CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES"

Transcripción

1 CASTAÑEDA VÁZQUEZ ALEJANDRO UNIVERSIDAD NACIONAL AUTONOMA DE MÉXICO INSTITUTO DE CIENCIAS NUCLEARES

2 ESTRUCTURA DEL CAPACITOR MOS El acrónimo MOS proviene de Metal-Oxide- Semiconductor. Antes de 1970 se utilizaban típicamente metales como Al para fabricar la compuerta. Después se utilizo silicio poli cristalino fuertemente dopado (poly- Si). En 2008 se reintrodujo la fabricación de metales para la elaboración de la compuerta y se comenzó a sustituir el SiO2 con dieléctricos mas avanzados.

3 ESTRUCTURA DEL CAPACITOR MOS Un capacitor p-mos consiste en un sustrato de silicio (e.g., dopado con boro), un dieléctrico, (e.g., una capa de oxido de silicio crecido térmicamente de aproximadamente 1000 Å de espesor) y una compuerta conductiva que es depositada (usualmente poly-si dopado).

4 DESCRIPCIÓN CUALITATIVA DE FUNCIONAMIENTO CAPACITOR MOS CONSTRUIDO SOBRE SUSTRATO TIPO P Acumulación Depleción Inversión

5 Acumulación Aplicación de voltajes lo suficientemente negativos. Formación de una capa superficial tipo p. La concentración de huecos puede verse como el segundo electrodo de un capacitor de placas paralelas con el electro de la compuerta. Ya que la capa de acumulación está en contacto óhmico con el sustrato tipo p la capacitancia debe ser aproximadamente igual a C OX = ε OX A T OX donde A es el área del electrodo de la compuerta, ε OX es la permitividad del SiO X y T OX es el espesor del aislante de la compuerta (cm).

6 Acumulación

7 Acumulación Por la concentración de huecos debida a V G1 el nivel de Fermi se ubica cerca del borde de la banda de valencia. Cuando se llega al equilibrio térmico, el nivel de Fermi permanece constante.

8 Depleción Con una polarización positiva en la compuerta, los huecos son alejados de la superficie, dejando detrás átomos aceptores (boro) descompensados, negativamente cargados. El número de huecos alejados iguala el número de cargas positivas en electrodo de la compuerta, i.e., Q i = qn A x d donde Q i es la concentración de carga de aceptores ionizados bajo la compuerta, x d es la profundidad de la región de depleción (cm) y N A es la concentración de impurezas atomos cm 3. La región de depleción es no conductiva y actúa como aislante con una capacitancia de C DEP = ε Si x d donde C DEP es la capacitancia de depleción F cm 2, y ε Si es la permitividad del silicio 1.04 X

9 Depleción La capacitancia neta C T relativa al sustrato es, en estado de depleción, la combinación serial de la capacitancia del oxido, C OX, y la capacitancia de la zona de depleción, C DEP ; i.e., C T = C OX C DEP Las capacitancias del oxido y de la zona de depleción pueden ser sumadas a otras capacitancias asociadas con un pixel para obtener una capacitancia total. Esta capacitancia total es usada para calcular el poder de disipación para una CCD y los requerimientos del reloj controlador para transferir la carga.

10 Depleción

11 Depleción Bajo condiciones de depleción el nivel de Fermi cerca de la superficie del silicio ser moverá a una posición más cerca del centro de la región prohibida.

12 Depleción

13 Profundidad de la zona de depleción x d = ε Si C OX + ε Si C OX 2 + ε SiV G 2qN A x d aumenta con incrementos de V G y disminuye con incrementos de N A. Nótese que esto es verdad si el primer término dentro de la raíz es pequeño en comparación con el segundo término. Si C OX fuese muy pequeño, entonces dominaría el primer término dentro de la raíz y variando V G o N A tendríamos poco efecto sobre la profundidad de la depleción.

14 Inversión Con un voltaje cada vez más positivo, la superficie de la región de depleción continuará aumentando hasta que se observa la aparición de la inversión superficial. Esta inversión consta de electrones de la banda de conducción que son atraídos hasta la superficie del silicio para formar una capa de inversión tipo n.

15 Inversión

16 Inversión Ya que la capa superficial del silicio ha sido fuertemente invertida a causa de la acción del campo en la compuerta, el nivel de Fermi cerca de la superficie del silicio estará cerca de la banda de conducción.

