Modelado de Disolvente
|
|
|
- María Josefa Valenzuela Fernández
- hace 9 años
- Vistas:
Transcripción
1 Seminario Fuerzas Intermoleculares Modelado de Disolvente Presentado por: David Ignacio Ramírez Palma Instituto de Química, Universidad Nacional Autónoma de México Noviembre
2 Contenido - Concepto de solvatación - Modelos de solvatación - Implícito (Continuo) o De9iniciones del modelo básico o Cavidad o Problema electrostático * Ecuación de Poisson o Enfoque de Born Generalizado (GB) o El Modelo Onsager o Métodos ASC * PCM * COSMO o SMD - Implícito vs Explícito - Aplicaciones 2
3 Concepto de solvatación Proceso de mover una molécula en fase gas a fase líquida. 3
4 Modelos de solvatación - Explícito (se consideran detalles de cada molécula del disolvente). - Implícito (se trata al disolvente como un medio continuo). - Híbridos (primera esfera de solvatación explícita rodeada de un continuo del disolvente). 4
5 Modelo Implícito (Continuo) Representa a una molécula (soluto) dentro de una cavidad rodeada por un medio dieléctrico (con una permitividad relativa) que representa el disolvente. La distribución de carga del soluto genera una polarización eléctrica en el disolvente de alrededor, la cual es modelada como un medio homogéneo caracterizado por una permitividad. Campo de reacción: potencial eléctrico debido a la polarización del continuo dieléctrico y la polarización del soluto. Potencial total menos el potencial electrostático de la molécula de soluto en fase gas. 5
6 La función de onda corresponde al soluto, H (0) es el hamiltoniano en fase gas, y V es el operador de energía potencial asociado al campo de reacción. Debido a que V depende de la función de onda, la correspondiente ecuación de Schrödinger es no lineal. Por lo tanto, las soluciones iterativas de éste cálculo es conocido como SCRF (campo de reacción auto-consistente) Los modelos de disolvente implícito difieren en la manera en que se construye V y el tratamiento de los componentes no-electrostáticos. 6
7 Definiciones del modelo básico - Las interacciones soluto-disolvente están limitadas a aquellas de origen electrostático. - El sistema modelado es una solución diluida. - El disolvente es isotrópico, al equilibrio y a una temperatura (y presión) dada. 7
8 Cavidad Debe excluir al disolvente y contener dentro de sus límites la mayor parte posible de la distribución de carga del soluto. La forma de la cavidad debe reproducir en la mayoría de lo posible la forma de la molécula. Superficies de isodensidades. Calcular la energía de interacción entre una molécula dada y un átomo de prueba. 8
9 Mejor opción: definición de la cavidad como una superposición de esferas atómicas con radios cercanos a los valores de van der Waals. SAS: superficie accesible para el disolvente. SES: superficie excluida de disolvente. 9
10 Problema electrostático Distribución de carga del soluto dentro de la cavidad Polariza el continuo dieléctrico Polariza la distribución de carga SCRF Solución al problema electrostático clásico: Ecuación de Poisson 10
11 Ecuación de Poisson V M potencial electrostático generado por la distribución de carga ρ V R potencial de reacción generado por la polarización del medio dieléctrico 11
12 - Condiciones a la frontera al infinito Con valores finitos para α y β. Éstas condiciones engloban el comportamiento armónico de la solución. - Condiciones a la frontera en la superficie de la cavidad Γ. 1. Expresa la continuidad del potencial a través de la superficie. 12
13 2. Discontinuidad de la componente del campo (expresada como un gradiente de V) que es perpendicular a la superficie de la cavidad. Cavidad con una constante dieléctrica constante igual a 1 y en el medio externo con un valor finito >1. Donde n es el vector perpendicular a la superficie de la cavidad que apunta hacia el exterior. 13
14 Enfoque de Born Generalizado (GB) Componente electrostática de la energía libre de solvatación para la carga (q) en una cavidad esférica de radio a Varias cargas α, Radio de Born (distancia de cada átomo al límite dieléctrico) 14
15 El Modelo de Onsager Cuando una molécula con un momento dipolar µ esta rodeada por otras partículas, el campo eléctrico producido por el dipolo permanente polariza su entorno. Un dipolo ideal en el centro de una cavidad esférica rodeada por un medio continuo dieléctrico. La polarización del medio dieléctrico da lugar a un campo en el dipolo (el campo de reacción R) 15
16 Métodos ASC Definición del potencial de reacción. Uso de la Carga Superficial Aparente σ(s) distribuida en la superficie de la cavidad. s, variable de posición limitada por la superficie Γ. La superficie de la cavidad es aproximada en términos de un conjunto de elementos finitos (llamados teselas) lo suficientemente pequeño para considerar σ(s) casi constante dentro de cada tesela. Con σ(s) definido punto por punto, es posible definir un conjunto de cargas puntuales, q k, en términos de los valores locales de σ(s) en cada una de las teselas correspondientes al área A k. 16
