Flotamiento de esferas
|
|
|
- Sara Espinoza Saavedra
- hace 10 años
- Vistas:
Transcripción
1 Flotamiento e esfeas M. C. José Antonio Meina Henánez Depatamento e Matemáticas y Física Univesia Autónoma e Aguascalientes Aquímies fue un científico giego nacio el año 287 a.c. en Siacusa (Sicilia), asesinao en el mismo luga en el año 22 a.c. po un solao omano. Sobe su muete se naa que al enta el ejécito enemigo a la ciua one Aquímies esiía, lo encontaon concentao en un poblema geomético. Al pisa uno e los solaos una figua ibujaa en el piso, Aquímies le inicó que no la estuyea. Esta actitu iitó y/o atemoizó al solao, que le clavó su espaa, causano la muete a uno e los más ganes genios que ha ao la humania. ARQUIMIDES a.c. Aquímies fomuló muchos teoemas geométicos, apotano ieas básicas paa el cálculo e áeas, que posteiomente fueon fomalizaas a tavés e lo que ahoa conocemos como cálculo integal. Fue auto e muchos inventos útiles, como el tonillo o bomba e Aquímies, que se utiliza paa subi el agua e lugaes bajos a pates más altas. También escubió el pincipio e la palanca. Se naa que algunos e sus inventos se utilizaon paa efene su ciua conta los solaos enemigos, sopeniénolos con sus noveosas amas, como los espejos concentaoes e luz sola, que ean iigios conta los bacos enemigos paa quemalos y cega a los tipulantes. 4
2 Revista el Depto. Mat. y Fís. UAA 5 y P b P y Imagen e esfea pacialmente sumegia Colocación el punto P Figua : Planteamiento Oto e sus escubimientos en Física es el llamao pincipio e Aquímies, que establece: Al sumegise un cuepo en un ecipiente lleno e un líquio, icho cuepo ecibiá un empuje hacia aiba igual al peso el líquio que esaloja icho cuepo el ecipiente. Utilizano este pincipio físico, así como el teoema e Pitágoas, el cálculo integal y las técnicas e análisis numéico, se puee esolve el siguiente poblema: PROBLEMA: Suponga que al intouci una esfea e aio en un líquio, quea pacialmente sumegia. Encuente la istancia a la que la esfea quea sumegia si su ensia e masa es ρ. SOLUCION. A fin e aclaa las ieas involucaas consiee la Figua. La esfea tiene aio y la cantia epesenta la istancia a la que se encuenta sumegia la esfea. Como pime paso en la solución el poblema, se esea calcula el volumen e la pate sumegia e la esfea. Paa tal fin se consiea un punto P contenio en un cículo máximo e la esfea. Dicho cículo máximo estaá contenio en el plano que es pepenicula a la línea e visión cuano se mia la figua e fente. En otas palabas, cuano se intepeta la figua como tiimensional, la línea que une el cento e la esfea con el punto P ebe se pepenicula a la iección en que apunta un lápiz que se pae sobe el ibujo. Consiee ahoa el seguno panel en la Figua. El punto supeio es
3 Revista el Depto. Mat. y Fís. UAA 6 el cento e la esfea, po lo que el segmento que une los os puntos tiene magnitu. Los os segmentos e ecta que apaecen en la pate eecha epesenten la semi-altua e la esfea, po lo que su suma es. La altua y mie qué tan alto se encuenta colocao el punto P especto a la pate más baja e la esfea. El eje y se consieaá que está en la iección el segmento. Si se consiea un cículo cuyo plano es pepenicula a icho eje, ubicao a la altua y, su áea estaá aa po A(y) = πb 2 one b es la base el tiángulo que apaece en la Figua. Obseve que la base b es función el aio e la esfea y e la altua y el punto P. La base b se puee calcula usano el teoema e Pitágoas y está aa po b(,y) = [ 2 ( y) 2 ] /2. Si se integan toas las áeas A(y) ese y = hasta y = se obtiene el volumen V e la pate sumegia e la esfea V = π[ 2 (y ) 2 ]y = π 2 (3 )/3. Así que la masa el agua esplazaa es M a = ρ agua V = π 2 (3 )/3 (en gamos) pues la ensia el agua es ρ agua = g/cm 3. El peso el agua esalojaa seá P a = gm a. Po oto lao, la masa M e e la esfea es M e = ρv = ρ(4/3)π 3, mientas que le peso e la esfea seá P e = gm e. Ahoa bien, ya que po hipótesis la esfea pemanece flotano, ello significa que la esfea es lo suficientemente liviana como paa que el peso el agua que esaloja equilibe su peso gavitacional. O sea que P a = P e, po lo que M a = M e y ρ(4/3)π 3 = π 2 (3 )/3. a Esto inica que ebe esolvese la ecuación 4ρ 3 = 2 (3 ), equivalente ρ 3 =. ()
