM.
10 10 Apéndice C. La antena de ferrita La antena de ferrita Lo que conocemos como antena de ferrita es en realidad un transformador cuyo propósito se especifica en función de la teoría matemática que se use para describirlo. En el caso de la presente práctica se considerará que la antena, un mono-polo de un cuarto de longitud de onda. Este dispositivo, al estar inmerso en un campo electromagnético variable, sufrirá la inducción de una FEM: la señal de AM convertida en oda eléctrica. Debido a que no es posible tener una antena de la longitud requerida para captar emisiones de radio AM, se usan antenas de longitudes menores. A consecuencia del uso de una antena corta, el voltaje inducido también es menor y por lo tanto se hace necesario amplificar esta señal. El modo de amplificar la señal transducida por la antena es mediante un transformador, el cual amplificará la señal de voltaje. La figura 5 ilustra a un transformador conocido malamente como antena de ferrita. El diagrama de circuito de la antena de ferrita está ilustrado en la misma figura 5. Figura 1. Antena de ferrita. En realidad es un transformador cuyo propósito es amplificar la señal de AM captada por la antena, la cual es un monopolo cuya longitud es un submúltiplo de la longitud de onda de radio. El preselector El transformador de ferrita cumple una segunda función cuando se le coloca un capacitor variable en paralelo con el bobinado secundario. Laconsecuencia de agregar este capacitor es que se logra un transformador sintonizado para dejar pasar una banda estrecha de frecuencias. La figura 6 ilustra el diagrama de circuito correspondiente a la antena y al preselector.
11 11 Figura 6. Circuito preselector de antena.. El amplificador de RF para acoplar el preselector El diagrama a bloques de la figura 7.a ilustra las primeras etapas de un circuito receptor teórico. Ahora bien, considere que el secundario de la antena de ferrita es una fuente de voltaje con una impedancia en serie como de. Si esta fuente de voltaje se conecta al circuito demodulador tal como se ve en la figura 7.a, toda la señal del secundario de la antena se disipará en su propia resistencia. Una forma de lograr el acoplamiento del secundario de la antena es intercalando un amplificador de alta impedancia de entrada y baja impedancia de salida entre el preselector y el circuito demodulador: vea la figura 7.b. Este amplificador debe tener entrada FET ya que este tipo de transistor, a diferencia del TBJ, si provee la alta impedancia de entrada que se requiere.
12 12 Figura 7. Primeras etapas de un circuito de comunicaciones. Bibliografía [Tomasi] [Frenzel] [Paynter] [Hsu] [Malvino] [Boylestad] Tomasi; Wayne, "Sistemas de Comunicaciones Electrónicas", Prentice Hall Frenzel; Louis E., "Sistemas Electrónicos de Comunicaciones", Alfaomega Paynter; Robert T., "Introductory Electronic Devices and Circuits (conventional flow versión)", Pearson, 7a edición Hsu; Hwei P., "Análisis de Fourier", Prentice Hall Malvino; Albert, "Principios de eletrónica" McGraw Hill, 7a edición Boylestad; Robert L., "Electrónica : Teoría de circuitos", Pearson-Prentice Hall, 8a edición [Lathi] Lathi; B.P. Applets sobre antenas
2012 Práctica 05. Circuitos moduladores de amplitud con semiconductores
2012 Práctica 05. Circuitos moduladores de amplitud con semiconductores MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_08_01_01 Objetivos Estudiar en el dominio
Práctica 3. Amplificador clase C
211 MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; UNAM 9/2/211 2 3 Objetivos: 1. Diseñar y ensamblar un circuito amplificador clase C. 2. Analizar el espectro de la señal de salida del amplificador
Práctica 03. Modulador de amplitud con diodos
2012 Práctica 03. Modulador de amplitud con diodos MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_07_03_03 Objetivos Implementar físicamente un circuito sumador-rectificador,
