Práctica Módulo de torsión
|
|
|
- Lourdes Ayala Figueroa
- hace 9 años
- Vistas:
Transcripción
1 Práctica Módulo de torsión Objetivo eterminar el módulo de torsión de varillas de distintos materiales por los métodos estático y dinámico. Material Aparato de torsión representado en la figura, varillas de torsión de varios materiales (acero, aluminio y cobre), dos s, dinamómetro, cronómetro. Fundamento teórico Figura Un péndulo de torsión está constituido por un hilo (una varilla) unido a un punto fijo del que cuelga un objeto. En nuestro caso el objeto es una rectangular horizontal preparada para poder colocar dos s en diferentes posiciones (ver figura ).
2 Si aplicamos una fuerza F perpendicular a la a una distancia r con respecto al punto de suspensión, se produce un desplazamiento angular θ alrededor del eje vertical. En la varilla se origina un par de fuerzas recuperador M proporcional al ángulo (mientras no se sobrepase el límite de elasticidad) que tiende a devolver a la a su posición inicial. Podemos escribir: M = Fr = θ () donde es la constante de torsión (la constante recuperadora) cuyo valor para el caso de una varilla cilíndrica es: 4 πr = G () L donde G es el módulo de torsión del material y R y L son el radio y la longitud de la varilla, respectivamente. La constante de torsión se mide en Nm. El par recuperador M definido por la ecuación () se opone a la torsión de la varilla y da lugar a que la efectúe unas oscilaciones alrededor de la posición de equilibrio. En efecto, si es el momento de inercia del todo el conjunto respecto del eje, y consideramos el ángulo θ pequeño, aplicando la ecuación fundamental de la dinámica de rotación se obtiene la siguiente ecuación diferencial de un movimiento armónico simple: θ t = θ (3) La solución de esta ecuación proporciona θ en función del tiempo: θ π = θ0 cos t + ϕ (4) T donde θ 0 es la amplitud angular de la oscilación, ϕ la fase inicial y T el período de la oscilación que viene dado por: T = π (5) Método experimental Para determinar el módulo de torsión de una varilla se pueden utilizar dos métodos experimentales: uno estático y otro dinámico.
3 eterminación del modulo de torsión por el método estático Para este experimento vamos a utilizar las varillas de acero y de cobre de 0.5 m de longitud y de diámetro 0.00 m. Se gira la horizontal un cierto ángulo θ y se mide con un dinamómetro la fuerza F que hay que aplicar a una distancia r del eje para que la se mantenga en equilibrio en dicho desplazamiento angular (ver figura ). Apuntamos los valores obtenidos para F, r y θ. Figura Atención! Es importante que la dirección de la fuerza F sea perpendicular a la en todas las medidas y que la desviación angular θ no sobrepase el valor de 50º. Repetimos la experiencia desviando la en un ángulo diferente (se aconseja escoger ángulos entre 0º y 50º) y se mide la fuerza F que corresponde a cada caso situando el dinamómetro a la misma distancia r. Con estos resultados podemos calcular el momento aplicado M=Fr. Representando mediante puntos los datos experimentales del momento M en función del ángulo θ (en radianes) se obtiene una recta cuya pendiente nos da el valor de (ver ecuación ()). Mide cuidadosamente con una regla graduada la longitud L de la varilla y con un palmer su diámetro en varios puntos distintos a su largo. Haz un promedio de las medidas y calcula el radio R. Repite todo el procedimiento para otra varilla de diferente material. Resultados Para cada una de las varillas utilizadas realiza los siguientes pasos:. Representa en una tabla los valores de los ángulos θ escogidos (en grados y radianes) y las fuerzas F correspondientes. Apunta la distancia r a la que has aplicado la fuerza. Calcula el momento M correspondiente a cada una de las medidas.. Representa gráficamente M en función del ángulo θ y ajusta una recta a los valores experimentales. 3
