masas estelares sistemas estelares múltiples estrellas binarias

Tamaño: px
Comenzar la demostración a partir de la página:

Download "masas estelares sistemas estelares múltiples estrellas binarias"

Transcripción

1 masas estelares sistemas estelares múltiples estrellas binarias

2 sistema estelar múltiple: grupo de dos o más estrellas orbitando alrededor del centro de masa común debido a la atracción gravitatoria mutua sistema binario: dos estrellas orbitando alrededor del centro de masa común debido a la atracción gravitatoria mutua órbitas 1) orbita de cada una de las estrellas alrededor del centro de masa del sistema = órbita absoluta órbita absoluta órbita absoluta aparente u observada verdadera (proyección en el plano del cielo de la órbita verdadera) 2) órbita de una de las estrellas alrededor de la otra = órbita relativa órbita relativa órbita relativa aparente u observada verdadera

3 todas las órbitas, absolutas, relativas, verdaderas o aparentes, de ambas estrellas de un sistema binario tienen el mismo período órbitas absolutas CM los semiejes mayores de las órbitas son inversamente proporcionales a las masas de las estrellas: a m A B = a m B A

4 órbitas relativas verdaderas las órbitas relativas verdaderas de cada una de las estrellas tienen a la otra en el foco las órbitas relativas verdaderas de ambas estrellas tienen la misma forma : igual semieje mayor, igual excentricidad órbita relativa verdadera de la estrella B con respecto a la A B A órbita relativa verdadera de la estrella A con respecto a la B A B

5 las órbitas relativas aparentes de ambas estrellas son iguales en forma entre sí, pero diferentes de las verdaderas órbitas relativas aparentes las órbitas relativas aparentes de cada una de las estrellas no tienen en general a la otra en el foco

6 tercera ley de Kepler derivada de las leyes de Newton válida para cualquier par de cuerpos orbitando uno en torno del otro debido a la atracción gravitatoria mutua: P² a³ = 4π² G(M1+M2) 1 para el sol y la tierra: Pt² at³ = 4π² G(Ms+Mt) P[y]² a[ua]³ = 1 (M1+M2)[Ms] permite obtener la suma de las masas de las componentes si se conoce la distancia media entre ellas y el período (M1+M2)[Ms]= a[ua]³ P[y]² 3

7 a ojo desnudo todas las estrellas son simples sin embargo aproximadamente el 60% de las estrellas de nuestra galaxia pertenecen a sistemas binarios según se los descubra visualmente, espectroscópicamente o fotométricamente, los sistemas binarios se clasifican en: 1) visuales, 2) espectroscópicos o 3) eclipsantes esta clasificación depende sólo del método de detección

8 sistemas binarios visuales las estrellas del par pueden ser vistas separadamente a través del telescopio de la observación se puede obtener la separación angular entre las componentes a[ua] a[ ] = a[ua] d [ua] a[ ] a[ ] = a[ua] (d [pc] ) a[ ] = a[ua] p[ ] reemplazando en permite obtener la suma de las masas de las componentes de una binaria visual observando la órbita relativa (M1+M2)[Ms]= (M1+M2)[Ms]= a[ua]³ P[y]² a[ ]³ p[ ]³ P[y]²

9 para obtener el cociente de las masas de las componentes de una binaria visual deben observarse las órbitas absolutas de ambas componentes con el cociente m B m = y la suma (M1+M2)[Ms]= A a a A B a[ ]³ p[ ]³ P[y]² podríamos calcular las masas individuales de las componentes del sistema si a, a A y a B corresponden a las órbitas relativas y absolutas verdaderas! las órbitas verdaderas se pueden obtener por consideraciones geométricas a partir de las aparentes para las binarias visuales

10 sistemas binarios espectroscópicos en el espectro de una o de las dos componentes del par se observa por efecto Doppler un corrimiento periódico de las líneas,,ג hacia uno y otro lado del espectro 0 ג / c ג = Vr permite obtener la velocidad radial de una o ambas componentes del par en función del tiempo curvas de velocidad radial la forma de las curvas de velocidad radial depende de la forma y orientación con respecto al observador de las órbita

11 al observador curvas de velocidad radial para diferentes órbitas VR t órbita circular VR t órbita elíptica con el eje mayor perpendicular a la línea de la visual VR t órbita elíptica con el eje mayor paralelo a la línea de la visual

12 al observador velocidad radial curvas de velocidad radial de ambas componentes de un sistema binario con órbitas circulares tiempo las curvas de velocidad radial son espejo una de la otra las amplitudes son inversamente proporcionales a los tamaños de las órbitas