4 Revista el Depto. Mat. y Fís. UAA 7 Obsévese que la pofunia epene e los valoes que asuman los paámetos ρ y ; es eci, es función e ρ y. La ecuación () es cúbica y no existe una fómula simple que expese en función e ρ y. Se iviiá el estuio e la ecuación () en os casos. CASO I. ρ o sean muy pequeños, en cuyo caso se obtiene que 2 ( 3) =, lo que inica que = o = 3. La solución = 3 no es conguente con la hipótesis e que la esfea flota, po lo que la única solución posible es =. El esultao = inica que la esfea pemanece completamente en la supeficie, lo cual puee ebese a os situaciones: i) El cuepo es muy liviano (ρ = ) po lo que el peso el agua que esplaza es mucho mayo al peso el cuepo. Esto se obseva cuano se intouce un globo inflao en un ecipiente con agua o una bolsa sellaa llena e aie. ii) El cuepo es muy pequeño ( = ). Aunque su ensia e masa puee no se especiable (como en el caso e los zancuos patinaoes) sus imensiones son tan pequeñas que el peso el cuepo no es suficiente paa vence la llamaa tensión supeficial el liquio sobe el que se encuenta. (La tensión supeficial es la esponsable e que en la supeficie e toos los líquios se fome una especie e pequeña membana, po la que caminan algunos pequeños insectos sin hunise). CASO II. Ni ρ ni son especiables, po lo que ebe utilizase alguna técnica paa esolve el moo más geneal posible la ecuación (). En el siglo XIV el matemático italiano Caano obtuvo un métoo paa esolve ecuaciones cúbicas polinomiales cuya fomula geneal es laga y engoosa, necesitánose en ocasiones obtene aíces cúbicas e númeos complejos. Ota foma e obtene las soluciones e (), conocios ρ y, es utilizano métoos numéicos paa la búsquea e aíces e ecuaciones en una vaiable. La Figua 2(a) muesta cómo se compota el polinomio p() = ρ 3 paa valoes e ρ =.6g/cm 3 y =.cm. En este caso, la aíz e p() que es conguente con el poblema es =.22cm. La Figua 2(b) fue obtenia con MATLAB y muesta las aíces el polinomio P(,,ρ) = ρ 3 cuano se le asignan istintos valoes a los paámetos y ρ. Como es e espease, paa valoes e o ρ muy pequeños, la istancia a la que el cuepo se sumege es muy pequeña, pues se cae en el caso I ya analizao. Paa valoes e y ρ significativos, la istancia aumenta e manea semi-lineal confome cecen ichos paámetos.
5 Revista el Depto. Mat. y Fís. UAA 8 4 Gáfica e polinomio cubico Valoes e la pofunia en funcion e p y pol.2 La aiz es apox..22cm (a) (b) p Figua 2: (a) Compotamiento el polinomio p() = ρ 3 paa valoes e ρ =.6g/cm 3 y =.cm. (b) Raíces el polinomio P(,,ρ) = ρ 3 cuano se le asignan istintos valoes a los paámetos y ρ. CONCLUSIÓN: La ecuación () efine una supeficie en el espacio que elaciona los valoes e, p y. Este ejemplo muesta cómo los conceptos físicos extaíos e la ealia se entelazan con poblemas que apaentemente son completamente matemáticos. Este puente ente ealia y abstacción matemática suele pesentase con mucha fecuencia en la investigación pua y aplicaa. Las técnicas numéicas moenas apoyaas fuetemente po la computaoa pemiten llega ápiamente a conclusiones meiante heamientas visuales, como las gáficas ya mostaas. En los tiempos e Aquímies no existían computaoas que esolviean ecuaciones como (). Obtene un solo valo paa a pati el pa (ρ,) implicaba inveti una gan cantia e tiempo en cálculos. Taza la última gáfica equeiía e semanas o meses e esfuezo. Así que no es insensato eci que si Aquímies y otos genios e la antigüea viviean en nuestos ías, es posible que, valiénose e las técnicas moenas, hubiean seguio un camino simila al ya mostao paa esolve en unas pocas hoas el poblema planteao. Aquímies, con su vocación innata, y tomano el poblema anteio como eviencia, seguamente amaía a las matemáticas y a la física; peo también, como muchos e nosotos, amaía la computaoa.