4 3. Realiza una regresión lineal y, utilizando la expresión (), calcula la constante a partir de la pendiente de la recta. 4. Una vez calculado se puede aplicar la ecuación () para calcular el módulo de torsión G: L G = (6) 4 πr eterminación del modulo de torsión por el método dinámico Para este experimento seguimos utilizando las mismas dos varillas del apartado anterior. Colocamos los dos s de manera que queden situados a la misma distancia r del eje de suspensión. R L r r m m Figura 3 Se desvía la en un ángulo θ no muy grande con respecto a su posición de equilibrio y luego se suelta. El sistema empieza a oscilar con un periodo T definido por la expresión (), que se puede medir utilizando un cronómetro. El momento de inercia que aparece en la ecuación () corresponde al sistema formado por la horizontal + los dos s situados a la distancia r : r = mr + + (7) donde m es la masa de cada uno de los s, es el momento de inercia de la horizontal, es la contribución de cada uno de los s al momento de inercia total y el último término de la suma proviene de la aplicación del teorema de Steiner. Elevando al cuadrado la ecuación () encontramos que el periodo de oscilación T que hemos medido vale: 4
5 T + + mr = 4π (8) La contribución de los s es independiente de la posición r en la que se encuentran los s y se puede calcular como: = m( R R ) (9) donde R y R son los radios exterior y interior de los s, respectivamente. Observamos que la ecuación (8) contiene incógnitas: (la incógnita que buscamos) y. Podemos eliminar este inconveniente si planteamos otra ecuación similar a la (8). Para ello cambiamos la posición de los s esta vez a la distancia r del eje de suspensión, hacemos oscilar de nuevo el sistema y medimos el nuevo periodo T correspondiente a esta posición. En este caso podemos escribir: T + + mr = 4π (0) Restando las ecuaciones (8) y (0) eliminamos los términos y obteniendo así una ecuación en la cual la única incógnita es : T m( r r ) T = 4π () m( r r ) T T = 8π () Una vez determinado, se puede hallar el valor del módulo de torsión G del material de la varilla midiendo el radio R y la longitud L de la misma. En resumen, las medidas que se tienen que hacer en este apartado, para cada una de las dos varillas, son las siguientes: Para las dos posiciones de los s r y r se miden los periodos de oscilación correspondientes T y T. Para que la precisión de la medida sea mayor se mide el periodo de varias oscilaciones (por ejemplo 0) y se divide el tiempo total entre el numero de oscilaciones considerado. Con una regla graduada mide las distancias r y r. Mide cuidadosamente con una regla graduada la longitud L de la varilla y con un palmer su diámetro en varios puntos distintos a su largo. Haz un promedio de las medidas y calcula el radio R. Con una balanza pesa los s por separado y determina su masa m. Todas estas medidas se tienen que realizar varias veces apuntando los errores de resolución. Finalmente se tienen que hallar los valores medios, que son los que se 5
6 utilizarán en los cálculos y las correspondientes desviaciones estándar que nos darán una idea del error de cada magnitud medida. Resultados Para cada una de las varillas utilizadas realiza los siguientes pasos:. Realiza una tabla en forma de cuadro sinóptico que comprenda todos los valores medidos, los valores medios que se han deducido así como los errores correspondientes.. A partir de estos datos, aplica las fórmulas correspondientes y calcula la constante recuperadora y el módulo de torsión G de la varilla. 3. Finalmente haz un cálculo de errores para los dos valores calculados. Cuestiones. Compara los resultados obtenidos para la constante recuperadora y para el módulo de torsión G de una misma varilla por los métodos estático y dinámico. Tienen el mismo valor? Justifica la respuesta.. En el método dinámico es necesario tener en cuenta la amplitud de las oscilaciones? Justifica la respuesta. 6
MOVIMIENTO ARMÓNICO SIMPLE
MOVIMIENTO ARMÓNICO SIMPLE Junio 2016. Pregunta 2A.- Un bloque de 2 kg de masa, que descansa sobre una superficie horizontal, está unido a un extremo de un muelle de masa despreciable y constante elástica
PRÁCTICA 4 ESTUDIO DEL RESORTE
INGENIERÍA QUÍICA 1 er curso FUNDAENTOS FÍSICOS DE LA INGENIERÍA PRÁCTICA 4 ESTUDIO DEL RESORTE Departamento de Física Aplicada Escuela Politécnica Superior de la Rábida. 1 IV. Estudio del resorte 1. Objetivos
La Hoja de Cálculo en la resolución de problemas de Física.