17 Inversión

18 Qué pasa con la carga?

19 Qué pasa con la capacitancia?

Física y Modelado de MOSFETs

Física y Modelado de MOSFETs Capítulo 3 Física y Modelado de MOSFETs Los MOSFETs (metal-oxide-semiconductor field-effect transistor) son los dispositivos de conmutación usados en circuitos integrados CMOS. 3.1 Características Básicas

Más detalles

Fundamentos del transitor MOSFET

Fundamentos del transitor MOSFET Fundamentos del transitor MOSFET Lección 04.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

ESTRUCTURA DEL ÁTOMO

ESTRUCTURA DEL ÁTOMO ESTRUCTURA DEL ÁTOMO BANDAS DE VALENCIA Y DE CONDUCCIÓN MECANISMOS DE CONDUCCIÓN EN UN SEMICONDUCTOR SEMICONDUCTORES *Semiconductor *Cristal de silicio *Enlaces covalentes. Banda de valencia *Semiconductor

Más detalles

TEMA 6: SEMICONDUCTORES

TEMA 6: SEMICONDUCTORES 6.3 Semiconductores extrínsecos Aquel semiconductor sin defectos cristalinos pero con impurezas añadidas (semiconductor dopado) Tipos de impurezas: Dadoras: Aquellas impurezas con 1 electrón de más en

Más detalles

Transistores de Efecto de Campo: MOSFET

Transistores de Efecto de Campo: MOSFET 1- Estructura MIS Transistores de Efecto de Campo: MOSFET Si bien la terminología MOS se utiliza para designar al sistema Metal-Óxido-Silicio, en el cual el óxido generalmente es dióxido de silicio (SiO

Más detalles

Dispositivos semiconductores 2da Clase

Dispositivos semiconductores 2da Clase Introducción a la Electrónica Dispositivos semiconductores 2da Clase Semiconductores: Silicio Estructura ra cristalina La distribución espacial de los átomos dentro de un material determina sus propiedades.

Más detalles

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas:

Observemos que sucede cuando juntamos el metal y el semiconductor desde el punto de vista del diagrama de bandas: JUNTURA METAL SEMICONDUCTOR: Diagrama de Banda de ambos materiales: E FM : Nivel de Fermi del metal. E FS : Nivel de Fermi del semiconductor. Observemos que sucede cuando juntamos el metal y el semiconductor

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge

Más detalles

Distribución y Transporte de Portadores de Carga

Distribución y Transporte de Portadores de Carga Distribución y Transporte de Portadores de Carga Lección 01.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Distribución

Más detalles

Operación y Modelado del Transistor MOS para el Diseño Analógico

Operación y Modelado del Transistor MOS para el Diseño Analógico Operación y Modelado del Transistor MOS para el Diseño Analógico Rev. 1.2 Curso CMOS AD. Fernando Silveira Instituto de Ingeniería Eléctrica F. Silveira Univ. de la República, Montevideo, Uruguay Curso

Más detalles

Semiconductores. La característica común a todos ellos es que son tetravalentes

Semiconductores. La característica común a todos ellos es que son tetravalentes Semiconductores Un semiconductor es un dispositivo que se comporta como conductor o como aislante dependiendo del campo eléctrico en el que se encuentre. Elemento Grupo Electrones en la última capa Cd

Más detalles

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica

Electrónica. Transistores de efecto de campo. Introducción a la Electrónica Introducción a la Electrónica Transistores de efecto de campo Introducción a la Electrónica Características La corriente es controlada a travez de un campo eléctrico establecido por el voltaje aplicado

Más detalles

TRANSISTOR DE EFECTO DE CAMPO (FET)

TRANSISTOR DE EFECTO DE CAMPO (FET) TRANSISTOR DE EFECTO DE CAMPO (FET) 1 METAL OXIDO SEMICONDUCTOR (MOSFET) P B V B Al SiO Si Capacitor de Placas Paralelas Q = C V B 0 < V S < V TH Q movil = 0 D N V TH Tension umbral V DS V S N L P V TH

Más detalles

Práctica Nº 4 DIODOS Y APLICACIONES

Práctica Nº 4 DIODOS Y APLICACIONES Práctica Nº 4 DIODOS Y APLICACIONES 1.- INTRODUCCION El objetivo Los elementos que conforman un circuito se pueden caracterizar por ser o no lineales, según como sea la relación entre voltaje y corriente

Más detalles

Bandas de Energía. Materiales Eléctricos. Teoría de Bandas 05/07/2012

Bandas de Energía. Materiales Eléctricos. Teoría de Bandas 05/07/2012 Materiales Eléctricos Teoría de Bandas Bandas de Energía Cuando los átomos forman un cristal, se observa que los niveles de energía de los electrones más interiores no se ven afectados apreciablemente

Más detalles

TRANSISTOR DE EFECTO DE CAMPO (FET)

TRANSISTOR DE EFECTO DE CAMPO (FET) TRANSISTOR DE EFECTO DE CAMPO (FET) 1 METAL OXIDO SEMICONDUCTOR (MOSFET) P G B V GB Al SiO Si Capacitor de Placas Paralelas Q = C V GB 0 < V GS < V TH Q movil = 0 D N V TH Tension umbral V DS G V GS S

Más detalles

INTRODUCCIÓN A LOS SEMICONDUCTORES.