CUESTIONES Y PROBLEMAS DE CAMPO ELÉCTRICO. Ejercicio nº1 Cómo se manifiesta la propiedad de la materia denominada carga eléctrica?
UESTIONES Y POBLEMAS DE AMPO ELÉTIO Ejecicio nº ómo se manifiesta la popiedad de la mateia denominada caga eléctica? La popiedad de la mateia denominada caga eléctica se manifiesta mediante fuezas de atacción
2.7 Cilindros, conos, esferas y pirámides
UNIDAD Geometía.7 Cilindos, conos, esfeas y piámides 58.7 Cilindos, conos, esfeas y piámides OBJETIVOS Calcula el áea y el volumen de cilindos, conos, esfeas y piámides egulaes Resolve poblemas de solidos
2.4 La circunferencia y el círculo
UNI Geometía. La cicunfeencia y el cículo. La cicunfeencia y el cículo JTIVS alcula el áea del cículo y el peímeto de la cicunfeencia. alcula el áea y el peímeto de sectoes y segmentos ciculaes. alcula
PROBLEMAS DE ELECTROESTÁTICA
PBLMAS D LCTSTÁTICA I CAMP LCTIC N L VACI. Cagas puntuales. Cagas lineales. Cagas supeficiales 4. Flujo le de Gauss 5. Distibuciones cúbicas de caga 6. Tabajo enegía electostática 7. Poblemas Pof. J. Matín
Tema 2. Sistemas conservativos
Tema. Sistemas consevativos Tecea pate: Fueza gavitatoia A Campo gavitatoio Una masa M cea en su vecindad un campo de fuezas, el campo gavitatoio E, dado po E u siendo u el vecto unitaio adial que sale
CAMPO GRAVITATORIO FCA 10 ANDALUCÍA
CMPO GRVIORIO FC 0 NDLUCÍ. a) Explique qué se entiende po velocidad de escape y deduzca azonadamente su expesión. b) Razone qué enegía había que comunica a un objeto de masa m, situado a una altua h sobe
D.1.- Considere el movimiento de una partícula de masa m bajo la acción de una fuerza central del tipo. n ˆ
Cuso Mecánica (FI-1A), Listado de ejecicios. Edito: P. Aceituno 34 Escuela de Ingenieía. Facultad de Ciencias Físicas y Matemáticas. Univesidad de Chile. D: FUERZAS CENTRALES Y MOVIMIENTOS PLANETARIOS
La fuerza gravitatoria entre dos masas viene dada por la ley de gravitación universal de Newton, cuya expresión vectorial es
LGUNS CUESTIONES TEÓICS SOE LOS TEMS Y.. azone si las siuientes afimaciones son vedadeas o falsas a) El tabajo que ealiza una fueza consevativa sobe una patícula que se desplaza ente dos puntos, es meno
Potencial eléctrico. Trabajo y energía potencial en el campo eléctrico. Potencial de una carga puntual: Principio de superposición
Potencial eléctico Intoducción. Tabajo y enegía potencial en el campo eléctico Potencial eléctico. Gadiente. Potencial de una caga puntual: Pincipio de supeposición Potencial eléctico de distibuciones
Olimpiada de Física de la Región de Murcia 2011. (tiempo: 1 hora)
limpiaa e Física e la Región e Mucia 011 ARTE I (tiempo: 1 hoa) 1. Tio e tes! Vamos a escibi los tios a canasta meiante la cinemática el tio paabólico. Despeciaemos la esistencia con el aie. α h Situamos
PROBLEMAS CAPÍTULO 5 V I = R = X 1 X
PROBLEMAS APÍULO 5.- En el cicuito de la figua, la esistencia consume 300 W, los dos condensadoes 300 VAR cada uno y la bobina.000 VAR. Se pide, calcula: a) El valo de R,, y L. b) La potencia disipada
IES Fco Ayala de Granada Junio de 2014 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 2 opción A, modelo_1 Junio 2014
IES Fco Ayala de Ganada Junio de 014 (Modelo 1) Soluciones Gemán-Jesús Rubio Luna Opción A Ejecicio 1 opción A, modelo_1 Junio 014 Sea f : R R definida po f(x) x + ax + bx + c. [1 7 puntos] Halla a, b
6.5 ECUACIÓN DE LA RECTA QUE PASA POR DOS PUNTOS
6.. Gáficas de ectas usando m b Po ejemplo, paa gafica la ecta Maca el valo de b (odenada al oigen) sobe el eje, es deci el punto (0,). A pati de ese punto, como la pendiente es, se toma una unidad a la
Parte 3: Electricidad y Magnetismo