13 de las curvas de velocidad radial de las binarias espectroscópicas se obtiene el período y el semieje mayor de la órbita proyectada en el plano del cielo semieje mayor de la órbita verdadera (M1+M2)[Ms]= a sen(i) a[ua]³ P[y]² si el espectro de la estrella 1 es observado inclinación del plano de la órbita verdadera con respecto al plano del cielo (a sen(i))³ (M1+M2)sen(i)³ = P² a M 2 a 1 = M + M 1 2 función de masa (M2 sen(i))³ (a 1 sen(i))³ = (M1+M2)² P² de la observación

14 si el espectro de las dos estrellas es observado, se obtiene a 1 sen(i) a 2 sen(i) a 1 sen(i) a 2 sen(i) + = a seni a sen(i) 1 a sen(i) 2 = M M 1 M1 seni y 2 M2 seni si se conoce i, las masas de ambas componentes puede ser encontrada i es conocida para las binarias eclipsantes!

15 sistemas binarios eclipsantes si i 90, una componente del par pasa delante de la otra periódicamente produciendo un eclipse esto produce una variación en el brillo del sistema permite graficar el brillo de una o ambas componentes del par en función del tiempo curvas de luz la forma de las curvas de luz depende de las temperaturas y tamaños relativos de las componentes, de la forma de la órbita y del valor de i

16 intensidad curvas de luz de binarias eclipsantes con órbitas circulares y eclipses totales (i=90 ) a) estrellas de igual tamaño e igual temperatura tiempo todos los mínimos de igual profundidad e igualmente espaciados

17 mínimo primario mínimo primario intensidad b) estrellas de igual tamaño y diferente temperatura tiempo mínimo secundario (punto medio entre ambos mínimos primarios) todos los mínimos igualmente espaciados

18 intensidad mínimo primario mínimo primario c) estrellas de diferente tamaño y diferente temperatura mínimo secundario (punto medio entre ambos mínimos primarios) tiempo todos los mínimos igualmente espaciados

19 intensidad curvas de luz de binarias eclipsantes con órbitas circulares y eclipses parciales (i 90 ) mínimo primario mínimo primario mínimo secundario (punto medio entre ambos mínimos primarios) tiempo mínimos puntiagudos pueden ocurrir cuando los eclipses son totales y las estrellas son de igual tamaño, o cuando los eclipses son parciales

20 intensidad obtención de la relación de radios de las componentes de un sistema binario eclipsante bsist 1,4 bch = tiempo bsist= bsist= en t1 o t4 Ech 4πRch²+EG 4πRG² 4πd² en t2 o t3 EG 4π(RG²-Rch²)+Ech 4πRch² 4πd² si Tch=TG, Ech=EG Ech 4πRch²+EG 4πRG² 4πd² =1+ RG² Ech 4πRch² Rch² 4πd² RG² Rch² pero también es posible obtener la relación i Tch TG, Ech EG de radios de las componentes del sistema

21 observador obtención del radio de las componentes de un sistema binario espectroscópico eclipsante si además de la curva de luz tenemos la curva de velocidad radial podemos obtener la velocidad orbital la máxima velocidad radial observada corresponde a la velocidad orbital Vorb t = distancia recorrida en la órbita

22 intensidad t1, t2, t3 y t4 = tiempos de contacto Vorb (t4 t2)= 2 RG RG Vorb (t2 t1)= 2 Rch tiempo Rch si la curva de velocidad radial no está disponible, sólo es posible obtener la relación de radios de las componentes

23

Masas estelares. Estrellas binarias

Masas estelares. Estrellas binarias Capítulo 7 Masas estelares. Estrellas binarias 7.1. Masas estelares # Masa magnitud fundamental de las estrellas Determina la producción de energía ( ) evolución Constante durante la mayor parte de la

Más detalles

Módulo 5. Unidad didáctica 1: Estrellas binarias. ANTARES - Módulo 5 - Unidad 1 - Programa de Nuevas Tecnologías - MEC

Módulo 5. Unidad didáctica 1: Estrellas binarias. ANTARES - Módulo 5 - Unidad 1 - Programa de Nuevas Tecnologías - MEC ANTARES - Módulo 5 - Unidad 1 - Programa de Nuevas Tecnologías - MEC Módulo 5 Unidad didáctica 1: Estrellas binarias Órbitas absolutas respecto al centro de masas file:///f /antares/modulo5/m5_u100.html

Más detalles

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Los elementos

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras DEPARTAMENTO DE CIENCIAS Y TECNOLOGÍA MISS YORMA RIVERA M. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras GUIA DE APRENDIZAJE LEYES DE KEPLER Antes de iniciar el estudio