17 Polarizable Continuum Model (PCM) n es el vector unitario perpendicular a la superficie de la cavidad apuntando hacia fuera. Vector de polarización, caracteriza la densidad de polarización del medio bajo la influencia de un campo eléctrico. 17
18 Conductor-like Screening Model (COSMO) Variación de PCM en donde el medio alrededor es modelado como un conductor. En éste método la constante dieléctrica del medio se cambia de un valor finito específico característico para cada solvente a infinito. Para recuperar los efectos de los valores finitos de la constante dieléctrica del medio, σ* (correspondiente al valor infinito) es escalada con una función propia de la constante dieléctrica. 18
19 SMD D, densidad. La densidad electrónica del soluto es usada para definir cargas atómicas parciales. Aplicable a todo soluto con carga o neutro en cualquier solvente (constante dieléctrica, índice de refracción, tensión superficial, parámetros de acidez o basicidad). El modelo separa la energía de solvatación en dos componentes. - Contribución electrostática. Tratamiento SCRF, involucra la solución de la ecuación de Poisson no-homogénea en términos del formalismo de ecuación integrable para un modelo continuo polarizable (IEF-PCM integral-equation-formalism polarizable continuum model) - CDS (Cavidad, Dispersión, Estructura del solvente). Es la contribución debida a interacciones de corto alcance entre el soluto y moléculas de solvatación en la primera esfera de solvatación. 19
20 ENP denotan los componentes electrónicos (E), nucleares (N) y de polarización (P). Si se asume que la geometría es la misma en fase gas y en fase líquida, ENP se convierte en EP. Calculado por SCRF (Campo de reacción auto-consistente). CDS cambios de energía libre asociados con al cavidad del solvente (C), cambios en la energía de dispersión (D), y posibles cambios en la estructura local del solvente (S) Último término de la ecuación, asociado a cambios de concentración. 20
21 e, unidades atómicas de carga ϕ k, campo de reacción evaluado en el átomo k Z k, número atómico del átomo k H (0) y Ψ (0), Hamiltoniano electrónico y función de onda del soluto respectivamente Ψ, función de onda en solución del soluto polarizado σ k y σ [M] tensión superficial en el átomo k y tensión superficial molecular respectivamente A k, área superficial accesible al solvente para el átomo k, la cual depende de la geometría R para el conjunto {R Zk }para todo los radios de van der Waals atómicos r s, radio del solvente 21
22 Implícito vs Explícito Información proporcionada. Precisión. Costo computacional. Efectos de corto alcance. 22
23 Aplicaciones J. Chem. Theory Comput. 2010, 6, Benchmark Calculations of Absolute Reduction Potential of Ferricinium/Ferrocene Couple in Nonaqueous Solutions. Electrodo de referencia para soluciones no acuosas. 23
24 Aplicaciones J. Phys. Chem. A 2006, 110, Adding Explicit Solvent Molecules to Continuum Solvent Calculations for the Calculation of Aqueous Acid Dissociation Constants. En muchos casos cuando se utiliza un model de disolvente implícito adecuado, la adición de moléculas de solvente explícito no es necesaria para estimar valores de pka. Sin embargo, cuando se espera que interacciones específicas (puentes de hidrógeno) jueguen un papel importante, la adición de una molécula de disolvente mejora considerablemente la predicción del pka. 24
25 Referencias Christopher J. Cramer. Essentials of Computational Chemistry. Segunda Edición. Editorial Wiley Tomasi, et. al. Chem. Rev. 2005, 105, Cramer, C. J. and Truhlar, D. G. Chem Rev. 1999, 99, Cramer, et. al. J. Phys. Chem. B, 2009, 113 (18), Bashford, D. and Case, D. Annu. Rev. Phys. Chem. 2000, 51: Coote, et. al. J. Chem. Theory Comput. 2010, 6, Truhlar, et. al. J. Phys. Chem. A 2006, 110,
Efectos del Disolvente modelos implícitos. Esquer Rodríguez Raymundo Química Computacional
Efectos del Disolvente modelos implícitos Esquer Rodríguez Raymundo Química Computacional 1 S Por qué es Importante? La mayor parte de la química y bioquímica tiene lugar en disolución, y el disolvente
Teorema de Koopman: La energía de un electrón en un orbital es igual a la energía requerida para remover el electrón y dar el catión Pero:
Potencial de ionización y afinidad electrónica Teorema de Koopman: La energía de un electrón en un orbital es igual a la energía requerida para remover el electrón y dar el catión Pero: En el estado ionizado
Figura Trabajo de las fuerzas eléctricas al desplazar en Δ la carga q.