Pate 3: Electicidad y Magnetismo 1 Pate 3: Electicidad y Magnetismo Los fenómenos ligados a la electicidad y al magnetismo, han sido obsevados y estudiados desde hace muchos siglos. No obstante ello, las
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES
PROBLEMAS DE OPTIMIZACIÓN DE FUNCIONES.- Halla dos númeos que sumados den cuo poducto sea máimo. Sean e los númeos buscados. El poblema a esolve es el siguiente: máimo Llamamos p al poducto de los dos
LA DERIVADA POR FÓRMULAS
CAPÍTULO LA DERIVADA POR FÓRMULAS. FÓRMULAS Obtener la erivaa e cualquier función por alguno e los os métoos vistos anteriormente, el e tabulaciones y el e incrementos, resulta una tarea muy engorrosa,
Parametrizando la epicicloide
1 Paametizando la epicicloide De la figua se obseva que cos(θ) = x 0 + ( 0 + ) cos(θ) = x sen(θ) = y 0 + ( 0 + ) sen(θ) = y po tanto las coodenadas del punto A son: A = (( 0 + ) cos(θ), ( 0 + ) sen(θ))
avance de un sacacorchos que gira como lo hacemos para llevar el primer vector sobre el segundo por el
/5 Conceptos pevios PRODUCTO VECTORIAL DE DO VECTORE. Es oto vecto cuyo módulo viene dado po: a b a b senα. u diección es pependicula al plano en el ue se encuentan los dos vectoes y su sentido viene dado
A r. 1.5 Tipos de magnitudes
1.5 Tipos de magnitudes Ente las distintas popiedades medibles puede establecese una clasificación básica. Un gupo impotante de ellas quedan pefectamente deteminadas cuando se expesa su cantidad mediante
Capitulo 9: Leyes de Kepler, Gravitación y Fuerzas Centrales
Capitulo 9: Leyes de Keple, Gavitación y Fuezas Centales Índice. Las 3 leyes de Keple 2. Campo gavitacional 4 3. Consevación de enegía 6 4. Movimiento cicula 8 5. Difeentes tayectoias 0 6. Demosta Leyes
GEOMETRÍA. punto, la recta y el plano.
MISIÓN 011-II GEMETRÍ STUS GEMETRÍ a geometía es la ama de las Matemáticas que tiene po objeto el estudio de las figuas geométicas. Se denomina figua geomética a cualquie conjunto no vacío de puntos del
CAMPO GRAVITATORIO FCA 04 ANDALUCÍA
CAPO GAVIAOIO FCA 04 ANDALUCÍA. a) Al desplazase un cuepo desde una posición A hasta ota B, su enegía potencial disminuye. Puede aseguase que su enegía cinética en B es mayo que en A? azone la espuesta.
www.fisicaeingenieria.es Vectores y campos
www.fisicaeingenieia.es Vectoes y campos www.fisicaeingenieia.es www.fisicaeingenieia.es ) Dados los vectoes a = 4$ i + 3$ j + k$ y c = $ i + $ j 7k$, enconta las componente de oto vecto unitaio, paa que
+ + h. 8 v A. = = 2026 m s 1 3 1,3 10 6 m
m A + ( ) G P m ( ) 0 + G P m R P + h R P h A B R P eniendo en cuenta que h R P /, la anteio expesión queda como: G A P 8 A 3 Sustituyendo datos numéicos, esulta: 6,67 0 N m kg, 0 3 kg A 06 m s 3,3 0 6
Leyes de Kepler. Ley de Gravitación Universal
Leyes de Keple y Ley de Gavitación Univesal J. Eduado Mendoza oes Instituto Nacional de Astofísica Óptica y Electónica, México Pimea Edición onantzintla, Puebla, México 009 ÍNDICE 1.- PRIMERA LEY DE KEPLER
MAGNITUDES VECTORIALES:
Magnitudes ectoiales MAGNITUDES VECTORIALES: Índice 1 Magnitudes escalaes ectoiales Suma de ectoes libes Poducto de un escala po un ecto 3 Sistema de coodenadas ectoiales. Vectoes unitaios 3 Módulo de
Ejercicios resueltos
Ejecicios esueltos Boletín 2 Campo gavitatoio y movimiento de satélites Ejecicio 1 En el punto A(2,0) se sitúa una masa de 2 kg y en el punto B(5,0) se coloca ota masa de 4 kg. Calcula la fueza esultante
Intensidad de campo eléctrico Se define como la fuerza que actúa por unidad de carga. Es una magnitud vectorial. F q E k q d se mide en N C
Campo eléctico Campo eléctico es la pate el espacio en la ue apaecen fuezas e atacción o e epulsión ebio a la pesencia e una caga. Caacteísticas e las cagas: Hay os tipos e cagas: positivas y negativas.