INTRODUCCIÓN A LOS SEMICONDUCTORES. Tema 1 INTRODUCCIÓN A LOS SEMICONDUCTORES. 1.- Introducción 2.- Clasificación de los materiales. 3.- Semiconductores intrínsecos. Estructura cristalina. 4.- Semiconductores extrínsecos. Impurezas donadoras

Más detalles

Dispositivos Electrónicos

Dispositivos Electrónicos Dispositivos Electrónicos AÑO: 2010 TEMA 3: PROBLEMAS Rafael de Jesús Navas González Fernando Vidal Verdú E.T.S. de Ingeniería Informática Ingeniero Técnico en Informática de Sistemas: Curso 1º Grupo

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica

Semiconductores. Lección Ing. Jorge Castro-Godínez. II Semestre Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Semiconductores 1 / 54 Contenido Semiconductores

Más detalles

CAPÍTULO 3 CARACTERÍSTICAS DE LOS TRANSISTORES DE EFECTO DE CAMPO

CAPÍTULO 3 CARACTERÍSTICAS DE LOS TRANSISTORES DE EFECTO DE CAMPO CAPÍTULO 3 CARACTERÍSTICAS DE LOS TRANSISTORES DE EFECTO DE CAMPO En este trabajo, uno de los objetivos es la fabricación de transistores de efecto de campo y la caracterización de los mismos, por lo tanto,

Más detalles

Materiales Semiconductores

Materiales Semiconductores Materiales Semiconductores Estructura de Bandas BC BV E g Banda de Conducción vacía a 0 K Banda Prohibida 1 ev Banda de Valencia llena a 0 K Los materiales semiconductores a 0 K tienen la banda de conducción

Más detalles

Semiconductores. Lección Ing. Jorge Castro-Godínez

Semiconductores. Lección Ing. Jorge Castro-Godínez Semiconductores Lección 01.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez Semiconductores

Más detalles

EC 1113 CIRCUITOS ELECTRÓNICOS

EC 1113 CIRCUITOS ELECTRÓNICOS EC 1113 CIRCUITOS ELECTRÓNICOS PRESENTACIÓN PERSONAL SECCIÓN 1 Prof. María Isabel Giménez de Guzmán Correo electrónico: mgimenez@usb.ve HORARIO Y UBICACIÓN SECCIÓN Martes: 9:30 a 11:30 am ELE 218 Jueves:

Más detalles

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica

Otros tipos de Diodos. ITESM Campus Monterrey, Departamento de Ing. Eléctrica Otros tipos de Diodos Diodo Schottky Se forma uniendo un metal como platino o aluminio a un silicio tipo p o n. Utilizado en circuitos integrados en donde se requiera conmutación a altas velocidades Voltaje

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

Capítulo 4. Diseño del Fotodetector PIN

Capítulo 4. Diseño del Fotodetector PIN Capítulo 4 Diseño del Fotodetector PIN Introducción Generalmente todo dispositivo semiconductor como fotodetector tiene que separar los pares electrón hueco generados a través de un campo eléctrico, para

Más detalles

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación.

Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Tema 9: Estructuras MIS, transistores MOSFET (introducción, zonas de funcionamiento). Fabricación. Lecturas recomendadas: Circuitos Microelectrónicos, 4ª ed. Cap.5, Sedra/Smith. Ed. Oxford Circuitos Microelectrónicos,

Más detalles

Clase Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018

Clase Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018 86.03/66.25 - Dispositivos Semiconductores Clase 7-1 Clase 7 1 - Electrostática de la estructura Metal-Óxido-Semiconductor (I) Abril de 2018 Contenido: 1. Introducción a la estructura MOS 2. Electrostática

Más detalles

Tema 1: Electrones, energía, átomos y sólidos

Tema 1: Electrones, energía, átomos y sólidos Tema 1: Electrones, energía, átomos y sólidos K. Kano: cap. 1 y cap. El modelo de Bohr Mecánica cuántica. Dualidad onda corpúsculo. Ecuación de Schrödinger en un átomo hidrogenoide. Números cuánticos Formación

Más detalles

Tema 4º. Corriente eléctrica

Tema 4º. Corriente eléctrica Tema 4º Corriente eléctrica Programa Corriente y densidad de corriente eléctrica. La ecuación de continuidad. Corriente de conducción. Ley de Ohm. Propiedades de conducción en los materiales: Conductores,

Más detalles

TEMA 4. Tecnología y fabricación de CIs. D. Formación y deposición de capas aislantes y conductoras

TEMA 4. Tecnología y fabricación de CIs. D. Formación y deposición de capas aislantes y conductoras TEMA 4 Tecnología y fabricación de CIs D. Formación y deposición de capas aislantes y conductoras I. Introducción: capas aislantes y conductoras Para fabricar dispositivos discretos y CI se utilizan diferentes