1.4. Trabajo en un campo eléctrico. Potencial Clases de Electromagnetismo. Ariel Becerra Al desplazar una carga de prueba q en un campo eléctrico, las fuerzas eléctricas realizan un trabajo. Este trabajo
Conceptos basicos del equilibrio de quimico en medio acuoso
Conceptos basicos del equilibrio de quimico en medio acuoso Elaborado por: Gustavo Gomez Sosa Facultad de Quimica UNAM QU ÍM IC A A N A LÍTIC A I C LAV E 1402 G rupo 4, s em es tre 2010-2 CONCEPTOS BASICOS
MATERIALES DIELÉCTRICOS
MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar
LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO
INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente
Apuntes del Modelo del átomo hidrogenoide.
Apuntes del Modelo del átomo hidrogenoide. Dr. Andrés Soto Bubert Un átomo hidrogenoide es aquel que tiene un solo electrón de carga e, rodeando un núcleo de carga +Ze. Átomos que cumplen esta descripción
un sistema de conductores cargados. Energía electrostática en función de los vectores de campo. Fuerza electrostática. Presión electrostática.
11 ÍNDICE GENERAL INTRODUCCIÓN 13 CÁLCULO VECTORIAL 17 Escalares y vectores. Operaciones con vectores. Campos escalares y vectoriales. Sistemas de coordenadas. Transformación de coordenadas. Vector de
Instituto de Física Universidad de Guanajuato Agosto 2007
Instituto de Física Universidad de Guanajuato Agosto 2007 Física III Capítulo I José Luis Lucio Martínez El material que se presenta en estas notas se encuentra, en su mayor parte, en las referencias que
Campo Eléctrico en el vacío
Campo Eléctrico en el vacío Electrostática: Interacción entre partículas cargadas q1 q2 Ley de Coulomb En el vacío: K = 8.99 109 N m2/c2 0 = 8.85 10 12 C2/N m2 Balanza de torsión Electrostática: Interacción
CAMPO ELÉCTRICO ÍNDICE
CAMPO ELÉCTRICO ÍNDICE 1. Introducción 2. Ley de Coulomb 3. Campo eléctrico 4. Líneas de campo eléctrico 5. Distribuciones continuas de carga eléctrica 6. Flujo del campo eléctrico. Ley de Gauss 7. Potencial
CAPÍTULO III Electrostática
CAPÍTULO III Electrostática Fundamento teórico I.- Ley de Coulomb Ia.- Ley de Coulomb La fuerza electrostática F que una carga puntual q con vector posición r ejerce sobre una carga puntual q con vector
Nombre: Jesús Durán Hernández
Nombre: Jesús Durán Hernández Qué es la escalera de jacob? Es una clasificación hecha por John Perdew para funcionales de intercambio y de correlación. Aproximación de la densidad local (LDA) Es el
AUXILIAR 1 PROBLEMA 1
AUXILIAR 1 PROBLEMA 1 Calcular el campo eléctrico en cualquier punto del espacio, producido por una recta de carga infinita (con densidad lineal de carga λ0). Luego, aplicar el teorema de Gauss para obtener
Fuerzas Intermoleculares. Materia Condensada.
Fuerzas Intermoleculares. Materia Condensada. Contenidos Introducción. Tipos de fuerzas intermoleculares. Fuerzas ion-dipolo Fuerzas ion-dipolo inducido Fuerzas de van der Waals Enlace de hidrógeno Tipos
A continuación se detallan cada una de las propiedades coligativas:
PREGUNTA (Técnico Profesional) Se prepara una solución con 2 mol de agua y 0,5 mol de un electrolito no volátil. Al respecto, cuál es la presión de vapor a 25 ºC de esta solución, si la presión del agua
Última modificación: 1 de agosto de
Contenido CAMPO ELÉCTRICO EN CONDICIONES ESTÁTICAS 1.- Naturaleza del electromagnetismo. 2.- Ley de Coulomb. 3.- Campo eléctrico de carga puntual. 4.- Campo eléctrico de línea de carga. 5.- Potencial eléctrico
MOMENTO DIPOLAR DE ENLACE. La polaridad de un enlace se mide con el momento dipolar de enlace, µ.