USO DE INSTRUMENTOS DE LABORATORIO
1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). USO DE INSTRUMENTOS DE LABORATORIO Objetivo General Obtener
Práctica 08. El transistor bipolar de juntura
1 2011 Práctica 08. El transistor bipolar de juntura MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 12/10/2011 2 3 Objetivos: 1. Implementar un circuito de polarización por
Práctica 08. El transistor bipolar de juntura
2011 Práctica 08. El transistor bipolar de juntura MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos: 1. Implementar un circuito de polarización por
Practica 2 Filtro Activo Butterworth Pasa-Banda de Segundo Orden
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 4 Segundo Semestre 2015 Auxiliar: Estuardo Toledo Practica 2 Filtro Activo
Práctica 08. Modulación de Amplitud usando el generador de funciones. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011
2011 Práctica 08. Modulación de Amplitud usando el generador de funciones MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011 2 3 Objetivos: 1. Implementar físicamente un circuito modulador
2011 Práctica 04. Circuito tanque
2011 Práctica 04. Circuito tanque MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 2 3 Objetivos: 1. Implementar físicamente un circuito tanque. 2. Obtener la curva
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL SÍLABO
UNIVERSIDAD NACIONAL FEDERICO VILLARREAL FACULTAD DE INGENIERÍA ELECTRÓNICA E INFORMÁTICA SÍLABO ASIGNATURA : TELECOMUNICACIONES I CODIGO: 2H0008 1. DATOS GENERALES 1.1 DEPARTAMENTO ACADEMICO : Ingeniería
Prácticas de Laboratorio Sistemas de Comunicaciones Análogas y Digitales
1 Prácticas de Laboratorio Sistemas de Comunicaciones Análogas y Digitales Formato del reporte de laboratorio Todo reporte de laboratorio debe contener las siguientes secciones: Portada: Titulo de la practica
Esta fuente se encarga de convertir una tensión de ca a una tensión de cd proporcionando la corriente necesaria para la carga.
Página 1 de 9 REGULADOR DE VOLTAJE DE cc La mayor parte de los circuitos electrónicos requieren voltajes de cd para operar. Una forma de proporcionar este voltaje es mediante baterías en donde se requieren
TECNOLOGÍAS DE LA COMUNICACIÓN
TECNOLOGÍAS DE LA COMUNICACIÓN La comunicación consiste en la transmisión de información de una persona a otra Necesitamos un emisor, un medio para transmitir el mensaje y un receptor. EVOLUCIÓN DE LAS
Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte.
1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Sistemas de comunicación I Tema: Modulación de Amplitud Segunda Parte. Objetivos Medir el porcentaje de modulación de una señal de AM. Medir y constatar
Práctica 3. LABORATORIO
Práctica 3. LABORATORIO Electrónica de Potencia Convertidor DC/AC (inversor) de 220Hz controlado por ancho de pulso con modulación sinusoidal SPWM 1. Diagrama de Bloques En esta práctica, el alumnado debe
ELO20_FOC. Particularmente yo, lo hice andar para 27MHz haciendo oscilar un cristal de 9MHz en su tercer armónico.
Transmisor AM Este circuito se basa en un transmisor simple de RF. Incorpora un oscilador de cristal en sobre tono ideal para un 3er armónico, un amplificador y un filtro. El propósito de estos circuitos
AMPLIFICADOR PUSH PULL BJT.
Electrónica I. Guía 8 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica I. Lugar de ejecución: Fundamentos Generales (Edificio 3, 2da planta). AMPLIFICADOR PUSH PULL BJT. Objetivos
Item Cantidad Descripción. 1 2 Bobina de 2.2mH (o similar) 2 1 Núcleo ferromagnético. 3 1 Resistencia 15Ω / 10W. 4 2 Resistencias de 47Ω / 11W
Facultad: Ingeniería Escuela: Ingeniería Eléctrica Asignatura: Sistemas eléctricos lineales II Tema: Circuitos Magnéticamente Acoplados Contenidos Desfase de una señal. Inductancia. Inductancia Mutua.
PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente.