Más detalles

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES

TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TEMA 1 INTRODUCCIÓN A LA ELECTRÓNICA. FÍSICA DE SEMICONDUCTORES TTEEMAA 11: :: IINTTRRODUCCCCIIÓN AA LLAA EELLEECCTTRRÓNIICCAA... FFÍÍSSIICCAA DEE SSEEMIICCONDUCCTTORREESS 11 1) Cuál de los siguientes

Más detalles

Dispositivos de las tecnologías CMOS

Dispositivos de las tecnologías CMOS Dispositivos de las tecnologías CMOS MOSFET: canal N y canal P (únicos dispositivos en chips digitales) JT: PNP de mala calidad (dispositivos parásitos. Se usan como diodos) Resistencias Condensadores

Más detalles

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES

UNIVERSIDAD DE LEON. Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES UNIVERSIDAD DE LEON Departamento de Ingeniería Eléctrica y Electrónica TEMA 1 TEORÍA GENERAL DE SEMICONDUCTORES Electrónica Básica, Industrial e Informática Luis Ángel Esquibel Tomillo Introducción Para

Más detalles

AUTOMATIZACIÓN DE UN SISTEMA C-V DE ALTA FRECUENCIA PARA LA CARACTERIZACIÓN DE ESTRUCTURAS MIS

AUTOMATIZACIÓN DE UN SISTEMA C-V DE ALTA FRECUENCIA PARA LA CARACTERIZACIÓN DE ESTRUCTURAS MIS AUTOMATIZACIÓN DE UN SISTEMA C-V DE ALTA FRECUENCIA PARA LA CARACTERIZACIÓN DE ESTRUCTURAS MIS T. Díaz, H. Juárez, E. Rosendo, M. Rubin 2, G. Salgado, M. Rosete 2, M. Mejía 2, C. Morales 3 Benemérita Universidad

Más detalles

UNIDAD 2 Semiconductores

UNIDAD 2 Semiconductores UNIDAD 2 Semiconductores Semiconductores Material capaz de conducir la electricidad mejor que un material aislante, pero no tan bien como un metal, entonces se puede decir que se encuentra a la mitad entre

Más detalles

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL

AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL AMPLIFICADOR DIFERENCIAL BÁSICO CON EL AMPLIFICADOR OPERACIONAL IDEAL Vo = A( v + i vi ) Realimentación negativa Con A =, el voltaje de salida distinto de cero implica v i + = vi = vi Entonces: V 2 v i

Más detalles

Introducción a la Electrónica

Introducción a la Electrónica Física de los Semiconductores Estructura atómica De acuerdo al modelo mecanocuántico del átomo, existen niveles energéticos discretos en los cuales pueden residir los electrones. Cada uno de estos niveles

Más detalles

Guía de Ejercicios N o 4: Transistor MOS

Guía de Ejercicios N o 4: Transistor MOS Guía de Ejercicios N o 4: Transistor MOS Datos generales: ε 0 = 8,85 10 12 F/m, ε r (Si) = 11,7, ε r (SiO 2 ) = 3,9, n i = 10 10 /cm 3, φ(n, p = n i ) = 0 V. 1. En un transistor n-mosfet, a) La corriente

Más detalles

CAPÍTULO 4. Conversión fotovoltaica de la energía solar

CAPÍTULO 4. Conversión fotovoltaica de la energía solar 1 CAPÍTULO 4 Conversión fotovoltaica de la energía solar MATERIAL DEL CAPÍTULO 4 (PRIMERA PARTE) Principal J. Twidell y T. Weir. Renewable Energy Resources. Capítulo 7, Photovoltaic generation, pp. 182-236.

Más detalles

5. Semiconductores y la unión P-N

5. Semiconductores y la unión P-N 5. Semiconductores y la unión P-N Thomas Zimmer, Universidad de Burdeos, Francia Resumen Resultados del aprendizaje... 1 Antecedentes físicos de los semiconductores... 1 El cristal de Silicio... 1 Las

Más detalles

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL

El Diodo TEMA 3. ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL TEMA 3 El Diodo El Diodo ÍNDICE 3.1. LA UNIÓN P-N EN EQUILIBRIO 3.2. POLARIZACIÓN DIRECTA E INVERSA 3.3. ECUACIÓN DEL DIODO IDEAL 3.4. FENÓMENOS DE AVALANCHA Y ZENER 3.5. OTROS TIPOS DE DIODOS. MODELOS

Más detalles

1.1 Definición de semiconductor

1.1 Definición de semiconductor Índice 1.- Introducción 1.1- Definición 1.2-Modelo de bandas de energía 1.3- Materiales intrínseco y extrínseco 2.-Tipos de materiales semiconductores 2.1- Estequiométricos (aislantes) 2.2- Imperfecciones

Más detalles

Física II CF-342 Ingeniería Plan Común.