didactalia.net En la mayoría de los compuestos orgánicos el átomo de carbono se enlaza a átomos más electronegativos, lo que promueve que los electrones del enlace covalente sean atraídos con mayor intensidad
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA JUSTIFICACION DEL CURSO
UNIVERSIDAD DE COSTA RICA FACULTAD DE CIENCIAS ESCUELA DE FISICA PROGRAMA FS0310 FISICA GENERAL II Créditos: 3 Correquisito: FS-311 Requisitos: FS-210, FS-211, MA-1002 ó MA-2210 Horas por semana: 4 JUSTIFICACION
PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION DE LA ASIGNATURA CODIGO OPTICO:
UNIVERSIDAD DEL ZULIA FACULTAD EXPERIMENTAL DE CIENCIAS D.E.B.S. COORDINACION ACADEMICA DE LA FEC DEPARTAMENTO DE FISICA UNIDAD ACADÉMICA ELECTROMAGNETISMO PROGRAMA DE: ELECTROMAGNETISMO II IDENTIFICACION
Tema 4. Fuerzas intermoleculares
Tema 4: Fuerzas intermoleculares Química para biólogos Slide 1 of 35 Contenidos 4-1 Electronegatividad 4-2 Polaridad de enlace y molécula: momento dipolar 4-3 Fuerzas intermoleclares 4-4 Puentes de hidrógeno
Interacciones químicas de no enlace. Fuerzas de van der Waals
Interacciones químicas de no enlace IES La Magdalena. Avilés. Asturias En el mundo material, además de los enlaces entre átomos existen otras interacciones, más débiles, pero lo suficientemente intensas
Interacciones Eléctricas La Ley de Coulomb
Interacciones Eléctricas La Ley de Coulomb 1. Introducción La Electrostática se ocupa del estudio de las interacciones entre cargas eléctricas en reposo. Las primeras experiencias relativas a los fenómenos
Tema 3: Electricidad. eléctricos. 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos
Tema 3: Electricidad 1. Ley de Coulomb y campo eléctrico. 2. Potencial eléctrico. 3. Representación gráfica de campos eléctricos. 4. Conductores. 5. Potencial de membrana. 6. Corriente eléctrica: ley de
ENLACE QUÍMICO 2º BACH EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. H-CHO H C = O : CH 3 OH H C O H H H H C O C H H H CH 3 OCH 3
EJERCICIOS DE ENLACE QUÍMICO DEL LIBRO 28. -CO C = O : C 3 O C O C 3 OC 3 C O C a) La longitud de enlace CO es menor en el formaldehido, ya que tiene un doble enlace. b) El metanol puede formar enlaces
índice ~
- ---------------- índice ~ Página CAPíTULO 1 CONCEPTOS FUNDAMENTALES 23 1. MATERIA 2. MASA Y PESO 3. VOLUMEN 4. MEDICIÓN 4.1 Unidades fundamentales o patrones de medición unidades SI 5. OPERACIONES MATEMÁTICAS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 QUÍMICA TEMA 3: ENLACES QUÍMICOS
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 QUÍMICA TEMA : ENLACES QUÍMICOS Junio, Ejercicio, Opción A Reserva 1, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción B Septiembre,
El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)
ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se
Bioquímica Tema 2: Soluciones. Unidades Año: 2013
TEMA 2: SOLUCIONES Al estudio de las soluciones se le asigna gran importancia, teniendo en cuenta que la mayoría de las reacciones químicas ocurren entre soluciones, particularmente en medios acuosos.
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008
(93.43) Física III ITBA Copyright: Ing. Daniel Palombo 2008 Desde ApuntesITBA nos hemos tomado el trabajo de escanear y recopilar este material, con el afán de brindarles a los futuros ingenieros del ITBA
MÓDULO A: ácido-base y espectroscópicas de los compuestos orgánicos
MÓDULO A: Estructura t y propiedades d físicas, ácido-base y espectroscópicas de los compuestos orgánicos MÓDULO A: Estructura t y propiedades d físicas, ácido-base y espectroscópicas de los compuestos
Enlaces Primarios o fuertes Secundarios o débiles
Capítulo III MET 2217 Tipos de enlaces atómicos y moleculares Enlaces Primarios o fuertes Secundarios o débiles Enlaces primarios Iónico Actúan fuerzas intermoleculares relativamente grandes, electrostáticas.