Más detalles

Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros

Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros Mediendo las estrellas: distancias, luminosidades, temperaturas, tamaños, espectros estrellas con luminosidades diferentes se pueden aparecer iguales! > distancia es necesaria para saber los parametros

Más detalles

Lección Nº 2. Clasificación de las Estrellas Dobles

Lección Nº 2. Clasificación de las Estrellas Dobles CURSO BASICO SOBRE ESTRELLAS DOBLES Lección Nº 2 Clasificación de las Estrellas Dobles Ya mencionamos que estos sistemas, en principio los clasificamos en dos grupos principales, a saber: las doble ópticas

Más detalles

ACTIVIDADES DE PROFUNDIZACIÓN

ACTIVIDADES DE PROFUNDIZACIÓN ACTIVIDADES DE PROFUNDIZACIÓN Recordando la experiencia En el Taller de planetas extrasolares nos adentramos en una de las ramas de la Astronomía más excitante de los últimos tiempos, la búsqueda de planetas

Más detalles

Olimpíada Argentina de Astronomía Examen Final 10 de Noviembre de Alumno: _. Establecimiento Educativo: _

Olimpíada Argentina de Astronomía Examen Final 10 de Noviembre de Alumno: _. Establecimiento Educativo: _ Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Todos

Más detalles

INTRODUCCION PLANETAS EXTRASOLARES BUSCANDO RESPUESTAS TEORIA NEBULAR

INTRODUCCION PLANETAS EXTRASOLARES BUSCANDO RESPUESTAS TEORIA NEBULAR PLANETAS EXTRASOLARES INTRODUCCION De donde venimos?... Para responder esta pregunta tratamos de comprender nuestro entorno. Su origen y evolución. Para esto se desarrollan modelos teóricos en busca de

Más detalles

Olimpíada Argentina de Astronomía Examen Final 12 de Noviembre de Alumno: _. Establecimiento Educativo: _

Olimpíada Argentina de Astronomía Examen Final 12 de Noviembre de Alumno: _. Establecimiento Educativo: _ Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) El modelo

Más detalles

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) El eje

Más detalles

AS2001: Astronomía General Clase # 11 Estructura Estelar #1

AS2001: Astronomía General Clase # 11 Estructura Estelar #1 AS2001: Astronomía General Clase # 11 Estructura Estelar #1 Profesor: José Maza Sancho 25 Abril 2017 Propiedades de las Estrellas Vida esperada para el Sol: 10 10 9 años Vida esperada para un ser humano:

Más detalles

Leyes de Kepler y Gravitación

Leyes de Kepler y Gravitación Leyes de Kepler y Gravitación 1 Tycho Brahe, a los 14 años observó un eclipse de Sol el 21 de agosto de 1560. Esta fecha sólo difería en dos días respecto de la que predecían los libros de la época. Eso

Más detalles

Olimpíada Argentina de Astronomía Examen Final 15 de Noviembre de Alumno: _. Establecimiento Educativo: _

Olimpíada Argentina de Astronomía Examen Final 15 de Noviembre de Alumno: _. Establecimiento Educativo: _ Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) El ojo

Más detalles

Gravitación universal Por: Jose Doria

Gravitación universal Por: Jose Doria Gravitación universal Por: Jose Doria Ley de Newton de gravitación universal En 1687 Newton publico su obra acerca de la ley de gravedad en su tratado Principios matemáticos de filosofía natural. La ley

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

TEMA 12. CTE 2 - Tema 12 1

TEMA 12. CTE 2 - Tema 12 1 TEMA 12 Nuestro sistema solar. La búsqueda de planetas más allá del sistema solar. Observación de discos protoplanetarios. El descubrimiento de planetas extrasolares. Métodos de detección de planetas extrasolares.

Más detalles

Lee con atención: En qué consiste la teoría de Copérnico? Qué teoría existía antes de ésta? Talleres de astronomía-proyecto PARTNeR 1

Lee con atención: En qué consiste la teoría de Copérnico? Qué teoría existía antes de ésta? Talleres de astronomía-proyecto PARTNeR 1 ACTIVIDADES PREVIAS Lee con atención: Desde tiempos remotos la humanidad se ha preguntado por la existencia de otros tipos de vida en lugares inexplorados del Universo con los cuales no tenemos contacto.