Física II CF-342 Ingeniería Plan Común. Física II CF-342 Ingeniería Plan Común. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Física

Más detalles

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011

Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 Transistor MOSFET ELEMENTOS ACTIVOS EL-2207 I SEMESTRE 2011 ITCR - Elementos Activos I 2011 Objetivos El transistor de efecto de campo MOSFET y la tecnología CMOS (6 semanas) Construcción, símbolo, clasificación.

Más detalles

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor.

Copyright The McGraw-Hill Companies, Inc. Queda prohibida su reproducción o visualización sin permiso del editor. Electrónica Tema 1 Semiconductores Contenido Consideraciones previas: Fuentes de corriente Teorema de Thevenin Teorema de Norton Conductores y Semiconductores Unión p-n Fundamentos del diodo 2 Fuente de

Más detalles

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores

FISI 3143: Laborarorio de Electrónica 1 Dept. Física y Electrónica, UPR Humacao Prof. Idalia Ramos, Ago Capacitores Capacitores El capacitor es el segundo componente eléctrico pasivo que estudiaremos en el laboratorio. El capacitor básico es un componente electrónico construido con dos placas paralelas conductoras separadas

Más detalles

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO

UD6.- TEORIA DE SEMICONDUCTORES EL DIODO UD6. TEORIA DE SEMICONDUCTORES EL DIODO Centro CFP/ES CONSTITUCIÓN INTERNA DE LA MATERIA Moléculas y Átomos 1 CONSTITUCIÓN INTERNA DE LA MATERIA Clasificación de los cuerpos CONSTITUCIÓN INTERNA DE LA

Más detalles

Sistemas de comunicaciones vía Fibra Óptica II

Sistemas de comunicaciones vía Fibra Óptica II Sistemas de comunicaciones vía Fibra Óptica II UNIVERSIDAD TECNOLOGICAS DE LA MIXTECA INGENIERÍA EN ELECTRÓNICA NOVENO SEMESTRE DICIEMBRE 2005 M.C. MARIBEL TELLO BELLO TRANSMISORES DE FIBRA ÓPTICA TRANSMISORES

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar

Introducción a la Teoría de semiconductores y nivel de Fermi. Trabajo compilado por Willie R. Córdova Eguívar Introducción a la Teoría de semiconductores y nivel de Fermi Trabajo compilado por Willie R. Córdova Eguívar Conducción en los semiconductores Los semiconductores son materiales que ocupan una posición

Más detalles

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO

TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO TEMA 4 (Parte III) EL ENLACE QUÍMICO. METÁLICO Mª PILAR RUIZ OJEDA BORJA MUÑOZ LEOZ Contenidos: 1. Introducción 2. Propiedades de los metales 3. Teoría del mar de electrones 4. Teoría de bandas: 4.1. Conductores

Más detalles

Dieléctrico Se denomina dieléctrico al material mal conductor de electricidad, por lo que puede ser utilizado como aislante eléctrico, y además si es

Dieléctrico Se denomina dieléctrico al material mal conductor de electricidad, por lo que puede ser utilizado como aislante eléctrico, y además si es Dieléctrico. Constante Dieléctrica. Dieléctrico Se denomina dieléctrico al material mal conductor de electricidad, por lo que puede ser utilizado como aislante eléctrico, y además si es sometido a un campo

Más detalles

Clase Física de semiconductores (I) Marzo de Índice de temas:

Clase Física de semiconductores (I) Marzo de Índice de temas: 86.03/66.25 - Dispositivos Semiconductores - 1 o Cuat. 2015 Clase 2-1 Clase 2 1 - Física de semiconductores (I) Marzo de 2015 Índice de temas: 1. Modelo de enlace del Silicio: electrones y huecos 2. Generación

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE SUCRE ESCUELA DE CIENCIAS DEPARTAMENTO DE FÍSICA

UNIVERSIDAD DE ORIENTE NÚCLEO DE SUCRE ESCUELA DE CIENCIAS DEPARTAMENTO DE FÍSICA UNIVERSIDAD DE ORIENTE NÚCLEO DE SUCRE ESCUELA DE CIENCIAS DEPARTAMENTO DE FÍSICA ESTUDIO DE LA UNIÓN n-n + EN SILICIO TIPO n COMPENSADO CON ORO (Modalidad: Investigación) ROBERT ALBENIS CARVAJAL VALOR

Más detalles

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N

INDICE Prologo Semiconductores II. Procesos de transporte de carga en semiconductores III. Diodos semiconductores: unión P-N INDICE Prologo V I. Semiconductores 1.1. clasificación de los materiales desde el punto de vista eléctrico 1 1.2. Estructura electrónica de los materiales sólidos 3 1.3. conductores, semiconductores y

Más detalles

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS

Thompson (1898) Rutherford (1911) Bohr (1913) Schrödinger (1926) NUMEROS CUANTICOS Thompson (1898) Modelo Atómico Rutherford (1911) Bohr (1913) Propiedad corpuscular de las onda (PLANCK) Propiedad ondulatoria de las partículas (De Broglie) Schrödinger (1926) Números cuánticos 1 NUMEROS