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra [email protected] Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura
Ejercicios resueltos de FISICA II que se incluyen en la Guía de la Asignatura Módulo 2. Campo electrostático 4. Consideremos dos superficies gaussianas esféricas, una de radio r y otra de radio 2r, que
2 Energía electrostática y Capacidad
2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III
Profesor: Carlos Gutiérrez Arancibia. Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares
Profesor: Carlos Gutiérrez Arancibia Temas a tratar: - - Sustancias Puras - Mezclas - Enlaces Químicos - Fuerzas Intermoleculares A. Sustancia Pura: SUSTANCIAS PURAS Y MEZCLAS Una sustancia pura es un
Módulo 1: Electrostática Campo eléctrico
Módulo 1: Electrostática Campo eléctrico 1 Campo eléctrico Cómo puede ejercerse una fuerza a distancia? Para explicarlo se introduce el concepto de campo eléctrico Una carga crea un campo eléctrico E en
SOLUCIONES EJERCICIOS DE ENLACE QUÍMICO. 1º BCT
SOLUCIOES EJERCICIOS DE ELACE QUÍMICO. 1º CT 1. La teoría de la repulsión de los pares electrónicos de la capa de valencia (TRPECV) dice que los pares electrónicos que rodean al átomo central se disponen
TEORÍA DE PUESTAS A TIERRA. Johny Montaña
TEORÍA DE PUESTAS A TIERRA Johny Montaña Barranquilla - Bogotá Colombia, 2011 CONTENIDO Prólogo... xi 1. Análisis de electrodos de puesta a tierra en baja frecuencia...1 Punto fuente de corriente, 3. Línea
TRANSFERENCIA DE CALOR
Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel
BIOQUÍMICA Y BIOLOGÍA MOLECULAR I CURSO 2003/04 ENLACE QUÍMICO
BIQUÍMIA Y BILGÍA MLEULAR I URS 2003/04 Problemas 1º de Medicina UIVERSIDAD DE AVARRA DEPARTAMET DE BIQUÍMIA ELAE QUÍMI 1. rdenar por su estabilidad relativa (menor energía de ionización) los siguientes
2 Ondas superficiales
513430 - Sismología 6 2 Ondas superficiales En las interfases que separan medios elásticos de diferentes características, las ondas del cuerpo (P, S) se interfieren constructivamente para producir ondas
Primer examen parcial del curso Física II, M
Primer examen parcial del curso Física II, 106015M Prof. Beatriz Londoño 11 de octubre de 2013 Tenga en cuenta: Escriba en todas las hojas adicionales su nombre! Hojas sin nombre no serán corregidas El
11. FUERZAS INTERMOLECULARES
Las fuerzas intermoleculares son las responsables de las uniones entre las diferentes moléculas. Química 2º bachillerato Enlace químico 1 Las fuerzas de Van der Waals son interacciones entre átomos y moléculas
Colegio San Lorenzo - Copiapó - Región de Atacama Per Laborem ad Lucem
TEMARIO EXAMENES QUIMICA 2012 7º BASICO Descubrimiento del átomo: Quién lo descubrió y su significado Estructura atómica: Partes del átomo, características del núcleo y la corteza, cálculo del protón,
ESCUELA SUPERIOR POLITECNICA DEL LITORAL PROGRAMA DE ESTUDIOS
TEORÍA ELECTROMAGNÉTICA 1 UNIDAD ACADÉMICA: CARRERA: ESPECIALIZACIÓN: ÁREA: TIPO DE MATERIA: EJE DE FORMACIÓN: Facultad de Ingeniería en Electricidad y Computación Ingeniería en Electricidad, Ingeniería
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO. 3. Dos cargas puntuales cada una de ellas de Dos cargas iguales positivas de valor q 1 = q 2 =
01 - LEY DE COULOMB Y CAMPO ELÉCTRICO DISTRIBUCIONES DISCRETAS DE CARGAS 1. Tres cargas están a lo largo del eje x, como se ve en la figura. La carga positiva q 1 = 15 [µc] está en x = 2 [m] y la carga
FÍSICA 2ºBach CURSO 2014/2015
PROBLEMAS CAMPO ELÉCTRICO 1.- (Sept 2014) En el plano XY se sitúan tres cargas puntuales iguales de 2 µc en los puntos P 1 (1,-1) mm, P 2 (-1,-1) mm y P 3 (-1,1) mm. Determine el valor que debe tener una
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN
FÍSICA 4 PRIMER CUATRIMESTRE DE 2015 GUÍA 9: POTENCIALES EN 2-D Y 3-D, MOMENTO ANGULAR, ÁTOMO DE HIDRÓGENO, ESPÍN 1. Considere el siguiente potencial (pozo infinito): { 0 x a; y b y z c V(x)= sino Escribiendo