TEMA3: CAMPO ELÉCTRICO
FÍIC º BCHILLERTO. CMPO ELÉCTRICO. TEM3: CMPO ELÉCTRICO o Natualeza eléctica de la mateia. o Ley de Coulomb vs Ley de Newton. o Pincipio de supeposición. o Intensidad del campo elético. o Líneas del campo
TRABAJO DE LABORATORIO Nº 2: Potencial Eléctrico Mapa de Campo Eléctrico
Univesidad Nacional del Nodeste Facultad de Ingenieía Cáteda: Física III Pofeso Adjunto: Ing. Atuo Castaño Jefe de Tabajos Pácticos: Ing. Cesa Rey Auiliaes: Ing. Andés Mendivil, Ing. José Epucci, Ing.
INDUCCIÓN ELECTROMAGNÉTCA Y ENERGÍA DEL CAMPO MAGNÉTICO
NDUCCÓN EECTROMAGNÉTCA Y ENERGÍA 1. ey de inducción de Faaday. ey de enz.. Ejemplos: fem de movimiento y po vaiación tempoal de. 3. Autoinductancia. 4. Enegía magnética. OGRAFÍA:. DE CAMPO MAGNÉTCO -Tiple-Mosca.
Apéndice D. Estimación de los efectos capacitivos e inductivos entre el inyector y el detector
Apénice D D-1 Apénice D. Estimación e os efectos capacitivos e inuctivos ente e inyecto y e etecto E acopamiento capacitivo e inuctivo ente e sistema inyecto y e etecto puee povoca eoes en a tensión etectaa.
UNIDAD Nº 2 VECTORES Y FUERZAS
UNIVERSIDAD DE SANTIAGO DE CHILE DEPARTAMENTO DE FISICA FISICA EXPERIMENTAL PLAN ANUAL INGENIERIA FISICA 1 e SEMESTRE 2012 UNIDAD Nº 2 VECTORES Y FUERZAS OBJETIVOS Medi el módulo de un vecto fueza usando
Examen de Selectividad de Física. Junio 2009. Soluciones.
Depatamento de Física y Química. I. E. S. Atenea (S. S. Reyes, Madid) Examen de Selectividad de Física. Junio 009. Soluciones. Pimea pate Cuestión 1.- Un satélite atificial de 500 kg que descibe una óbita
C. VALENCIANA / SEPTIEMBRE 04. LOGSE / FÍSICA / EXAMEN COMPLETO
. VALENANA / SEPEMBRE 04. LOGSE / FÍSA / EXAMEN EXAMEN El alumno ealizaá una opción de cada uno de los bloques La puntuación máxima de cada poblema es de puntos, y la de cada cuestión es de,5 puntos. BLOQUE
Deflexión de rayos luminosos causada por un cuerpo en rotación
14 Defleión de ayos luminosos causada po un cuepo en otación 114 Intoducción Cuando un ayo luminoso pasa po la cecanía de un cuepo se ve obligado a abandona su tayectoia ectilínea y cuvase más o menos
Ecuación de Laplace y Ecuación de Poisson Teorema de Unicidad. Métodos de las Imágenes. Campos y Ondas UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA
Electostática táti Clase 3 Ecuación de Laplace y Ecuación de Poisson Teoema de Unicidad. Métodos de las Imágenes Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA 2 E V m
Estos rodamientos no son desmontables ni autoalineables, por lo que requieren una perfecta alineación del asiento del soporte.
ROAMIENOS RIGIOS E OLAS Este tipo e oamientos son e uso geneal, ya que pueen absobe caga aial y axial en ambos sentios, así como las fuezas esultantes e estas cagas combinaas; a su vez, pueen opea a elevaas
Campo eléctrico. Introducción a la Física Ambiental. Tema 7. Tema 7.- Campo eléctrico.