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses:

CÓNICAS. 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: CÓNICAS 1.- Hallar el centro, vértices, excentricidad y representación gráfica de las elipses: a) b) c) a) =(3,1), A(5,1), A (1,1), B(3,), B (3,0) e=0'866; b) =(-,1), A(-1,1), A (-3,1),B(-,4/3), B (-,/3),

Más detalles

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Para

Más detalles

tradicionalmente se conocen como estrellas variables aquellas cuyo brillo varía con el tiempo

tradicionalmente se conocen como estrellas variables aquellas cuyo brillo varía con el tiempo estrellas variables tradicionalmente se conocen como estrellas variables aquellas cuyo brillo varía con el tiempo actualmente también se llaman estrellas variables aquellas estrellas que muestran variación

Más detalles

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r Energía potencial gravitatoria (largo alcance) Comparo con el caso general Se acostumbra tomar nula a la energía potencial gravitatoria cuando r 1 Propiedades de los campos de fuerzas conservativos independiente

Más detalles

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio

Gravitación. Área Física. Planeta. Foco. Perihelio semi-eje mayor de la elipse. excentricidad de la elipse. Afelio Gravitación Área Física Resultados de aprendizaje Comprender las leyes de Kepler y la ley de gravitación universal, para su aplicación en problemas de órbitas planetarias. Contenidos Debo saber Antes de

Más detalles

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm.

EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. EJERCICIOS. 1.- Calcular la masa de un cuerpo cuyo peso es: a) 19.6 new, b) 1960 dinas, c) 96 Kg. Sol: 2 Kg, 2 gr, 9.8 utm. 2.- Una fuerza actúa sobre un cuerpo que tiene una masa de 5 Kg, la velocidad

Más detalles

Problemas adicionales de Física Cuántica (2010/2011)

Problemas adicionales de Física Cuántica (2010/2011) Problemas adicionales de Física Cuántica (2010/2011) Mª del Rocío Calero Fernández-Cortés María Jesús Jiménez Donaire Ejercicio 3.- La potencia (en forma de ondas gravitacionales) emitida por un sistema

Más detalles

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Entre

Más detalles

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO

RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO RELACIÓN DE PROBLEMAS GRAVITACIÓN Y CAMPO GRAVITATORIO 1. Supongamos conocido el período y el radio de la órbita de un satélite que gira alrededor de la Tierra. Con esta información y la ayuda de las leyes

Más detalles

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Las coordenadas

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

MOVIMIENTOS DE LA TIERRA

MOVIMIENTOS DE LA TIERRA MOVIMIENTOS DE LA TIERRA Está sujeta a más m s de 10 movimientos Movimiento de rotación Movimiento de traslación 930 millones de km Distancia media al sol 1 U.A. (150 millones km) 30 km por segundo Órbita

Más detalles

III Taller de Astronomía SAA Pablo Cuartas Restrepo

III Taller de Astronomía SAA Pablo Cuartas Restrepo III Taller de Astronomía SAA Pablo Cuartas Restrepo EXOPLANETAS Sesión 1: Métodos de Detección Tipos de Exoplanetas Por qué buscamos? Buscamos nuestro lugar en el universo desde hace miles de años. Por

Más detalles

A.8) El radiotelescopio de Arecibo con sus 305 m de diámetro es el de mayor tamaño actualmente.

A.8) El radiotelescopio de Arecibo con sus 305 m de diámetro es el de mayor tamaño actualmente. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Pueden

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 8 de Septiembre de 2014

Olimpíada Argentina de Astronomía Examen de Preselección 8 de Septiembre de 2014 Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) A diferencia

Más detalles

B i m e s t r a l d e f í s i c a 1 p e r i o d o g r a d o o n c e

B i m e s t r a l d e f í s i c a 1 p e r i o d o g r a d o o n c e B i m e s t r a l d e f í s i c a 1 p e r i o d o g r a d o o n c e 1. Si acercamos un esfero y un cuaderno lo máximo posible pero sin que se toquen, podemos afirmar que: entre los dos esferos existe una

Más detalles

El Origen de los Planetas y de las Estrellas

El Origen de los Planetas y de las Estrellas El Origen de los Planetas y de las Estrellas Formación de Estrellas y Planetas 5 de Setiembre de 2008 Dra. Mercedes Gómez Feria del Libro Academia de Ciencias Formación Estelar y Planetaria: Etapas de

Más detalles

UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES

UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES UNIDAD: GRAVITACIÓN LEYES DE KEPLER (1609) LEY DE GRAVITACION DE NEWTON (1687) CAMPO GRAVITACIONAL APLICACIONES LEYES DE KEPLER (Johannes Kepler 1571-1630) Matemático y astrónomo alemán Fue colaborador

Más detalles

Olimpíada Argentina de Astronomía Examen Final 6 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Olimpíada Argentina de Astronomía Examen Final 6 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) La discontinuidad