a Hoja de Cálculo en la resolución de problemas de Física. Jesús Ruiz Felipe. Profesor de Física y Química del ES Cristóbal Pérez Pastor de Tobarra (Albacete) CEP de [email protected]
Formatos para prácticas de laboratorio
CARRERA PLAN DE ESTUDIO CLAVE ASIGNATURA NOMBRE DE LA ASIGNATURA TRONCO COMÚN 2005-2 4348 DINÁMICA PRÁCTICA NO. DIN-09 LABORATORIO DE NOMBRE DE LA PRÁCTICA LABORATORIO DE CIENCIAS BÁSICAS PÉNDULO SIMPLE
MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π
1 Objetivos Departamento de Física Curso cero MEDIDA DE LA DENSIDAD DE UN CUERPO. DETERMINACIÓN DE π Utilización de un calibre en la determinación de las dimensiones de un objeto y de una balanza digital
Péndulo en Plano Inclinado
Péndulo en Plano nclinado Variación del Período en función de g Alejandra Barnfather: [email protected] - Matías Benitez: [email protected] y Victoria Crawley: [email protected] Resumen El
TALLER DE OSCILACIONES Y ONDAS
TALLER DE OSCILACIONES Y ONDAS Departamento De Fı sica y Geologı a, Universidad De Pamplona DOCENTE: Fı sico Amando Delgado. TEMAS: Todos los desarrollados el primer corte. 1. Determinar la frecuencia
TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS
IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas
Movimiento armónico simple
Slide 1 / 53 Slide 2 / 53 M.A.S. y movimiento circular Movimiento armónico simple Existe una conexión muy estrecha entre el movimiento armónico simple (M.A.S.) y el movimiento circular uniforme (M.C.U.).
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido
Trabajo Práctico de Aula N 7 Dinámica de un cuerpo rígido 1) Un bloque de 2000 kg está suspendido en el aire por un cable de acero que pasa por una polea y acaba en un torno motorizado. El bloque asciende
DETERMINACIÓN DE LA CONSTANTE DE GRAVITACIÓN UNIVERSAL "G" ,, G = x 10
DETERMINACIÓN DE LA CONSTANTE DE GRAVITACIÓN UNIVERSAL "G" OBJETIVO Determinar el valor de la Constante de Gravitación Universal "G", mediante una alanza de torsión que mide el valor de la fuerza de atracción
Resistencia de Materiales 1A. Profesor Herbert Yépez Castillo
Resistencia de Materiales 1A Profesor Herbert Yépez Castillo 2014-2 2 Capítulo 5. Torsión 5.4 Ángulo 3 Un par es un momento que tiende a hacer girar respecto a su eje longitudinal. Su efecto es de interés
Nombre: Curso:_3. Si la fuerza se mide en newton (N) y el vector posición en metro (m), el torque se mide en N m.
Nombre: Curso:_3 Cuando un cuerpo están sometidos a una fuerzas neta nula es posible que el cuerpo este en reposo de traslación pero no en reposo de rotación, por ejemplo es posible que existan dos o más
Guía realizada por: Pimentel Yender.
REPÚBLICA BOLIVARIANA DE VENEZUELA MINISTERIO DEL PODER POPULAR PARA LA EDUCACIÓN U.E. COLEGIO DON CESAR ACOSTA BARINAS. ESTADO, BARINAS. PROFESOR: PIMENTEL YENDER. FÍSICA 4TO AÑO. MOVIMIENTO CIRCULAR
Campo Magnético en un alambre recto.