PROGRAMA IEM-212 Unidad II: Circuitos acoplados Magnéticamente. 2.1 Inductancia Mutua. Inductancia mutua. Sabemos que siempre que fluye una corriente por un conductor, se genera un campo magnético a través
Práctica 11. El JFET y la distorsión alineal
2011 MI. Mario Alfredo Ibarra Carrillo 2011 26/02/2011 Práctica 11. El JFET y la distorsión alineal MI. Mario Alfredo Ibarra Carrillo 26/02/2011 2 3 Objetivos: 1. Obtener experimentalmente la curva corriente
TRABAJO PRACTICO No 7. MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO
TRABAJO PRACTICO No 7 MEDICION de DISTORSION EN AMPLIFICADORES DE AUDIO ANALIZADORES DE ESPECTRO DE AUDIO INTRODUCCION TEORICA: La distorsión es un efecto por el cual una señal pura (de una única frecuencia)
NETWORK FOR ASTRONOMY SCHOOL EDUCATION RADIO DE GALENA. Beatriz García, Gonzalo de la Vega y Javier Maya Atrévete con el Universo
RADIO DE GALENA Beatriz García, Gonzalo de la Vega y Javier Maya Atrévete con el Universo NOTA Preliminar : esta es una actividad de mayor complejidad y requiere de un soporte técnico o asistencia de personal
Corriente Alterna: actividades complementarias
Corriente Alterna: actividades complementarias Transformador Dispositivo eléctrico que permite aumentar o disminuir la tensión en un circuito eléctrico de corriente alterna. Para el caso de un transformador
Guía para el docente
Guía para el docente Descripción curricular: - Nivel: 4.º Medio - Subsector: Ciencias físicas - Unidad temática: - Palabras clave: cargas en movimiento, ondas electromagnéticas, espectro electromagnético
Transmisión y Recepción de Comunicaciones (66.76) Guía de Ejercicios
Guía de Ejercicios 1 Contenido Magnitudes Logarítmicas... 3 Líneas de Transmisión... 5 Carta de Smith... 7 Impedancias sobre la Carta de Smith... 7 Líneas de transmisión sobre la Carta de Smith... 8 Parámetros
Práctica 07. Modulador de frecuencia con VCO
2011 Práctica 07. Modulador de frecuencia con VCO MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería 04/03/2011 2 3 Objetivos: Comprender el uso del VCO Emplear el VCO como modulador en frecuencia
Práctica 07. Diodo varactor
2011 Práctica 07. Diodo varactor MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 12/10/2011 Objetivos: 1. Implementar físicamente un circuito que sintonice un circuito tanque.
UNIVERSIDAD DE SEVILLA
UNIVERSIDAD DE SEVILLA Escuela Técnica Superior de Ingeniería Informática PRÁCTICA 5: DISEÑO DE MODULADORES (FSK), DEMODULADORES (ASK) Tecnología Básica de las Comunicaciones (Ingeniería Técnica Informática
Sistemas y Circuitos
Sistemas y Circuitos Práctica 4: Circuitos Analógicos Curso Académico 09/10 Objetivos En esta práctica el alumno aprenderá a calcular impedancias equivalentes analizar filtros de primer orden Normas La
APLICACIONES DE OSCILADORES
APLICACIONES DE OSCILADORES. Oscilador de radio frecuencias Con el oscilador colpitts se puede hacer un transmisor de FM y/o video, para enviar una señal de audio o video al aire (señal electromagnética)
LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY
Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA
Trabajo práctico Nº 1
Circuito de acoplamiento 1. Introducción 1.1. Requisitos 2. Funcionamiento 2.1. Sintonización 2.2. Adaptación 3. Diseño 3.1. Consideraciones generales 3.2. Diseño inductor 3.3. Factor de calidad 3.4. Cálculo
Procesamiento digital de señales y radios definidas en software