Más detalles

ESTRUCTURA DE BANDAS (REPASO)

ESTRUCTURA DE BANDAS (REPASO) Problemas de Electrónica Física 1 ESTRUCTURA DE BANDAS (REPASO) 1. En la aproximación del electrón fuertemente ligado se obtiene, para la primera banda de conducción de un sólido con estructura cúbica,

Más detalles

Contactos semiconductor - semiconductor

Contactos semiconductor - semiconductor Contactos semiconductor semiconductor Lección 02.2 Ing. Jorge CastroGodínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge CastroGodínez

Más detalles

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo

Metal Cu Al Peso específico 8,9 g/cm 3 2,7 g/cm 3 Peso atómico 64 g/mol 27 g/mol Número de electrones libres 1 e - /átomo 3 e - /átomo 1. La densidad específica del tungsteno es de 18,8 g/cm 3 y su peso atómico es 184. La concentración de electrones libres es 1,23 x 10 23 /cm 3.Calcular el número de electrones libres por átomo. 2. Dadas

Más detalles

Capítulo 3: Campos Electromagnéticos Estáticos

Capítulo 3: Campos Electromagnéticos Estáticos Capítulo 3: Campos Electromagnéticos Estáticos Flujo de un campo vectorial Superficie cerrada Ley de Gauss Karl Friedrich Gauss (1777-1855) Flujo de E generado por una carga puntual Superficie arbitraria

Más detalles

Introducción a la Ciencia de Materiales. Propiedades eléctricas

Introducción a la Ciencia de Materiales. Propiedades eléctricas Introducción a la Ciencia de Materiales Propiedades eléctricas Ley de Ohm: Conducción Eléctrica Caída de potencial (volts = J/C) C = Coulomb A (área secc. transversal) V = I R resistencia (Ohms) corriente

Más detalles

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017

Física 3. Segundo Cuatrimestre 6 de septiembre de 2017 Si la aplicación de electricidad a una momia cuya antigüedad se remontaba por lo menos a tres o cuatro mil años no era demasiado sensata, resultaba en cambio lo bastante original como para que todos aprobáramos

Más detalles

Introducción a los Semiconductores

Introducción a los Semiconductores Introducción a los Semiconductores Un semiconductor es un elemento material cuya conductividad eléctrica puede considerarse situada entre las de un aislante y la de un conductor, considerados en orden

Más detalles

CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique

CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD. Mg. Ing. Ana María Echenique CLASIFICACIÓN DE LOS MATERIALES POR SU CONDUCTIVIDAD Mg. Ing. Ana María Echenique CONCEPTO DE ELECTRÓNICA Laelectrónica,esunaramadelafísicaquetieneuncampodeaplicaciónmuy amplio Es el campo de la Bioingeniería,

Más detalles

Iñigo Neila Applying numerical simulation to model SiC semiconductor devices 13

Iñigo Neila Applying numerical simulation to model SiC semiconductor devices 13 Iñigo Neila Applying numerical simulation to model SiC semiconductor devices 13 3. Los principales atributos del carburo de silicio El incesante y continuo desarrollo de la electrónica de alta potencia

Más detalles

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71

S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71 S i s t e m a d e E n e r g í a I n i n t e r r u m p i d a 71 6.1.1 Definiciones y Terminología. Varistor. Un varistor es un componente que protege a los circuitos electrónicos de variaciones y picos

Más detalles

EL42A - Circuitos Electrónicos

EL42A - Circuitos Electrónicos EL42A - Circuitos Electrónicos Clase No. 10: Transistores de Efecto de Campo (1) Patricio Parada pparada@ing.uchile.cl Departamento de Ingeniería Eléctrica Universidad de Chile 3 de Septiembre de 2009

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S.

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA DECIMO SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6

GUIA DIDACTICA DE ELECTRONICA N º6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 1. IDENTIFICACION ASIGNATURA GRADO PERIODO I.H.S. TECNOLOGIA ONCE SEGUNDO 6 DOCENTE(S) DEL AREA:NILSON YEZID VERA CHALA COMPETENCIA: USO Y APROPIACION DE LA TECNOLOGIA NIVEL DE COMPETENCIA: INTERPRETATIVA

Más detalles

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES.

CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. CAPITULO II. DISPOSITIVOS SEMICONDUCTORES. Tema 4. SEMICONDUCTORES. Las características físicas que permiten distinguir entre un aislante, un semiconductor y un metal, están determinadas por la estructura

Más detalles

Transistores de efecto de campo (fet)

Transistores de efecto de campo (fet) CAPÍTULO 5 Transistores de efecto de campo (fet) Resumen En este capítulo se habla de los transistores de efecto de campo (FET). Se empieza por explicar sus características, construcción y funcionamiento.