Campo Magnético en un alambre recto. A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. Se hizo pasar
Momento de Torsión Magnética
Universidad Nacional Autónoma de Honduras Facultad de Ciencias Escuela de Física Momento de Torsión Magnética Elaborado por: Ing. Francisco Solórzano I. Objetivo. Determinar de forma experimental el momento
Slide 1 / 71. Movimiento Armónico Simple
Slide 1 / 71 Movimiento Armónico Simple Slide 2 / 71 MAS y Movimiento Circular Hay una profunda conexión entre el Movimiento armónico simple (MAS) y el Movimiento Circular Uniforme (MCU). Movimiento armónico
DINÁMICA DE ROTACIÓN DE UN SÓLIDO
Laboratorio de Física General Primer Curso (Mecánica) DINÁMICA DE ROTACIÓN DE UN SÓLIDO Fecha: 07/02/05 1. Objetivo de la práctica Estudio de la ley de la dinámica de rotación de un sólido rígido alrededor
Tema 6: Trigonometría.
Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades
DINÁMICA II - Aplicación de las Leyes de Newton
> INTRODUCCIÓN A EJERCICIOS DE FUERZAS Como ya vimos en el tema anterior, las fuerzas se producen en las interacciones entre los cuerpos. La fuerza es la magnitud física vectorial, que nos informa de esas
Javier Junquera. Movimiento de rotación
Javier Junquera Movimiento de rotación Bibliografía Física, Volumen 1, 3 edición Raymod A. Serway y John W. Jewett, Jr. Ed. Thomson ISBN: 84-9732-168-5 Capítulo 10 Física, Volumen 1 R. P. Feynman, R. B.
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO
PROBLEMAS RESUELTOS MOVIMIENTO ONDULATORIO 1. Una onda transversal se propaga en una cuerda según la ecuación (unidades en el S.I.) Calcular la velocidad de propagación de la onda y el estado de vibración
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO
8. DETERMINACIÓN DE LA DENSIDAD DE UN SÓLIDO OBJETIVO El objetivo de la practica es determinar la densidad de un sólido. Para ello vamos a utilizar dos métodos: Método 1 : Cálculo de la densidad de un
1 Universidad de Castilla La Mancha Septiembre 2015 SEPTIEMRE 2015 Opción A Problema 1.- Tenemos tres partículas cargadas q 1 = -20 C, q 2 = +40 C y q 3 = -15 C, situadas en los puntos de coordenadas A
Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99, 01, curso cero de física
VECTORES: TRIÁNGULOS Demostrar que en una semicircunferencia cualquier triángulo inscrito con el diámetro como uno de sus lados es un triángulo rectángulo. Solución: I.T.I. 96, 98, 02, 05, I.T.T. 96, 99,
Unidad 8 Áreas y Volúmenes
Unidad 8 Áreas y Volúmenes PÁGINA 132 SOLUCIONES Unidades de medida. Pasa a centímetros cuadrados las siguientes cantidades. a) b) c) Pasa a metros cúbicos las siguientes unidades. a) b) c) Cuántos litros
MECÁNICA II CURSO 2004/05
1.1.- Movimientos de un sólido rígido. (rotación alrededor de ejes fijos) 1.1.1 El conjunto representado se compone de dos varillas y una placa rectangular BCDE soldadas entre sí. El conjunto gira alrededor
VELOCIDAD Y ACELERACION. RECTA TANGENTE.
VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)
Examen de TEORIA DE MAQUINAS Junio 07 Nombre...