1 2 2 3 4 5 5 6 Procesamiento digital de señales y radios definidas en software Marcelo Franco, N2UO www.qsl.net/n2uo En los últimos tiempos se han popularizado dos siglas entre los radioaficionados: DSP
Amplificadores de RF. 1. Objetivo. 2. Amplificadores de banda ancha. Práctica 1. 2.1. Introducción
Práctica Amplificadores de RF. Objetivo En primer lugar, en esta práctica montaremos un amplificador de banda ancha mediante una etapa emisor común y mediante una etapa cascodo, con el findeestudiar la
C A P Í T U L O 2 CIRCUITOS
C A P Í T U L O 2 DIAGRAMAS ESQUEMÁTICOS Y PCB DE LOS CIRCUITOS 2.1. FUENTE DE PODER. Esta fuente de voltaje DC es del tipo de fuentes lineales; es decir utiliza un paso reductor de voltaje haciendo uso
CAPÍTULO 4 MÉTODOS PARA LA CARACTERIZACIÓN DE ANTENAS 4.1 INTRODUCCION 4.2 CARACTERIZACIÓN DE ANTENAS
CAPÍTULO 4 MÉTODOS PARA LA CARACTERIZACIÓN DE ANTENAS 4.1 INTRODUCCION Las antenas son elementos clave en la ingeniería eléctrica, la definición del Instituto de Ingenieros Eléctricos y Electrónicos (IEEE)
SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA
1 SISTEMAS DE COMUNICACIÓN A & D -- Práctica de laboratorio FRECUENCIA MODULADA EN EL DOMINIO DEL TIEMPO Y FRECUENCIA I. OBJETIVOS 1. Implementar un modulador de frecuencia utilizando el XR-2206. 2. Complementar
SOMI XVIII Congreso de Instrumentación MICROONDAS JRA1878 TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM
TRANSMISIÓN DE AUDIO Y VIDEO A TRAVÉS DE FIBRA ÓPTICA CON PREMODULACIÓN PCM J. Rodríguez-Asomoza, D. Báez-López, E. López-Pillot. Universidad de las Américas, Puebla (UDLA-P) Departamento de Ingeniería
Detector de Metales. Esteves Castro Jesús López Pineda Gersson Mendoza Meza Jonathan Pérez Gaspar Augusto Sensores y actuadores
Universidad Veracruzana! Sensores inductivos Instrumentación Electrónica Esteves Castro Jesús López Pineda Gersson Mendoza Meza Jonathan Pérez Gaspar Augusto Sensores y actuadores Detector de Metales Jalapa
SISTEMAS DE ADAPTACION DE ANTENAS
SISTEMAS DE ADAPTACION DE ANTENAS Cuando la línea de transmisión tiene una impedancia y la antena otra muy distinta, hay que acoplarlas para evitar que aparezca ROE en la línea. Los sistemas más comunes
UNIVERSIDAD DON BOSCO
CICLO 01-2015 UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA Y BIOMÉDICA GUÍA DE LABORATORIO Nº 06 NOMBRE DE LA PRACTICA: Análisis de Circuitos en Corriente Alterna
CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES. En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor
CAPITULO 4 IMPLEMENTACIÓN Y PRUEBAS EXPERIMENTALES 4.1 INTRODUCCIÓN En este capítulo se mostrarán los resultados de la simulación del Corrector de Factor de Potencia, la cual fue realizada con el software
FOC-ELEN20 DESARROLLO DE LA RADIO
DESARROLLO DE LA RADIO UN HECHO de crucial importancia es reconocer que las ondas acústicas que creamos cuando hablamos tienen frecuencias relativamente bajas: nuestro oído es sensible a ondas acústicas
Última modificación: 1 de agosto de 2010. www.coimbraweb.com
Contenido DOMINIOS DEL TIEMPO Y DE LA FRECUENCIA 1.- Señales analógicas y digitales. 2.- Señales analógicas periódicas. 3.- Representación en los dominios del tiempo y de la frecuencia. 4.- Análisis de
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA ESCUELA DE MECANICA ELECTRICA LABORATORIO DE ELECTRONICA PENSUM COMUNICACIONES 3 ~ 1 ~ ÍNDICE Introducción...página 3 Prácticas LabVolt...página
Poder hablar mientras se viaja siempre ha sido un lujo codiciado para muchos usuarios, la comunicación portátil ofrecía conveniencia y eficiencia.