Formulario PSU Parte común y optativa de Física
Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA
CAMPOS ELÉCTRICOS DEBIDOS A DISTRIBUCIONES CONTINUAS DE CARGA Este documento enuncia de forma más detallada la formulación matemática que permite el estudio de campos eléctricos debido a distribuciones
Maestría en Ciencia y Tecnología Ambiental
Maestría en Ciencia y Tecnología Ambiental Temario: Química Propósito general: Proporcionar y estandarizar el conocimiento básico de química a los candidatos para ingresar al programa de Maestría en Ciencia
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III
DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE
Departamento de Física Aplicada III
Departamento de Física Aplicada III Escuela Superior de Ingenieros Camino de los Descubrimientos s/n 4109 Sevilla Examen de Campos electromagnéticos. o Curso de Ingeniería Industrial. Septiembre de 011
Química I. Contenido. Bloque I Reconoces a la Química como una herramienta para la vida 2
Contenido Bloque I Reconoces a la Química como una herramienta para la vida 2 Sesión A. Qué es la Química? 5 Qué es la Química? 5 La Química en nuestro mundo cotidiano 6 Sesión B. Desarrollo histórico
ESCUELA: UNIVERSIDAD DEL ISTMO
1.-IDENTIFICACIÓN ESCUELA: UNIVERSIDAD DEL ISTMO CLAVE: 3034 GRADO: ING. EN COMPUTACIÓN, TERCER SEMESTRE TIPO DE TEÓRICA / PRÁCTICA ANTECEDENTE CURRICULAR: 304.- OBJETIVO GENERAL Proporcionar al alumno
PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS. CIRCUITOS ELECTRICOS MAGNETOSTATICA
PROGRAMA DE ASIGNATURA ELECTRICIDAD Y MAGNETISMO I II III IV V VI CAMPO Y POTENCIAL ELECTRICOS CAPACITANCIA Y DIELECTRICOS CIRCUITOS ELECTRICOS MAGNETOSTATICA INDUCCION ELECTROMAGNETICA PROPIEDADES MAGNETICAS
Uniones Químicas. Iónicas Covalentes Metálicas
Uniones Químicas Iónicas Covalentes Metálicas Unión iónica Propiedades de los Compuestos iónicos - Puntos de fusión y ebullición elevados - Sólidos duros y quebradizos - Baja conductividad eléctrica y
Contenidos mínimos Física y Química 3º ESO
Contenidos mínimos Física y Química 3º ESO EL TRABAJO CIENTÍFICO Etapas del método científico. Magnitudes y unidades. Cambio de unidades. Sistema Internacional de Unidades (SI). Representación de gráficas
Disoluciones. Química General II 2011
Disoluciones Química General II 2011 Disolución Es una mezcla homogénea de dos o mas sustancias. Componentes: Soluto: Sustancia (s) presente (s) en menor cantidad en una disolución, son las sustancias
GUÍA DE ESTUDIO N 4 SOLIDOS Y LÍQUIDOS
A FUERZAS INTERMOLECULARES GUÍA DE ESTUDIO N 4 SOLIDOS Y LÍQUIDOS 1. Menciona y describe las propiedades macroscópicas de los estados de agregación más comunes en que se presenta la materia. 2. Para cada
PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA
UNIVERSIDAD FERMIN TORO VICE RECTORADO ACADEMICO FACULTAD DE INGENIERIA ESCUELA DE INGENIERÌA ELECTRICA PROGRAMA INSTRUCCIONAL TEORIA ELECTROMAGNETICA CÓDIGO ASIGNADO SEMESTRE U.C. DENSIDAD HORARIA H.T
Universidad de Alcalá. Departamento de Física. Solución del Ejercicio propuesto del Tema 4
Universidad de Alcalá Departamento de Física Solución del Ejercicio propuesto del Tema 4 1) La figura muestra un condensador esférico, cuyas armaduras interna y externa tienen radios R i 1 cm y R e 2 cm.
SUSTANCIA QUÍMICA mercurio oxígeno
ELEMENTO O SUSTANCIA ELEMENTAL: Sustancia formada por un mismo tipo de átomos, por ejemplo: Hg, H 2, Cu, O 2 SUSTANCIA QUÍMICA mercurio oxígeno COMPUESTO O SUSTANCIA COMPUESTA: Sustancia formada por dos
Física y Química 3º ESO
1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva
E 1.3. LA LEY DE GAUSS
E 1.3. LA LEY DE GAUSS E 1.3.1. Calcule el flujo del campo eléctrico producido por un disco circular de radio R [m], uniformemente cargado con una densidad σ [C/m 2 ], a través de la superficie de una
Equilibrio físico. Prof. Jesús Hernández Trujillo. Facultad de Química, UNAM. Equilibrio físico/j. Hdez. T p.