Examen de TEORIA DE MAQUINAS Junio 07 Nombre... La figura muestra un mecanismo biela-manivela. La manivela posee masa m y longitud L, la biela masa 3 m y longitud 3 L, y el bloque masa 2m. En la posición
Tablero Juego de masas Dinamómetro Poleas Aro de fuerzas Escala graduada Cuerda Pivote Balancín
UNIVERSIDAD COOPERATIVA DE COLOMBIA CURSO FISICA MECANICA PRACTICA DE LABORATORIO PRACTICA No. 10: SUMA DE TORQUES Y EQUILIBRIO ROTACIONAL 1. INTRODUCCION. La aplicación de fuerzas sobre un cuerpo puede
Parámetros cinéticos de un sistema pistón-biela-cigüeñal
Parámetros cinéticos de un sistema pistón-biela-cigüeñal 3-1-1 Revisado 04-07-13 En el esquema anexo vemos los componentes característicos de un compresor, que es semejante a un motor alternativo de combustión
Slide 1 / 47. Movimiento Armónico Simple Problemas de Práctica
Slide 1 / 47 Movimiento Armónico Simple Problemas de Práctica Slide 2 / 47 Preguntas de Multiopcion Slide 3 / 47 1 Un bloque con una masa M está unida a un resorte con un constante k. El bloque se somete
Física: Momento de Inercia y Aceleración Angular
Física: Momento de Inercia y Aceleración Angular Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Momento de Torsión (Torque) La capacidad de un fuerza de hacer girar un objeto se define como torque.
2.2 Rectas en el plano
2.2 Al igual que ocurre con el punto, en geometría intrínseca, el concepto de recta no tiene definición, sino que constituye otro de sus conceptos iniciales, indefinibles. Desde luego se trata de un conjunto
Unidad 3: Razones trigonométricas.
Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define
Momento angular o cinético
Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x
Resolución de problemas aplicando leyes de Newton y consideraciones energéticas
UIVERSIDAD TECOLÓGICA ACIOAL Facultad Regional Rosario UDB Física Cátedra FÍSICA I Resolución de problemas aplicando lees de ewton consideraciones energéticas 1º) Aplicando lees de ewton (Dinámica) Pasos
Laboratorio de Física para Ingeniería
Laboratorio de para Ingeniería 1. Al medir la longitud de un cilindro se obtuvieron las siguientes medidas: x [cm] 8,45 8,10 8,40 8,55 8,45 8,30 Al expresar la medida en la forma x = x + x resulta: (a)
SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO.
SEMANA 02 SISTEMAS DE MEDIDAS DE ARCOS, RELACIÓN ENTRE LOS SISTEMAS DE MEDIDAS DE ARCOS. LONGITUD DE ARCO. I. INTRODUCCIÓN Arco Sección de un círculo que se encuentra entre dos puntos del círculo. Cualesquiera
RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES
UNIDD 4 RESOLUCIÓN DE SISTEMS MEDINTE DETERMINNTES Página 00 Resolución de sistemas mediante determinantes x y Resuelve, aplicando x = e y =, los siguientes sistemas de ecuaciones: x 5y = 7 5x + 4y = 6x
Fuerzas de Rozamiento
Fuerzas de Rozamiento Universidad Nacional General San Martín. Escuela de Ciencia y Tecnología. Baldi, Romina [email protected] Viale, Tatiana [email protected] Objetivos Estudio de las fuerzas
Movimiento Armónico Simple
Movimiento Armónico Simple Ejercicio 1 Una partícula vibra con una frecuencia de 30Hz y una amplitud de 5,0 cm. Calcula la velocidad máxima y la aceleración máxima con que se mueve. En primer lugar atenderemos
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO
PRÁCTICA: MOMENTOS DE INERCIA Y PÉNDULO FÍSICO Parte I: MOMENTOS DE INERCIA Objetivo: Determinar experimentalmente el momento de inercia de un disco respecto a su centro de gravedad y respecto a distintos
ESTUDIO DE LA FUERZA CENTRÍPETA
Laboratorio de Física General Primer Curso (ecánica) ESTUDIO DE LA FUERZA CENTRÍPETA Fecha: 07/02/05 1. Objetivo de la práctica Verificación experimental de la fuerza centrípeta que hay que aplicar a una
UNIDAD 7 Trazo de curvas
UNIDAD 7 Trazo de curvas El trazo de curvas se emplea en la construcción de vías para conectar dos líneas de diferente dirección o pendiente. Estas curvas son circulares y verticales. CURVAS CIRCULARES:
MOVIMIENTO CIRCULAR Medida de la aceleración normal o centrípeta con un acelerómetro
Cómo motivar a los estudiantes mediante actividades científicas atractivas MOVIMIENTO CIRCULAR Medida de la aceleración normal o centrípeta con un acelerómetro Introducción: Amparo Figueres I.E.S BOCAIRENT
ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ
1 ÓPTICA GEOMÉTRICA: REFLEXIÓN Y REFRACCIÓN DE LA LUZ INTRODUCCIÓN TEÓRICA: La característica fundamental de una onda propagándose por un medio es su velocidad (v), y naturalmente, cuando la onda cambia
FUERZAS CENTRALES. Física 2º Bachillerato
FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión
[email protected]!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
Tema 7: Geometría Analítica. Rectas.