Telefonía celular Indice Introducción. Funcionamiento del teléfono celular. Módulo de RF. Módulo de AF. Módulo lógico de control. Problemas en los teléfonos celulares. Introducción Poder hablar mientras
Última actualización: 1 de julio de 2010. www.coimbraweb.com
RUIDO Y COMUNICACIONES Contenido 1.- Definición de ruido eléctrico. 2.- Formas de ruido eléctrico. 3.- Ruido térmico. 4.- Relación señal a ruido S/N. 5.- Temperatura de ruido. 6.- Diafonía o crosstalk.
UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS
UNIVERSIDAD DE ESPECIALIDADES ESPIRITU SANTO FACULTAD DE SISTEMAS TELECOMUNICACIONES Y ELECTRONICA SYLLABUS MATERIA: Laboratorio de Electrónica I ELE281(01) HORARIO: 19:25 20:50 PROFESOR(A): Ing. Genaro
Práctica 07. CI para modulación de amplitud. MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01
2012 Práctica 07. CI para modulación de amplitud MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_01_01_01 Objetivos Estudiar la modulación coherente de señales
OSCILOSCOPIO. - Un cañón de electrones que los emite, los acelera y los enfoca. - Un sistema deflector - Una pantalla de observación S
OSCILOSCOPIO Objetivos - Conocer los aspectos básicos que permiten comprender el funcionamiento del osciloscopio - Manejar el osciloscopio como instrumento de medición de magnitudes eléctricas de alta
PONENCIA: CONSTRUCCIÓN DE UN TELEMANDO (CONTROL REMOTO)
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL ORIENTE PONENCIA: CONSTRUCCIÓN DE UN TELEMANDO (CONTROL REMOTO) PRESENTADA POR: YURI POSADAS VELÁZQUEZ ASIGNATURA, APRENDIZAJES
HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS
HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS INFORMACIÓN REQUERIDA POR ASIGNATURA. NOMBRE DE LA ASIGNATURA: ELECTRÓNICA. NIVEL DEL : ESPECÍFICO 3. ÁREA DE CONOCIMIENTO: CONOCIMIENTOS TÉCNICOS
LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO
LABORATORIO No. 7 INDUCCIÓN AUTOINDUCCIÓN E INDUCTANCIA MUTUA ACOPLAMIENTO MAGNÉTICO 7.1. OBJETIVO DEL LABORATORIO. 7.1.1. OBJETIVO GENERAL. Conocer operativamente los fenómenos de Autoinducción, Inductancia
UNIVERSIDAD DON BOSCO
CICLO I 2013 NOMBRE DE LA PRACTICA : LUGAR DE EJECUCIÓN: TIEMPO ESTIMADO: ASIGNATURA: DOCENTE(S): UNIVERSIDAD DON BOSCO FACULTAD DE ESTUDIOS TECNOLÓGICOS COORDINACIÓN DE ELECTRÓNICA GUÍA DE LABORATORIO
Práctica 5: Diodo PIN
2011 Práctica 5: Diodo PIN MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones Año 2011 Objetivos 1. Obtener las curvas características del diodo PIN 2. Medir las propiedades
Laboratorio de Electricidad PRACTICA - 10 CARACTERÍSTICAS DE UNA INDUCTANCIA EN UN CIRCUITO RL SERIE
aboratorio de Electricidad PACTCA - 10 CAACTEÍSTCAS DE NA NDCTANCA EN N CCTO SEE - Finalidades 1.- Estudiar el efecto en un circuito de alterna, de una inductancia y una resistencia conectadas en serie.