Más detalles

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura:

EL TRANSISTOR MOSFET. * Las siglas MOSFET corresponden a la descripción de su estructura: EL TRANSISTOR MOSFET * Las siglas MOSFET corresponden a la descripción de su estructura: METAL OXIDE SEMICONDUCTOR FIELD EFFECT TRANSISTOR TRANSISTOR DE EFECTO DE CAMPO METAL OXIDO SEMICONDUCTOR. * En

Más detalles

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA

TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA TEMA 1.1 SEMICONDUCTORES TEMA 1 SEMICONDUCTORES. DIODO. FUNDAMENTOS DE ELECTRÓNICA 17 de febrero de 2015 TEMA 1.1 SEMICONDUCTORES Introducción. Metales, aislantes y semiconductores Modelo enlace covalente

Más detalles

ESTRUCTURA DE BANDAS (REPASO)

ESTRUCTURA DE BANDAS (REPASO) Problemas de Electrónica Física 1 ESTRUCTURA DE BANDAS (REPASO) 1. En la aproximación del electrón fuertemente ligado se obtiene, para la primera banda de conducción de un sólido con estructura cúbica,

Más detalles

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones

TRANSISTOR MOSFET. Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones TRANSISTOR MOSFET MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor Tipos: Canal n y canal p. Uno y otro son complementarios: simétricos y opuestos en cuanto a la polaridad de las tensiones Estructura

Más detalles

CAPI TULO 1 SEMICONDUCTORES Clasificación de la materia INTRODUCCIÓN

CAPI TULO 1 SEMICONDUCTORES Clasificación de la materia INTRODUCCIÓN CAPI TULO 1 SEMICONDUCTORES INTRODUCCIÓN En este capítulo estudiaremos las características de los materiales semiconductores, su clasificación, como se forman, que los hace atractivos para la industria

Más detalles

9/1/17. El enlace metálico: Teoría de Bandas

9/1/17. El enlace metálico: Teoría de Bandas 9/1/17 El enlace metálico: El enlace metálico: 9/1/17 INTERACCIONES QUÍMICAS Y así hasta que se consideran todos los átomos del pedazo de metal que estamos analizando. Es evidente que el número de orbitales

Más detalles

Principios Básicos Materiales Semiconductores

Principios Básicos Materiales Semiconductores Principios Básicos Materiales Semiconductores Definición De Semiconductor Los semiconductores son materiales cuya conductividad varía con la temperatura, pudiendo comportarse como conductores o como aislantes.

Más detalles

Física de semiconductores. El diodo

Física de semiconductores. El diodo Fundamentos Físicos y Tecnológicos de la Informática Física de semiconductores. El diodo - Clasificación de los materiales. Teoría del electrón libre y teoría de bandas. Semiconductores extrínsecos e intrínsecos.

Más detalles

Propiedades eléctricas

Propiedades eléctricas Capítulo 5 del temario (cap( cap.. 13 del libro de texto) Conductividad eléctrica en metales Ley de Ohm (microscópica y macroscópica) velocidad de deriva electrónica y resistividad Aislantes Propiedades

Más detalles

Contactos metal-semiconductor

Contactos metal-semiconductor Contactos metal-semiconductor Lección 02.1 Ing. Jorge Castro-Godínez EL2207 Elementos Activos Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica I Semestre 2014 Jorge Castro-Godínez

Más detalles

Campo Eléctrico y Materiales Aislantes

Campo Eléctrico y Materiales Aislantes Campo Eléctrico y Materiales Aislantes Clasificación de campos eléctricos Tipos de materiales Tipos de descarga eléctrica Tipos de solicitación Cálculos experimentales Clasificación de campos eléctricos.

Más detalles

CAPÍTULO 2 MARCO TEÓRICO 2.1. Películas delgadas

CAPÍTULO 2 MARCO TEÓRICO 2.1. Películas delgadas CAPÍTULO 2 MARCO TEÓRICO 2.1. Películas delgadas Las películas delgadas son capas de materiales delgados con espesores que van desde algunos cuantos nanómetros hasta algunos cientos de micrómetros, las

Más detalles

EL-2207 ELEMENTOS ACTIVOS

EL-2207 ELEMENTOS ACTIVOS EL-2207 ELEMENTOS ACTIVOS Información General Curso: Código: Tipo de curso: Créditos/Horas por semana: Requisito: Correquisito: Suficiencia: Asistencia: Consulta: Evaluación: Elementos Activos EL-2207

Más detalles

FACULTAD de INGENIERIA

FACULTAD de INGENIERIA Dr. Andres Ozols Laboratorio de Sólidos Amorfos (Depto. de Física) Grupo de Biomateriales para Prótesis GBP (Instituto de Ingeniería Biomédica) aozols@fi.uba.ar www.fi.uba.ar/~aozols TRANSISTOR DE EFECTO