Más detalles

v m 2 d 4 m d 4 FA FCP m k m m m m m r

v m 2 d 4 m d 4 FA FCP m k m m m m m r Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

Galaxia espiral Messier 31 (2.5 millones de años luz=775 kpc)

Galaxia espiral Messier 31 (2.5 millones de años luz=775 kpc) Galaxia espiral Messier 31 (2.5 millones de años luz=775 kpc) galaxias espirales barradas y la nuestra? Como sabemos cómo es, si estamos dentro? imagen de la Vía Láctea vista desde el hemisferio sur Herschel

Más detalles

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos

Primera ley Los planetas describen órbitas elípticas estando el Sol en uno de sus focos La teoría de gravitación universal. Breve introducción sobre la evolución de los modelos del movimiento planetario. Desde el principio de los tiempos, los Hombres han tratado de explicar el movimiento

Más detalles

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda.

Olimpíada Argentina de Astronomía Examen Final 7 de Noviembre de Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Entre

Más detalles

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma Opción A. Ejercicio Una partícula de masa m = 0 g oscila armónicamente a lo largo del eje OX en la forma x A sen t, con A = 0,2 m y 0 (rad s ). [a] Determine y represente gráficamente la fuerza que actúa

Más detalles

Principales características de los planetas. Sol desde la Tierra. Características Sol. Movimiento Mercurio

Principales características de los planetas. Sol desde la Tierra. Características Sol. Movimiento Mercurio Sol desde la Tierra Distancia media de la Tierra 1.000 AU ( 1.496E8 km) Distancia máxima desde la Tierra 1.017 AU ( 1.521E8 km) Distancia mínima desde la Tierra 0.983 AU ( 1.471E8 km) Diámetro angular

Más detalles

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección

resolución Dpto. de Ingeniería Cartográfica Carlos Pinilla Ruiz resolución Ingeniería Técnica en Topografía lección 7 Teledetección lección 7 1 sumario 2 Introducción. Tipos de. Resolución espacial. Resolución espectral. Resolución radiométrica. Resolución temporal. Relación entre las distintas resoluciones. introducción 3 Resolución

Más detalles

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la

La energía cinética, en función del tiempo, está dada por: E c (t) = 4 cos 2 (2t). Dado que la Opción A. Ejercicio Una partícula de masa m describe, sobre el eje x, un M.A.S. de amplitud A y frecuencia angular ù. En t = 0 pasa por la posición de equilibrio, donde tomamos x = 0. [a] Escriba las ecuaciones

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 7 de Septiembre de 2015

Olimpíada Argentina de Astronomía Examen de Preselección 7 de Septiembre de 2015 Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Debido

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 2 de Septiembre de 2013

Olimpíada Argentina de Astronomía Examen de Preselección 2 de Septiembre de 2013 Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) En la

Más detalles

PATRICIA PEINADOR ALBA HORNA TECNOLOGÍA 4º E.S.O. COLEGIO ZAZUAR (2003/2004)

PATRICIA PEINADOR ALBA HORNA TECNOLOGÍA 4º E.S.O. COLEGIO ZAZUAR (2003/2004) PATRICIA PEINADOR ALBA HORNA TECNOLOGÍA 4º E.S.O. COLEGIO ZAZUAR (2003/2004) ÍNDICE: Tránsitos. Características. Tránsito de Venus. Tránsito de Mercurio. Tránsitos solares. Inclinación de las órbitas de

Más detalles

Código: Prueba teórica grupal OLAA 2016 Córdoba, Argentina. P1 P2 P3 P4 Total

Código: Prueba teórica grupal OLAA 2016 Córdoba, Argentina. P1 P2 P3 P4 Total Prueba teórica grupal OLAA 2016 Córdoba, Argentina P1 P2 P3 P4 Total Datos: Distancia a M87: 16 Mega parsecs (1Mpc equivale 10 6 parsecs). Velocidad de la luz: c = 300 000 km/s Constante de gravitación

Más detalles

Î R. j Actividades Î (19,13)

Î R. j Actividades Î (19,13) LEY DE LA GAVIACIÓN UNIVESAL. APLICACIONES 0 9 j Actividades. Enuncia la segunda ley de Kepler. Explica en qué posiciones de la órbita elíptica la velocidad del planeta es máxima y en cuáles es mínima.