NOTA DE APLICACIÓN 0711
NOTA DE APLICACIÓN 0711 COMBINADORES, SPLITTERS Y ACOPLADORES DIRECCIONALES. PRINCIPIOS DE FUNCIONAMIENTO Y ESCENARIOS DE USO Área de Ingeniería de Aplicaciones R.F. Página 1 de 15 INDICE 1 ACOPLADORES
Ángel Hernández Mejías ([email protected]) 1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1
1º Desarrollo de Productos Electrónicos, Electrónica Analógica www.padrepiquer.com 1 Índice Índice... Pág. 2 Breve descripción de la práctica... Pág. 3 Enumeración de recursos comunes... Pág. 3 Desarrollo
Laboratorio de Electrónica
Listado de materiales: Trabajo Práctico: ectificadores 4 Diodos 1N4001 1 esistencia de 1 KΩ/ ½W Preset 1 KΩ 1 Puente ectificador Integrado. 1 esistencia de 3,9 KΩ/ ½W Cables y herramientas básicas. 1 esistencia
DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC.
TESIS DISEÑO E IMPLEMENTACIÓN DE UNA TARJETA DE ADQUISICIÓN DE DATOS PARA EL LABORATORIO DE TELECOMUNICACIONES DE LA FIEC. DIRECTOR DE TESIS.- Ing. Francisco Novillo AUTOR Walter Mestanza Vera. Egresado
Inductancias Acopladas Magnéticamente
Inductancias Acopladas Magnéticamente Omar X. Avelar & Diego I. Romero SISTEMAS ELECTRICOS INDUSTRIALES (ESI 013AA) Instituto Tecnológico y de Estudios Superiores de Occidente () Departamento de Electrónica,
Práctica 2: Medidas de Voltaje DC, Potencia y Capacitancia
Práctica 2: Medidas Voltaje DC, Potencia y Capacitancia Objetivos: Medir voltaje y potencia en circuitos divisores voltaje. Medir capacitancia. Medir voltajes, tiempos carga y scargas y diferencias fase
Unidad Orientativa (Electrónica) Amplificadores Operacionales
Unidad Orientativa (Electrónica) 1 Amplificadores Operacionales Índice Temático 2 1. Que son los amplificadores operacionales? 2. Conociendo a los Amp. Op. 3. Parámetros Principales. 4. Circuitos Básicos
AMPLIFICADOR LINEAL PARA EMISORA DE TV Canales 2 a 6
Libro 12 - Experiencia 7 - Página 1/8 AMPLIFICADOR LINEAL PARA EMISORA DE TV Canales 2 a 6 Este amplificador de banda ancha, polarizado en clase A es un excelente excitador para amplificadores de potencia
Familias de microcontroladores de radio frecuencia.
CAPITULO 3 Familias de microcontroladores de radio frecuencia. 3.1 Familias de rfpics. MICROCHIP ha desarrollado unas familias de microcontroladores con un anexo, que es una unidad transmisora de ASK o
Pontificia Universidad Javeriana-Cali Facultad de Ingeniería Departamento de Ciencias Naturales y Matemáticas-Área de Física
ELECTRICIDAD Y MAGNETISMO PRÁCTICA DE LABORATORIO No. 7a CIRCUITO RC 1. INTRODUCCIÓN El condensador es un dispositivo de gran utilidad en circuitos eléctricos y electrónicos. Una de sus características
Instrumentación y Ley de OHM
Instrumentación y Ley de OHM A) INSTRUMENTACIÓN 1. OBJETIVOS. 1. Conocer el manejo de instrumentos y materiales de uso corriente en los experimentos de electricidad y magnetismo. 2. Conocer el área de
SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO
SISTEMA DE RECTIFICACIÓN TIPO PUENTE Y FILTRADO I. OBJETIVOS Analizar componentes. Montaje del circuito. Análisis de CA y CD. Sistema de rectificación tipo fuente. Filtraje. Uso del osciloscopio. Gráfico