Campo eléctico. Intoducción a la Física Ambiental. Tema 7. Tema7. IFA (Pof. RAMOS) 1 Tema 7.- Campo eléctico. El campo eléctico: unidades. Líneas del campo eléctico. Potencial eléctico: unidades. Fueza
CAMPO GRAVITATORIO FCA 05 ANDALUCÍA
CAPO GRAVIAORIO FCA 05 ANDALUCÍA 1. Un satélite descibe una óbita cicula alededo de la iea. Conteste azonadaente a las siguientes peguntas: a) Qué tabajo ealiza la fueza de atacción hacia la iea a lo lago
TEMA PRELIMINAR. Los sistemas de representación son objeto de estudio en la geometría descriptiva, la cual se fundamenta en la geometría proyectiva.
TEMA PRELIMINAR 1. Sistemas de Repesentación y Geometía. En esta pate de la intoducción, se tata de encuada el estudio de los sistemas de epesentación dento de lo que es la geometía. Paa ello se va a intenta
RECTAS Y ÁNGULOS. SEMIRRECTA.- Un punto de una recta la divide en dos semirrectas. La semirrecta tiene principio pero no tiene fin.
RECTAS Y ÁNGULOS 5º de E. Pimaia RECTAS Y ÁNGULOS -TEMA 5 RECTA.- Es una sucesión infinita de puntos que tienen la misma diección. La ecta no tiene ni pincipio ni fin. Po dos puntos del plano pasa una
Examen de Selectividad de Física. Septiembre 2008. Soluciones.
Depatamento de Física y Química. I. E.. Atenea (.. Reyes, Madid) Examen de electividad de Física. eptiembe 2008. oluciones. Pimea pate Cuestión 1. Calcule el módulo del momento angula de un objeto de 1000
5. Sistemas inerciales y no inerciales
5. Sistemas ineciales y no ineciales 5.1. Sistemas ineciales y pincipio de elatividad de Galileo El conjunto de cuepos especto de los cuales se descibe el movimiento se denomina sistema de efeencia, y
Es el producto escalar de la fuerza aplicada al cuerpo por el vector r r Por lo tanto es una magnitud escalar.
TRABAJO Y ENERGÍA TRABAJO Es el poducto escala de la fueza aplicada al cuepo po el vecto desplazamiento. Po lo tanto es una magnitud escala. W = F.D = F.D. cos a Su unidad en el sistema intenacional es
Actividades del final de la unidad
Actividades del final de la unidad. Indica cuál de las siguientes afimaciones es falsa: a) En la época de Aistóteles ya se aceptaba que la iea ea esféica. b) La estimación del adio teeste que llevó a cabo
Fenómenos Ondulatorios: Interferencias
Fenómenos Ondulatoios: Inteeencias Fenómenos de supeposición de ondas. Inteeencias (pags 67-76 Guadiel) Cuando en un punto de un medio coinciden dos o más ondas (petubaciones) se dice que en ese punto
Primer Periodo ELEMENTOS DE TRIGONOMETRIA
Matemática 10 Gado. I.E. Doloes Maía Ucós de Soledad. INSEDOMAU Pime Peíodo Pofeso: Blas Toes Suáez. Vesión.0 Pime Peiodo ELEMENTOS DE TRIGONOMETRIA Indicadoes de logos: Conveti medidas de ángulos en adianes
TEORIA RELATIVISTA DE LA GRAVITACION EN LA EXPANSION COSMOLOGICA
ORIA RLAIVISA D LA RAVIACION N LA XPANSION COSMOLOICA Rodolfo CARABIO Posiguiendo el estudio eoía Relativista de la avitación basada en la Relatividad special, se analizaa a continuación la aplicación
PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO
PAUTA ACTIVIDADES: COMENZANDO CON EL LENGUAJE ALGEBRAICO Joaquín ha comenzado a utiliza letas paa epesenta distintas situaciones numéicas. Obseve lo que ealiza con el siguiente enunciado: A Matías le egalaon
10 El campo eléctrico
Solucionaio 0 l capo eléctico JRCICIOS PROPUSTOS 0. A cuántos electones euivale una caga eléctica negativa e os icoculobios? La caga inicaa es: μc 0 C uivale a: electón C,, 0 C 3 electones 0. Po ué se