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 12 de Septiembre de 2011

Olimpíada Argentina de Astronomía Examen de Preselección 12 de Septiembre de 2011 Docente/Tutor: Establecimiento Educativo: _ PRIMER NIVEL: Examen para alumnos de 1 er año, 2 do año y 3 er año. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Plutón

Más detalles

Bolilla 12: Óptica Geométrica

Bolilla 12: Óptica Geométrica Bolilla 12: Óptica Geométrica 1 Bolilla 12: Óptica Geométrica Los contenidos de esta bolilla están relacionados con los principios primarios que rigen el comportamiento de los instrumentos ópticos. La

Más detalles

M. I. Yahvé Abdul Ledezma Rubio

M. I. Yahvé Abdul Ledezma Rubio M. I. Yahvé Abdul Ledezma Rubio Contenido 1. Leyes de movimiento de Kepler 2. Leyes de Newton, ley de la gravitación universal 3. Cantidad de movimiento lineal, cantidad de movimiento angular 4. Conservación

Más detalles

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas.

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas. 1. Leyes de Kepler En 1609, como resultado de una serie de observaciones y del análisis de los datos recibidos, Kepler enuncia sus tres famosas leyes empíricas que rigen el movimiento de los planetas.

Más detalles

Astronáutica y Vehículos Espaciales

Astronáutica y Vehículos Espaciales Astronáutica y Vehículos Espaciales Mecánica Orbital Básica Rafael Vázquez Valenzuela Departmento de Ingeniería Aeroespacial Escuela Superior de Ingenieros, Universidad de Sevilla rvazquez1@us.es 2 de

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo.

a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. PAU MADRID SEPTIEMBRE 2003 Cuestión 1.- a) Defina las superficies equipotenciales en un campo de fuerzas conservativo. b) Cómo son las superficies equipotenciales del campo eléctrico creado por una carga

Más detalles

UTalca - Versión Preliminar

UTalca - Versión Preliminar 1. Definición La elipse es el lugar geométrico de todos los puntos del plano cuya suma de las distancias a dos puntos fijos es constante. Más claramente: Dados (elementos bases de la elipse) Dos puntos

Más detalles

Ingeniería de Sistemas Espaciales

Ingeniería de Sistemas Espaciales Ingeniería de Sistemas Espaciales Aplicado a una misión CanSat Introducción a la mecánica orbital 2 Objetivos: Describir y explicar los elementos orbitales clásicos (EOCs). Usar los EOCs para describir

Más detalles

TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r.

TEMA 6 CÓNICAS CÓNICAS TEMA 6. 1.º BACHILLERATO - CIENCIAS. 1. La circunferencia. Ecuación de una circunferencia. (x - a) + (y - b) = r. TEMA 6 CÓNICAS Se denomina sección cónica (o simplemente cónica) a todas las curvas resultantes de las diferentes intersecciones entre un cono y un plano; si dicho plano no pasa por el vértice, se obtienen

Más detalles

Gravitación Universal

Gravitación Universal Gravitación Universal por Ezequiel Wajs Introducción La Teoría de Gravitación Universal fue propuesta por Isaac Newton en 1687 en su libro Philosophiae Naturalis Principia Mathematica que revolucionó el

Más detalles

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m

Unidad S.I. F=- G. M. m/r 2. ur F Fuerza N G Constante de gravitación universal N.m 2 /kg 2 M masa kg m masa kg r Distancia entre las dos masas m Fuerza entre dos masas Sím F=- G. M. m/r 2. ur F Fuerza N M masa kg r Distancia entre las dos masas m ur Vector unitario cuya dirección es la de la recta que une las dos masas y sentido saliente de la

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Momento de una fuerza, Leyes de Kepler,Ley de Gravitación Rev 01 Universal, Movimiento de satélites. Ley de Gravitación Universal

Más detalles

Ley de la Gravitación Universal de Newton

Ley de la Gravitación Universal de Newton Slide 1 / 47 Ley de la Gravitación Universal de Newton 2009 por Goodman y Zavorotniy Slide 2 / 47 Tabla de Contenido: GU y la MCU Haga clic en el tema para ir a la sección Gravitación Universal Campo gravitatorio

Más detalles

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS

TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS TEORÍA DE ECLIPSES, OCULTACIONES Y TRÁNSITOS F. Javier Gil Chica UNIVERSIDAD DE ALICANTE Edita: Publicaciones Universidad de Alicante ISBN: 84-7908-270-4 Depósito Legal: MU-1.461-1996 Edición a cargo de

Más detalles

Olimpíada Argentina de Astronomía Examen de Preselección 12 de Septiembre de 2011

Olimpíada Argentina de Astronomía Examen de Preselección 12 de Septiembre de 2011 Docente/Tutor: Establecimiento Educativo: _ SEGUNDO NIVEL: Examen para alumnos de 4 to año y años superiores. Sección A Completar la casilla con V o F (Verdadero o Falso) según corresponda. A.1) Un intervalo