Tema 7: Geometría Analítica. Rectas. En este tema nos centraremos en estudiar la geometría en el plano, así como los elementos que en este aparecen como son los puntos, segmentos, vectores y rectas. Estudiaremos
MATEMÁTICAS GRADO DÉCIMO
MATEMÁTICAS GRADO DÉCIMO SEGUNDA PARTE TEMA 1: VELOCIDAD ANGULAR Definición Velocidad Angular CONCEPTO: DEFINICIONES BÁSICAS: La velocidad angular es una medida de la velocidad de rotación. Se define como
Física. Choque de un meteorito sobre la tierra
Física Choque de un meteorito sobre la tierra Hace 65 millones de años la Tierra cambió de forma repentina, muchas especies desaparecieron, plantas, animales terrestres y marinos y sobre todo, los grandes
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo,
Geometría del Espacio. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 42 Índice. 1. Superficies. 2. El espacio eucĺıdeo tridimensional. Coordenadas Cartesianas. 3. Distancia entre
Resumen. En este trabajo estudiamos el movimiento de una máquina de Atwood, en la cual una de sus masas variaba con el tiempo.
Máquina de Atwood con masa variable Galarza Jorge, Viegener Alejandro, Palacios Pablo, Hesse Eugenia Universidad Favaloro - Julio 1 [email protected] Resumen En este trabajo estudiamos el movimiento
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE FÍSICA I ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 5 1. NOMBRE: FUERZAS CONCURRENTES
Ix ʹ = 8 mb 2, I. c) El momento de inercia respecto de un eje perpendicular al plano de la figura y que pase por una de las masas (eje z ʹ ) será:
CALCULO DE MOMENTOS DE INECIA Se unen cuatro partículas de masa m mediante varillas sin masa, formando un rectángulo de lados a b. El sistema gira alrededor de un eje en el plano de la figura que pasa
LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro
LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS
FUNCIONES Y FÓRMULAS TRIGONOMÉTRICAS Página 8. Aunque el método para resolver las siguientes preguntas se sistematiza en la página siguiente, puedes resolverlas ahora: a) Cuántos radianes corresponden
GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE
Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio
UNIDAD DIDÁCTICA 6: Trigonometría
UNIDAD DIDÁCTICA 6: Trigonometría 1. ÍNDICE 1. Introducción 2. Ángulos 3. Sistemas de medición de ángulos 4. Funciones trigonométricas de un ángulo 5. Teorema de Pitágoras 6. Problemas sobre resolución
PLANO INCLINADO. Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado.
PLANO INCLINADO Para la realización de esta práctica el alumno deberá venir al laboratorio provisto con hojas de papel milimetrado. Objetivo: Verificar experimentalmente la descomposición de fuerzas en
Cuando se enumeran todos los elementos que componen el conjunto. A = { 1, 2, 3, 4, 5 }
LOS NÚMEROS REALES TEMA 1 IDEAS SOBRE CONJUNTOS Partiremos de la idea natural de conjunto y del conocimiento de si un elemento pertenece (* ) o no pertenece (* ) a un conjunto. Los conjuntos se pueden
PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS
PRIMER CÁLCULO DE LA UNIDAD ASTRONÓMICA MEDIANTE EL TRÁNSITO DE VENUS (adaptado y traducido de textos de Internet por Luis E.) Hacia 1700 gracias a Kepler- las distancias relativas entre los seis planetas
Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico.