podemos enfocar al funcionamiento del robot, es decir la parte de electrónica. Para que el
CAPÍTULO 4 Funcionamiento del Robot Después de analizar paso a paso el diseño y funcionamiento de la interfase, nos podemos enfocar al funcionamiento del robot, es decir la parte de electrónica. Para que
Comparadores de tensión
Universidad Nacional de Rosario Facultad de Ciencias Exactas, Ingeniería y Agrimensura Escuela de Ingeniería Electrónica ELECTRÓNICA II NOTAS DE CLASE Comparadores de tensión OBJETIVOS - CONOCIMIENTOS
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE ELECTROTECNIA Y COMPUTACIÓN DEPARTAMENTO DE SISTEMAS DIGITALES Y TELECOMUNICACIONES
UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE ELECTROTECNIA Y COMPUTACIÓN DEPARTAMENTO DE SISTEMAS DIGITALES Y TELECOMUNICACIONES LIDER EN CIENCIA Y TECNOLOGIA Carrera Ing. Electrónica Guía de Laboratorio
RADIOFRECUENCIA (Recopilación de Internet)
RADIOFRECUENCIA (Recopilación de Internet) Prof : Bolaños D. Introducción (Modulación - Canales - Bandas ) Que es una antena Funcionamiento de una antena Características de las antenas: ganancia - directividad
Asignatura: CONTROL CLÁSICO Y MODERNO Departamento de Electrónica Facultad de Ingeniería U.Na.M 2015 GUIA DE LABORATORIO Nº2
GUIA DE LABORATORIO Nº2 Universidad Nacional de Misiones MÉTODOS CLÁSICOS PARA MODELACIÓN DE SISTEMAS 1. Objetivo de la práctica. Modelación a través de la Respuesta en frecuencia Este laboratorio tiene
Amplificadores de RF sintonizados
Amplificadores de RF sintonizados Amplificador de banda ancha Respuesta en frecuencia plana, muy bajo ruido y muy buena linealidad (muy baja distorsión armónica y por intermodulación) Ejemplo Amplificador
1.1 La Bobina Ideal. Preguntas conceptuales
1. RESPUESTA DEL CIRCUITO EN ESTADO TRANSITORIO (DOMINIO DEL TIEMPO) 1.1 La Bobina Ideal Preguntas conceptuales 1. La inductancia de cierta bobina está determinada por la ecuación 1.2. Si se desea construir
CIRCUITOS RESONANTES, RLC
CIRCUITOS RESONANTES, RLC En este desarrollo analizamos circuitos RLC alimentados con una tensión alternada (AC) y su respuesta a distintas frecuencias. Por convención, y a los fines de simplificar la
Figura 1 Fotografía de varios modelos de multímetros
El Multímetro El multímetro ó polímetro es un instrumento que permite medir diferentes magnitudes eléctricas. Así, en general, todos los modelos permiten medir: - Tensiones alternas y continuas - Corrientes
DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO:
DATOS DE IDENTIFICACIÓN DEL CURSO DEPARTAMENTO: Electrónica ACADEMIA A LA QUE PERTENECE: Electrónica Analógica Aplicada NOMBRE DE LA MATERIA: ELECTRONICA ANALOGICA CLAVE DE LA MATERIA: ET217 CARÁCTER DEL
MEDICIONES ELECTRICAS I
Año:... Alumno:... Comisión:... MEDICIONES ELECTRICAS I Trabajo Práctico N 4 Tema: FACTOR DE FORMA Y DE LECTURA. RESPUESTA EN FRECUENCIA DE INSTRUMENTOS. Tipos de instrumentos Según el principio en que
Evaluación: Reporte de práctica % Exámenes % Proyecto %
UNIVERSIDAD NACIONAL AUTONOMA DE MEXICO FACULTAD DE INGENIERIA LABORATORIO DE DISPOSITIVOS Y CIRCUITOS ELECTRONICOS REGLAS DEL LABORATORIO 1. El laboratorio se organizara de manera individual. 2. Se darán
EQUIPOS DE EMISION Y RECEPCION DE RADIO.