Más detalles

Introducción al Fenómeno Lente Gravitatoria. Espejismos. Índice. Verónica Motta. Espejismo inferior

Introducción al Fenómeno Lente Gravitatoria. Espejismos. Índice. Verónica Motta. Espejismo inferior Introducción al Fenómeno Lente Gravitatoria Verónica Motta Departamento de Física y Astronomía Universidad de Valparaíso Índice Introducción Historia Ecuaciones Configuraciones de imágenes Tipos de efecto

Más detalles

Ingeniería Civil Matemática Universidad de Valparaíso.

Ingeniería Civil Matemática Universidad de Valparaíso. * Ejercicios Álgebra Ingeniería Civil Matemática Universidad de Valparaíso. Prof: Gerardo Honorato CIRCUNFERENCIA. PREGUNTAS 1. 1) Escribir la ecuación de la circunferencia de centro C = ( 3, 7) y radio

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 12 de julio de 2017 Juan P. Campillo Nicolás 2 de julio de 207 . Gravitación.. Un satélite de 900 kg describe una órbita circular de radio 3R Tierra. a) Calcula la aceleración del satélite en su órbita. b) Deduce y calcula

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

ESTUDIO DE LA ELIPSE. Experimento creado por: Mª Mercedes Menéndez Fortes. Introducción Actividades Evaluación Conclusión.

ESTUDIO DE LA ELIPSE. Experimento creado por: Mª Mercedes Menéndez Fortes. Introducción Actividades Evaluación Conclusión. ESTUDIO DE LA ELIPSE Experimento creado por: Mª Mercedes Menéndez Fortes Introducción Actividades Evaluación Conclusión Introducción 1.Definiciones: LA ELIPSE i. Sean F y F dos puntos de un plano (F. Se

Más detalles

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix

Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix ÍNDICE Lista de aplicaciones seleccionadas... x Prefacio... xv Al estudiante... xxi Agradecimientos... xxix Capítulo 1 Introducción... 1 1.1 Por qué estudiar física?... 2 1.2 Hablar de física... 2 1.3

Más detalles

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER 8 03 FUERZAS CENRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER j Actividades. La masa m de la figura siguiente describe una trayectoria circular situada en un plano horizontal. Cuántas fuerzas actúan

Más detalles

GUÍA Nº 1. HISTORIA DE LA ASTRONOMÍA

GUÍA Nº 1. HISTORIA DE LA ASTRONOMÍA CONTENIDO CONTENIDO PRESENTACION PAG GUÍA Nº 1. HISTORIA DE LA ASTRONOMÍA 12 1.1. BABILONIA 14 1.2. EGIPTO 16 1.3. CHINA 16 1.4. CENTROAMERICA Y PERÚ 17 1.5. GRECIA 18 1.6. EDAD MEDIA 22 1.7. EL RENACIMIENTO

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

Física basada en Álgebra

Física basada en Álgebra Slide 1 / 57 Slide 2 / 57 Física basada en Álgebra Ley de la Gravitación Universal de Newton 2015-11-30 www.njctl.org Slide 3 / 57 Ley de la Gravitación Universal de Newton Fuerza gravitatoria Click sobre

Más detalles

Lentes, Espejos, Aberraciones.

Lentes, Espejos, Aberraciones. Lentes, Espejos, Aberraciones. La imagen formada en un telescopio de una estrella es un disco de difracción, y entre mas resolución tenga el telescopio, mas pequeño será ese disco. Cuando se colocan oculares

Más detalles

configuraciones planetarias

configuraciones planetarias configuraciones planetarias posiciones de los planetas con respecto al Sol y a la Tierra elongación de un planeta (λ): ángulo que forman las visuales dirigidas al Sol y al planeta desde la Tierra diferentes

Más detalles

TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO

TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO TEMA 1. EL UNIVERSO PARTE 1: LOS MODELOS DEL UNIVERSO QUIÉN PREGUNTA? La humanidad NEOLÍTICO H.NEANDERTHAL LA CIVILIZACIÓN H. HABILIS LAS PREGUNTAS -Quiénes somos? -De dónde venimos? Porqué estamos aquí?

Más detalles

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d

m 2 d Si un cuerpo gira alrededor del otro, la fuerza de atracción entre ellos es la fuerza centrípeta: v m 2 d 4 m d 4 FA FCP m k d d T d T d Campo graitatorio Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un alor de esa magnitud en un instante

Más detalles

Fotometría Estelar para aficionados. Presenta: Leonel E. Hernández. ASTRO. Junio 29, 2015.