Determinación de la constante elástica, k, de un resorte. Estudio estático y dinámico. Nombre: Manuel Apellidos: Fernandez Nuñez Curso: 2º A Fecha: 29/02/2008 Índice Introducción pag. 3 a 6 Objetivos.
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS
CFGS CONSTRUCCION METALICA MODULO 246 DISEÑO DE CONSTRUCCIONES METALICAS U.T. 5.- FLEXION. 4.1.- Viga. Una viga es una barra recta sometida a fuerzas que actúan perpendicularmente a su eje longitudinal.
TRIÁNGULOS OBLICUÁNGULOS
PR SER TRJDO EL 09 y 16 DE GOSTO 2011 RZONMIENTO Y DEMOSTRIÓN Selecciona los procedimientos a seguir en la resolución de triángulos rectángulos y oblicuángulos. RESOLUIÓN DE PROLEMS Resuelve problemas
GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA
LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones
Introducción. Flujo Eléctrico.
Introducción La descripción cualitativa del campo eléctrico mediante las líneas de fuerza, está relacionada con una ecuación matemática llamada Ley de Gauss, que relaciona el campo eléctrico sobre una
Apuntes Trigonometría. 4º ESO.
Apuntes Trigonometría. 4º ESO. Conceptos previos: Notación: En un triángulo, los vértices se denotan con letras mayúsculas (A, B y C). Los lados se denotan con la letra minúscula del vértice opuesto al
1 Curvas planas. Solución de los ejercicios propuestos.
1 Curvas planas. Solución de los ejercicios propuestos. 1. Se considera el lugar geométrico de los puntos del plano tales que la suma del cuadrado de las distancias a los puntos P 1 = (, 0) y P = (, 0)
2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?
1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
EXPRESION MATEMATICA
TEMA: MOVIMIENTO CIRCULAR UNIFORME COMPETENCIA: Analiza, describe y resuelve ejercicios y problemas del movimiento circular uniforme. CONCEPTUALIZACION Es el movimiento cuyo móvil recorre arcos iguales
Electromagnetismo I. Semestre: TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado
Electromagnetismo I Semestre: 01- TAREA 1 Y SU SOLUCIÓN Dr. A. Reyes-Coronado Solución por Carlos Andrés Escobar Ruí 1.- Problema: (5pts) (a) Doce cargas iguales q se encuentran localiadas en los vérices
LA CIRCUNFERENCIA. x y r. (x h) (y k) r. d(p; 0) x y r. d(p; C) (x h) (y k) r. Definición. Ecuación de la circunferencia. Geometría Analítica 3
Definición LA CIRCUNFERENCIA Se llama circunferencia a la sección cónica generada al cortar un cono recto con un plano perpendicular al eje del cono. La circunferencia es el lugar geométrico de todos los
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA
UNIVERSIDAD NACIONAL DE EDUCACIÓN A DISTANCIA NOMBRE... APELLIDOS... CALLE... POBLACIÓN... PROVINCIA... C. P.... SISTEMAS MECÁNICOS E.T.S. de Ingenieros Industriales PRUEBA DE EVALUACIÓN A DISTANCIA /
Ángulos complementarios Un par de ángulos son complementarios si la suma resultante de sus medidas es.
Materia: Matemática de Séptimo Tema: Ángulos y pares de ángulos Objetivos de aprendizaje Entender e identificar ángulos complementarios. Entender e identificar ángulos suplementarios. Entender y utilizar
PRÁCTICA Nº.- LENTES.