1 Ec. = Ep Ec. 1 Demuestra matemáticamente el principio de conservación de la energía mecánica.
Demuesta matemáticamente el pincipio de conseación de la enegía mecánica. Supongamos un objeto de masa m que cae al acío desde una altua h. Calculando su E c y su E p en dos puntos, y, distintos del ecoido,
CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY
Tópicos e Electicia y Magnetismo J.Pozo y R.M. Chobajian. CAPÍTULO VIII LEY DE INDUCCIÓN FARADAY 8.1. Ley e Faaay En 1831 Faaay obsevó expeimentalmente que cuano en una bobina que tiene conectao un galvanómeto
Electromagnetismo Pedagogía en Física R. Lagos. PROBLEMAS RESUELTOS
PROBLEMAS RESUELTOS. Un capacitor e lleno e aire está compuesto e os placas paralela, caa una con un área e 7 6 [ 2 ], separaas por una istancia e,8 [mm]. Si se aplica una iferencia e potencial e 20 [V]
10.- www.lortizdeo.tk I.E.S. Francisco Grande Covián Campo Gravitatorio mailto:[email protected] 27/01/2005 Física 2ªBachiller
www.lotizdeo.tk I.E.S. Fancisco Gande Covián Campo Gavitatoio mailto:[email protected] 7/01/005 Física ªBachille 10.- Un satélite atificial descibe una óbita elíptica, con el cento de la iea en uno
Problema 1. En la figura inferior hay un elemento no lineal cuya característica corriente-voltaje viene dado por la expresión:
Univesia ey Juan Calos Soluciones Ejecicios ioos Escuela Supeio e Ciencias Expeimentales y Tecnología Soluciones Ejecicios ioos Soluciones Cuestiones tipo test. La espuesta coecta es a).. La espuesta coecta
VECTORES, DERIVADAS, INTEGRALES
Física Tema 0-1 º Bachilleato Vectoes, deivadas, integales Tema 0 VECTORES, DERIVADAS, INTEGRALES 1.- Vectoes. Componentes de un vecto.- Suma y difeencia de vectoes 3.- Poducto de un vecto po un númeo
Diferencia de potencial y potencial eléctricos. En el campo gravitatorio.
Difeencia de potencial y potencial elécticos En el campo gavitatoio. Difeencia de potencial y potencial elécticos El tabajo se cuantifica po la fueza que ejece el campo y la distancia ecoida. W F d Difeencia
Física General III Ley de Gauss Optaciano Vásquez García CAPITULO III LEY DE GAUSS
Física Geneal III Ley de Gauss Optaciano Vásquez Gacía CAPITULO III LY D GAUSS 9 Física Geneal III Ley de Gauss Optaciano Vásquez Gacía 3.1 INTRODUCCIÓN n el capitulo anteio apendimos el significado del
Adaptación de impedancias
.- El tansfomado ideal Adaptación de impedancias I +V +V TI Tansfomado ideal V elaciones V-I: V = I = a. I, válidas paa cualquie fecuencia. a Si se conecta una esistencia al secundaio, ente el nodo +V
CAMPO ELÉCTRICO. r r. r Q Q. 2 r K = 2 u r. La fuerza que experimenta una carga Q debido a la acción del campo creado por una carga Q es:
CAMPO ELÉCTRICO Camp eléctic Es la egión del espaci que se ve petubada p la pesencia de caga cagas elécticas. Las caacteísticas más imptantes de la caga eléctica sn: - La caga eléctica se cnseva. - Está
Elementos de la geometría plana
Elementos de la geometía plana Elementos de la geometía plana El punto Los elementos básicos de la geometía plana El punto es el elemento mínimo del plano. Los otos elementos geométicos están fomados po
MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA
MODELADO DEL FLUJO EN UNA PLANTA DE TRATAMIENTO DE AGUA Raymundo López, Juan Moales, Alen Díaz, Mabel Vaca, Aaceli Laa y Atuo Lizadí. Univesidad Autónoma Metopolitana- Azcapotzalco Depatamento de Enegía,
CAPÍTULO I INTRODUCCIÓN
CAPÍTULO I 1.1 Planteamiento del Problema En el mundo, así como en México las pequeñas y medianas empresas contribuyen en gran medida al desarrollo del país. Estas soportan las operaciones de las grandes
Kronotek: Configuración de Red para VoIP
Konotek: Configuación de Red paa VoIP Contenido 1. Intoducción... 2 2. Impotancia de la Configuación de Red... 2 3. Pasos Pevios: Cálculo del númeo de líneas de voz... 3 Pime paso: obtención del ancho