Equilibrio físico/j. Hdez. T p. 1/34 Equilibrio físico Prof. Jesús Hernández Trujillo [email protected] Facultad de Química, UNAM Equilibrio físico/j. Hdez. T p. 2/34 Interacciones intermoleculares
TEMA 2. CAMPO ELECTROSTÁTICO
TEMA 2. CAMPO ELECTROSTÁTICO CUESTIONES TEÓRICAS RELACIONADAS CON ESTE TEMA. Ejercicio nº1 Indica qué diferencias respecto al medio tienen las constantes K, de la ley de Coulomb, y G, de la ley de gravitación
Nombre de la materia Química General Departamento Nanotecnología Academia Química
Nombre de la materia Química General Departamento Nanotecnología Academia Química Clave Horas-teoría Horas-práctica Horas-AI Total-horas Créditos I4225 4 4 9 Nivel Carrera Tipo Prerrequisitos 1 Nanotecnología
Actividad introductoria: Aplicación en la industria de las fuerzas intermoleculares.
Grado 10 Ciencias - Unidad 3 Cómo se relacionan los componentes del mundo? Tema Cómo afectan las fuerzas intermoleculares las propiedades de los compuestos? Curso: Nombre: Actividad introductoria: Aplicación
Efecto del dieléctrico en un capacitor
Efecto del dieléctrico en un capacitor La mayor parte de los capacitores llevan entre sus placas conductoras una sustancia no conductora o dieléctrica. Efecto del dieléctrico en un capacitor Un capacitor
PROBLEMAS ELECTROESTÁTICA
POBLEMAS DE ELETOESTÁTIA III ampo electrostático en los conductores Prof. J. Martín ONDUTOES AGADOS EN EL AI O Pr obl e ma alcular : a) la capacidad de una superficie esférica de radio ; b) la capacidad
Sesión 7 Fundamentos de dispositivos semiconductores
Sesión 7 Fundamentos de dispositivos semiconductores Componentes y Circuitos Electrónicos Isabel Pérez / José A García Souto www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/isabelperez
Flujo Eléctrico. Hemos aprendido a calcular el E establecido por un sistema de cargas puntuales o una distribución de carga uniforme o continua.
Ley de Gauss Presentación basada en el material contenido en: R. Serway,; Physics for Scientists and Engineers, Saunders College Publishers, 3 rd edition. Flujo Eléctrico Hemos aprendido a calcular el
El ÁTOMO de HIDRÓGENO
El ÁTOMO de HIDRÓGENO Dr. Andres Ozols Dra. María Rebollo FIUBA 006 Dr. A. Ozols 1 ESPECTROS DE HIDROGENO espectros de emisión espectro de absorción Dr. A. Ozols ESPECTROS DE HIDROGENO Secuencias de las
INDICE 22. La carga eléctrica Resumen, preguntas, problemas 23. El campo eléctrico Resumen, preguntas, problemas Resumen, preguntas, problemas
INDICE 22. La carga eléctrica 22-1. las propiedades de la materia con carga 646 22-2. la conservación y cuantización de la carga 652 22-3. la ley de Colulomb 654 22-4. las fuerzas en las que intervienen
Transistor BJT como Amplificador
Transistor BJT como Amplificador Lección 05.2 Ing. Jorge Castro-Godínez Escuela de Ingeniería Electrónica Instituto Tecnológico de Costa Rica II Semestre 2013 Jorge Castro-Godínez Transistor BJT como Amplificador
DISOLUCIONES UNIDAD IV. Licda. Miriam Marroquín Leiva
DISOLUCIONES UNIDAD IV 1 DISOLUCIÓN Es una mezcla homogénea de dos o más sustancias; el soluto y el disolvente. Es un término utilizado para describir un sistema en el cual una o más sustancias están mezcladas
FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA
Página 1 de 5 FACULTAD: INGENIERIAS Y ARQUITECTURA PROGRAMA: INGENIERÍA INDUSTRIAL DEPARTAMENTO DE: INGENIERIA MECÁNICA, INDUSTRIAL Y MECATRONICA CURSO: ELECTROMAGNETISMO CODIGO: 157009 AREA: CIENCIAS
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
FISICA 2º BACHILLERATO CAMPO ELECTRICO
) CMPO ELÉCTRICO Cuando en el espacio vacío se introduce una partícula cargada, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula cargada que se sitúa en él, estará
QUÉ ES LA TEMPERATURA?