PRÁCTICA Nº.- LENTES. Objetivo: Estudiar la ormación de imágenes de lentes delgadas y determinar la distancia ocal y la potencia de una lente convergente y de una lente divergente. undamento teórico: La
VECTORES. BIDIMENSIONAL
VETORES. IDIMENSIONL 1. Dado los vectores,,, D, E, F y G que se muestran en la figura, determinar el modulo del vector resultante si = 5N y F = 4N. Rpta. R = 17,35N. 2. En el primer cuadrante de un sistema
CUERPOS DE REVOLUCIÓN
PROPÓSITOS: Identificar los cuerpos redondos o de revolución. Resolver problemas, donde se aplique el volumen y área de cuerpos de revolución. CUERPOS DE REVOLUCIÓN Existen cuerpos geométricos que no tienen
Prof. Jorge Rojo Carrascosa
Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál
DENSIDAD Y PESO ESPECÍFICO
DENSIDAD Y PESO ESPECÍFICO Adaptación del Experimento Nº 2 de la Guía de Ensayos y Teoría del Error del profesor Ricardo Nitsche, página 43-47. Autorizado por el Autor. Materiales: Cilindros graduados
MYP (MIDDLE YEARS PROGRAMME)
MYP (MIDDLE YEARS PROGRAMME) 2014-2015 Fecha 19/05/2015 APUNTES DE GEOMETRÍA 2º ESO 1. EL TEOREMA DE PITÁGORAS El teorema de Pitágoras establece que en todo triángulo rectángulo, el cuadrado de la hipotenusa
Ejercicios Física PAU Comunidad de Madrid Enunciados Revisado 18 septiembre 2012.
2013-Modelo B. Pregunta 2.- La función matemática que representa una onda transversal que avanza por una cuerda es y(x,t)=0,3 sen (100πt 0,4πx + Φ 0), donde todas las magnitudes están expresadas en unidades
Geometría de masas: Cálculos del tensor de Inercia
Departamento: Física Aplicada Mecánica acional (ngeniería ndustrial) Curso 007-08 eometría de masas: Cálculos del tensor de nercia Tensor de inercia de una varilla delgada. Calculo del tensor de inercia
Magnitudes y Unidades. Cálculo Vectorial.
Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades
1. El movimiento circular uniforme (MCU)
FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda [email protected] CICLO: VI INICADORES DE LOGRO MOVIMIENTO CIRCULAR
Volumen de Sólidos de Revolución
60 CAPÍTULO 4 Volumen de Sólidos de Revolución 6 Volumen de sólidos de revolución Cuando una región del plano de coordenadas gira alrededor de una recta l, se genera un cuerpo geométrico denominado sólido
MATEMÁTICAS 3º ESO PENDIENTES HOJA 1 GEOMETRÍA PLANA. 1.- Calcular el área y el perímetro de los siguientes polígonos:
MATEMÁTICAS º ESO PENDIENTES HOJA GEOMETRÍA PLANA.- Calcular el área y el perímetro de los siguientes polígonos: a) Un cuadrado de lado 5 cm de lado b) Un cuadrado de diagonal 0 cm. c) Un rectángulo de
GUIA FISICA MOVIMIENTO CIRCULAR UNIFORME. T f V TA =V TB. F CP = m R F CP =
GUIA FISICA MOVIMIENO CICULA UNIFOME NOMBE: FECHA: FÓMULAS PAA MOVIMIENO CICULA UNIFOME El periodo y la frecuencia son recíprocos Velocidad Lineal o angencial( V ) Velocidad Angular( ) elación entre Velocidad
2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?
PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía
Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes
Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]
Mediciones II. Todas las mediciones tienen asociada una incertidumbre que puede deberse a los siguientes factores:
Mediciones II Objetivos El alumno determinará la incertidumbre de las mediciones. El alumno determinará las incertidumbres a partir de los instrumentos de medición. El alumno determinará las incertidumbres
2 o Bachillerato. Conceptos básicos
Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos
Al representar estos datos obtenemos una curva:
Pág. 1 18 Cuando de una goma de 10 cm se cuelgan pesos de 1, 2, 3, 4 y 5, esta se estira hasta 15, 21, 28, 36 y 45 cm, respectivamente. Representa la gráfica F-Dl y explica si la goma serviría para hacer
CARGA AL VIENTO. Q'v = 9 kg 9.81 N/kg = N
1 CARGA AL VIENTO. La carga al viento o resistencia al viento nos indica el efecto que tiene el viento sobre la antena. El fabricante la expresa para una velocidad del viento de 120 km/h (130 km/h en la