ANALISIS DE RIESGO E INCERTIDUMBRE. Evaluacion de Proyectos Jose Fuentes Valdes
ANALISIS DE RIESGO E INCERTIDUMBRE Análisis Deteministico V/S Análisis de Riesgo e Incetidumbe Valoes Únicos y Conocidos Valoes Vaiables y Desconocidos ANALISIS DETERMINISTICO Pecio Cantidad Invesión EVALUACION
P cabeza Sca 5 1 0 6 m 2 2 10 6 Pa. beza. 6 m 2 10 8 Pa unta
Pág. 1 16 Ejercemos una fuerza de 10 N sobre un clavo. Si la superficie de su cabeza es de 5 mm y la de la punta 0,1 mm, qué presión se ejercerá al aplicar la fuerza sobre uno u otro de sus extremos? La
PREGUNTAS FRECUENTES Nuevo Plan de Jubilación a Partir del 1º de Julio del 2014
PREGUNTAS FRECUENTES Nuevo Plan de Jubilación a Partir del 1º de Julio del 2014 La siguiente lista de preguntas frecuentes pretende responder a muchas de las dudas que pueda tener sobre la decisión de
Aplicación 2: Diversificación de las inversiones (problema de selección de cartera)
Aplicación : Divesificación de las invesiones (poblema de selección de catea) Hecho empíico: Cuanto mayo es el valo espeado (endimiento) de una invesión NO es cieto que sea más apetecible. (Si invesoes
Continuación: Valor presente y Procesos de Descuento
1 Continuación: Valor presente y Procesos de Descuento De forma hipotética, si el Índice de Precios y Cotizaciones de la Bolsa Mexicana de Valores (IPC) descendiera por ejemplo dos puntos porcentuales
Chapter 1 Integrales irracionales
Chapte Integales iacionales. Del tipo R R(, (a + b) m,..., (a + b) y z )d Se esuelven mediante el siguiente cambio de vaiable a + b = t n donde n = m.c.m(,,..., z) Difeenciando tendemos ad = nt n dt d
PRUEBA ESPECÍFICA PRUEBA 2014
PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 014 PRUEBA SOLUCIONARIO HAUTAPROBAK 5 URTETIK 014ko MAIATZA DE 5 AÑOS MAYO 014 Aclaraciones previas Tiempo de duración de la
PAU, 2014 (septiembre)
PAU, 2015 (modelo) Una empresa comercializa un determinado producto. Compra a su proveedor cada unidad que comercializa, a un precio de 150. La empresa se está planteando la producción del bien que distribuye.
INTRODUCCION AL ANALISIS VECTORIAL
JOSÉ MILCIDEZ DÍZ, REL CSTILLO, ERNNDO VEG PONTIICI UNIVERSIDD JVERIN, DEPRTMENTO DE ÍSIC INTRODUCCION L NLISIS VECTORIL Intoducción Pate Pate 3 Pate 4 (Pate ) Donde encuente el símbolo..! conduce a una
PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES
Departamento de Física Aplicada Universidad de Castilla-La Mancha Escuela Técnica Superior Ing. Agrónomos PRÁCTICA 7: PRINCIPIO DE ARQUÍMEDES MATERIAL - Dinamómetro de 1 N - Bolas de péndulo (3 al menos)
5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS
5.2 Capítulo 5. FUERZAS CENTRALES Y ÓRBITAS GRAVITATORIAS descitos en una efeencia inecial (I) po sus vectoes de posición 0 y 1 espectivamente. I m 1 1 F 10 1 F 01 m 1 0 0 0 Figua 5.1: Sistema binaio aislado
PRACTICO 2: Funciones Noviembre 2011
EJERCITACIÓN PARA EXAMEN DE MATEMATICA MAYORES DE 5 AÑOS SIN CICLO MEDIO COMPLETO PRACTICO : Funciones Noviembre 011 Ejercicio 1.- Reescriba las oraciones que siguen usando la palabra función. (a) El impuesto
Apéndice 4. Introducción al cálculo vectorial. Apéndice 2. Tabla de derivadas y de integrales inmediatas. Ecuaciones de la trigonometría
Apéndices Apéndice 1. Intoducción al cálculo vectoial Apéndice. Tabla de deivadas y de integales inmediatas Apéndice 3. Apéndice 4. Ecuaciones de la tigonometía Sistema peiódico de los elementos Apéndice
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
Módulo 3: Fluidos. Fluidos
Módulo 3: Fluidos 1 Fluidos Qué es un fluido? En Física, un fluido es una sustancia que se deforma continuamente (fluye) bajo la aplicación de una tensión tangencial, por muy pequeña que sea. Es decir,