Fotometría Estelar para aficionados. Presenta: Leonel E. Hernández. ASTRO. Junio 29, 2015. Fotometría Estelar para aficionados. Presenta: Leonel E. Hernández. ASTRO. Junio 29, 2015. Qué es la fotometría estelar? La fotometría es una técnica de la astronomía que mide la brillantez de la radiación

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

ESTUDIO DEL MOVIMIENTO.

ESTUDIO DEL MOVIMIENTO. 1. INTRODUCCIÓN. ESTUDIO DEL MOVIMIENTO. Un cuerpo está en movimiento cuando cambia de posición a lo largo del tiempo con respecto a un punto de referencia que consideramos fijo. Es un concepto relativo,

Más detalles

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg.

5) Un satélite artificial orbita a Km. sobre la superficie terrestre. Calcula el período de rotación. (Rt = 6370 Km. g = 9,81 N/Kg. Problemas PAU Campo Gravitatorio 1) El valor promedio del radio terrestre es 6370 Km. Calcular la intensidad del campo gravitatorio: a) En un punto situado a una altura doble del radio de la Tierra b)

Más detalles

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97!

ELIPSE. Muchos cometas tienen órbitas extremadamente excéntricas. Por ejemplo, el cometa Halley, tiene una excentricidad orbital de casi 0.97! ELIPSE Las órbitas de los planetas son elípticas. La excentricidad de la órbita de la Tierra es muy pequeña (menor de 0.2), de manera que la órbita es casi circular. La órbita de Plutón es la más excéntrica

Más detalles

Mm R 2 v= mv 2 R 24 5,98 10

Mm R 2 v= mv 2 R 24 5,98 10 POBLEMAS CAMPO GAVIAOIO. FÍSICA ºBO 1. Un satélite artificial describe una órbita circular alrededor de la ierra. En esta órbita la energía mecánica del satélite es 4,5 x 10 9 J y su velocidad es 7610

Más detalles

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler:

PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE CAMPO GRAVITATORIO. Leyes de Kepler: Leyes de Kepler: 1. (79-SE10) Sabiendo que la distancia media Sol Júpiter es 5,2 veces mayor que la distancia media Sol Tierra, y suponiendo órbitas circulares: a) Calcule el periodo de Júpiter considerando

Más detalles

UNIVERSIDAD ESTATAL DE BOLIVAR

UNIVERSIDAD ESTATAL DE BOLIVAR SERVICIOS 44 - CIENCIAS FISICAS UNIVERSIDAD ESTATAL DE BOLIVAR INSTRUCCIÓN: ELIJA LA RESPUESTA CORRECTA 1. Cuál de las siguientes opciones se ajusta a la definición de fotointerpretación? A. Estudio de

Más detalles

P1) Estimaciones Deje en claro en todos los incisos las condiciones elegidas y los procedimientos realizados Puntaje 3pto. Puntaje 3pto.

P1) Estimaciones Deje en claro en todos los incisos las condiciones elegidas y los procedimientos realizados Puntaje 3pto. Puntaje 3pto. Prueba teórica individual OLAA 2016 Córdoba, Argentina Al final del examen se encuentra una hoja con Datos que pueden ser útiles para la solución de los problemas P1) Estimaciones El cálculo de estimaciones

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. Conteste razonadamente a las siguientes preguntas: a) Puede asociarse una energía potencial a una fuerza de rozamiento? b) Qué tiene más sentido físico, la energía potencial en un punto o la variación

Más detalles

Observables e Instrumentación en Astronomía

Observables e Instrumentación en Astronomía Observables e Instrumentación en Astronomía Información sobre el Universo: Radiación electromagnética, distribución. Otros observables: neutrinos, rayos cósmicos, ondas gravitatorias Efectos de la atmósfera

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) Según la tercera ley de Kepler: b) k (,5 0 5 s) (,44 0 6 s)

Más detalles

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar

SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar SOLUCIONARIO GUÍA TÉCNICO PROFESIONAL El universo y el sistema solar SGUICTC028TC32 - A16V1 Solucionario guía El universo y el sistema solar Ítem Alternativa Habilidad 1 B Reconocimiento 2 A Reconocimiento

Más detalles

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES

DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES DETERMINACIÓN DE LAS DISTANCIAS ENTRE LOS CUERPOS CELESTES Y EL MOVIMIENTO DE LOS SATELITES ARTIFICIALES Refracción Astronómica La densidad de la atmósfera aumenta al acercarse a la superficie terrestre,

Más detalles