Más detalles

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido

DIODO. Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido DIODO Definición: Dispositivo Semiconductor Dos terminales Permite la Circulación de corriente ( I ) en un solo sentido Símbolo y convenciones V - I: V F - - V R I F I R DIODO Ideal vs. Semiconductor DIODO

Más detalles

Ecuación Característica del diodo

Ecuación Característica del diodo Ecuación Característica del diodo La ecuación característica del diodo de acuerdo al modelo Shockley es: ( ) con ; k = Constante de Boltzmann, q = Carga del electrón y T = temperatura. En este documento

Más detalles

Figura Nº 6.1(a) CONDENSADOR INTEGRADO TIPO UNIÓN. Figura Nº 6.1(b) CIRCUITO EQUIVALENTE (Cortesía de Motorola Inc)

Figura Nº 6.1(a) CONDENSADOR INTEGRADO TIPO UNIÓN. Figura Nº 6.1(b) CIRCUITO EQUIVALENTE (Cortesía de Motorola Inc) Tecnología Microelectrónica Pagina 1 6- CONDENSADORES INTEGRADOS Los condensadores en los circuitos integrados se fabrican empleando la capacitancia de la región de deplexion de una unión PN con dolarización

Más detalles

Materiales Eléctricos. Semiconductores 06/05/2016. Repaso valores de Resistividad. Material ρωm (/α)/ C Plata 1,62*10-8 4,1*10-3 PTC

Materiales Eléctricos. Semiconductores 06/05/2016. Repaso valores de Resistividad. Material ρωm (/α)/ C Plata 1,62*10-8 4,1*10-3 PTC 06/05/016 Materiales Eléctricos Repaso valores de Resistividad Material ρωm (/α)/ C Plata 1,6*10-8 4,1*10 - PTC Cobre 1,69*10-8 4,*10 - PTC Aluminio,75*10-8 4,4*10 - PTC Platino 10,6*10-8,9*10 - PTC Hierro

Más detalles

Conducción electrónica en capas delgadas de SiO 2 :N crecidas por oxidación térmica de silicio en N 2 O

Conducción electrónica en capas delgadas de SiO 2 :N crecidas por oxidación térmica de silicio en N 2 O Conducción electrónica en capas delgadas de SiO :N crecidas por oxidación térmica de silicio en N O Arturo Morales Acevedo *, Guillermo Santana # y Eric Morales Tzompa Centro de Investigación y de Estudios

Más detalles

TEMA2: Fundamentos de Semiconductores

TEMA2: Fundamentos de Semiconductores TEMA2: Fundamentos de Semiconductores Contenidos del tema: Modelos de enlace y de bandas de energía en sólidos: tipos de materiales Portadores de carga en semiconductores Concentración de portadores Procesos

Más detalles

1 1 ESTRUCTURA ATÓMICA

1 1 ESTRUCTURA ATÓMICA 2 INTRODUCCIÓN A LOS SEMICONDUCTORES 11 ESTRUCTURA ATÓMICA Toda la materia está compuesta por átomos, y todos los átomos se componen de electrones, protones y neutrones. En esta sección aprenderá sobre

Más detalles

Comportamiento Eléctrico de los Materiales. Cap. 18 (Ciencia e Ingeniería de los Materiales Askeland 3ª Edición)

Comportamiento Eléctrico de los Materiales. Cap. 18 (Ciencia e Ingeniería de los Materiales Askeland 3ª Edición) Comportamiento Eléctrico de los Materiales Cap. 18 (Ciencia e Ingeniería de los Materiales Askeland 3ª Edición) 1 Conducción eléctrica Ley de Ohm Primera Ley de Ohm: voltaje (volts) V = I R resistencia

Más detalles

CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT

CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT CLASE 14 TALLER: ENTORNO DE DESARROLLO L EDIT CDg 14 1 TRANSISTORES MOSFET: Un transistor MOSFET de enriquecimiento consta de 2 terminales (dreno y fuente) de un tipo de dopado, inmersas en un sustrato

Más detalles

Propiedades de los Materiales. Propiedades eléctricas de los Materiales.

Propiedades de los Materiales. Propiedades eléctricas de los Materiales. Propiedades de los Materiales. Propiedades eléctricas de los Materiales. Conductividad Eléctrica. Es la medida de la capacidad que tiene un material de la capacidad que tiene un material para conducir

Más detalles

F H G I K J. Capítulo 3

F H G I K J. Capítulo 3 Capítulo 3 Fenómenos de ruptura 3.1) Introducción En la característica del diodo observamos una zona en la cual a pesar de estar en polarización inversa, se obtienen corrientes inversas que son mucho más

Más detalles

Rutherford. Partícula cargada acelerada radia energía

Rutherford. Partícula cargada acelerada radia energía MATERIALES Materia formada por átomos Rutherford Partícula cargada acelerada radia energía Constituidos por cargas positivas y electrones Eléctricament e neutro Situación crítica Con dichos valores el

Más detalles