1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente
Parámetros de enlace. Jesús Gracia Mora
Parámetros de enlace Jesús Gracia Mora La presentación, material adicional, ejercicios y bibliografía se encuentran a su disposición en: http://depa.pquim.unam.mx/qi/ Que es un enlace químico? Diferentes
Exceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética.
1 Carga eléctrica Campo léctrico xceso o defecto de electrones que posee un cuerpo respecto al estado neutro. Propiedad de la materia que es causa de la interacción electromagnética. Un culombio es la
El átomo: sus partículas elementales
El átomo: sus partículas elementales Los rayos catódicos estaban constituidos por partículas cargadas negativamente ( a las que se llamo electrones) y que la relación carga/masa de éstas partículas era
QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES
QUÍMICA LICENCIATURA DE INGENIERÍA EN ENERGÍAS RENOVABLES 2013-1 Teoría: Dra. Karina Cuentas Gallegos Martes y jueves 10-12 hrs. Laboratorio: M.C. Mirna Guevara García Jueves 12-14 hrs. Curso de Química
ATOMO DE HIDROGENO. o = permitividad al vacío = 8.85 X C 2 N -1 cm -1. = metros. F = Newtons 2. Ó (3)
ATOMO DE HIDROGENO I. Atomo de hidrógeno A. Descripción del sistema: Dos partículas que interaccionan por atracción de carga eléctrica y culómbica. 1. Ley de coulomb: a. En el sistema cgs en unidades de
Bloque 1. Las magnitudes físicas y su medida
Bloque 1. Las magnitudes físicas y su medida El sistema métrico decimal El sistema internacional de unidades Conversiones de unidades con factores de conversión. Unidades compuestas Magnitudes escalares
IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre Fase específica OPCIÓN A
1 PAU Química. Septiembre 2010. Fase específica OPCIÓN A Cuestión 1A. Considere las sustancias: cloruro de potasio, agua, cloro y sodio. a) Indique el tipo de enlace que presenta cada una de ellas. b)
Carga Eléctrica. Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento.
ELECTROSTATICA Carga Eléctrica Una propiedad fundamental de la materia ya observada desde la antigüedad. Los cuerpos pueden cargarse eléctricamente por frotamiento. Aparecen fuerzas de atracción n o repulsión
CLASE Nº 4 ENLACE QUÍMICO
UNIVERSIDAD NACIONAL EXPERIMENTAL POLITECNICA ANTONIO JOSÉ DE SUCRE VICERRECTORADO BARQUISIMETO DEPARTAMENTO DE INGENIERÍA QUÍMICA QUÍMICA GENERAL CLASE Nº 4 ENLACE QUÍMICO 2012 1 Moléculas y compuestos
Electricidad y Magnetismo
Electricidad y Magnetismo Departamento de Señales, Sistemas y Radiocomunicaciones. Asignatura de 2º Curso. Primer Cuatrimestre. Profesor: Miguel Calvo Ramón. Horario de Clases: Grupo 24 Aula A135. Lunes
UNIVERSIDAD EMILIANO ZAPATA
UNIVERSIDAD EMILIANO ZAPATA OBJETIVO DE LA MATERIA El estudiante describirá la importancia de la química en la ciencia y tecnología, a través del conocimiento de sus principios básicos, con el fin de explicar
CAMPO Y POTENCIAL ELÉCTRICO
CAMPO Y POTENCIAL ELÉCTRICO PREGUNTAS 1. Cómo se aplica el principio de superposición para las fuerzas entre cargas eléctricas?. Qué le ocurre a una placa sólida, conductora, cuando se coloca en un campo
Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática
Notas para la asignatura de Electricidad y Magnetismo Unidad 1: Electrostática Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Agosto, 2015 Marco Antonio (ITT II) México D.F.,
ESTRUCTURA, VALORACIÓN Y CONTENIDOS DEL EXAMEN DE QUÍMICA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PARA MAYORES DE 25 AÑOS.
ESTRUCTURA, VALORACIÓN Y CONTENIDOS DEL EXAMEN DE QUÍMICA DE LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD POLITÉCNICA DE CARTAGENA PARA MAYORES DE 25 AÑOS. ESTRUCTURA La prueba constará de cuatro bloques, existiendo
6.3 Condensadores y dieléctricos.
6.3 Condensadores y dieléctricos. 6.3.1 CONCEPTO DE DIPOLO. MATERIALES DIELÉCTRICOS. Un material mal conductor o dieléctrico, no posee cargas libres, al contrario de un material conductor, como por ejemplo