EQUIPOS DE EMISION Y RECEPCION DE RADIO. Receptores de radio. Supuesto de estudiado en módulos anteriores los comportamientos de los circuitos sintonizados paralelo y serie, así como su comportamiento,
Práctica 01. El micrófono
2011 Práctica 01. El micrófono MI. Mario Alfredo Ibarra Carrillo Facultad de Ingeniería; Telecomunicaciones 16/03/2011 Ver_02_03_01 Objetivos Crear una fuente de señal aleatoria para los circuitos moduladores
Universidad Nacional de Piura APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR:
APLICACIONES DE LOS AMPLIFICADORES OPERACIONALES: 1. MEDICION DE LA CORRIENTE DE UN FOTOREDUCTOR: Con el interruptor en la posición 1, en la figura de abajo, una celda fotoconductora, algunas veces denominada
Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz"
Objetivo. Práctica No. 6 del Curso Meteorología y Transductores. "Mediciones de valor medio y valor eficaz" Graficar varias señales del generador de señales y comprobar en forma experimental el voltaje
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 1
Universidad de San Carlos de Guatemala Facultad de Ingeniería Escuela de Mecánica Eléctrica Laboratorio de Electrónica Electrónica 1 INDICE: Pg. Carátula 1 Introducción 2 Conocimientos Necesarios 2 1.0
Practica 01: Sensores de luz y temperatura
Entrega vía Web: Viernes 07 de Marzo de 2014 M. en C. Edgardo Adrián Franco Martínez http://www.eafranco.com @efranco_escom [email protected] 1 Contenido Introducción Objetivos Actividades Observaciones
Transformadores de Pulso
1/42 Transformadores de Pulso Universidad Nacional de Mar del Plata Facultad de Ingeniería 2/42 Aplicaciones Se usan en transmisión y transformación de pulsos con anchuras desde fracciones de nanosegundos
FUNDAMENTOS DE AMPLIFICADORES
FUNDAMENTOS DE AMPLIFICADORES OPERACIONALES CARRERA: ISC GRADO: 7 GRUPO: C INTEGRANTES: ARACELI SOLEDAD CASILLAS ESAUL ESPARZA FLORES OMAR OSVALDO GARCÍA GUZMÁN AMPLIFICADOR OPERACIONAL Amplificador de
Regulación decarga= V NL V FL V FL
Práctica 6: Reguladores de Voltage Objetivo: FISI 3144: Laboratorio de Electrónica II Construir y comprobar funcionamiento de circuitos reguladores de voltaje. Referencias: 1. Notas y enlaces en página
CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION
CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora
3. Es suficientemente buena la antena?
1. Qué es una antena? 2. Tipos de antena 2.1. Antenas para Estación Base 2.2. Antenas Móviles 3. Es suficientemente buena la antena? 4. Mediciones de antenas Página 1 de 12 1. Qué es una antena? Una antena
Ejercicios Propuestos Inducción Electromagnética.
Ejercicios Propuestos Inducción Electromagnética. 1. Un solenoide de 2 5[] de diámetro y 30 [] de longitud tiene 300 vueltas y lleva una intensidad de corriente de 12 [A]. Calcule el flujo a través de
AMPLIFICACION EN POTENCIA. Figura 1. Estructura Básica de un Convertidor DC/AC.
INTRODUCCION: Los convertidores DC/AC conocidos también como inversores, son dispositivos electrónicos que permiten convertir energía eléctrica DC en alterna AC. En el desarrollo de esta sesión de laboratorio,
Apuntes para el diseño de un amplificador multietapas con TBJs
Apuntes para el diseño de un amplificador multietapas con TBJs Autor: Ing. Aída A. Olmos Cátedra: Electrónica I - Junio 2005 - Facultad de Ciencias Exactas y Tecnología UNIVERSIDAD NACIONAL DE TUCUMAN
Práctica 3: Señales en el Tiempo y Dominio de
Práctica 3: Señales en el Tiempo y Dominio de Frecuencia Número de Equipo: Nombres: Fecha: Horario: Dia de clase: Profesor: Objetivos: Al finalizar esta práctica, usted será capaz de: Predecir el contenido
