FUERZAS CENTRALES. Física 2º Bachillerato

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUERZAS CENTRALES. Física 2º Bachillerato"

Transcripción

1 FUERZAS CENTRALES 1. Fuerza central. Momento de una fuerza respecto de un punto. Momento de un fuerza central 3. Momento angular de una partícula 4. Relación entre momento angular y el momento de torsión 5. Momento angular y segunda ley de Kepler Física º Bachillerato 1

2 1. FUERZA CENTRAL Concepto de Fuerza central: Fuerza dirigida siempre hacia el mismo punto, cualquiera que se a la posición de la partícula sobre la que está actuando La fuerza gravitatoria es una siempre hacia un punto fuerza conservativa y dirigida v m Ejemplos de fuerzas centrales: - Fuerza gravitatoria. - Fuerza recuperadora de una mas. - Fuerza que ejerce el núcleo sobre un electrón. - Fuerza centrípeta. r F m

3 . MOMENTO DE UNA FUERZA RESPECTO DE UN PUNTO MOMENTO DE UNA FUERZA CENTRAL Cuando se aplica una fuerza sobre un punto de un sólido rígido que puede girar alrededor de algún eje, el cuerpo tenderá a realizar una rotación, siempre que la fuerza no se dirija o provenga del eje. La capacidad de una fuerza para hacer girar un cuerpo alrededor de un eje se mide por una magnitud que se llama momento de torsión. Definición y unidades: M r F M r F sen F d M r F - Es un vector axial. Es un producto vectorial - Solamente está definido respecto de un punto. - d es el brazo del momento, distancia perpendicular. 3

4 Ej-1.: El péndulo de la figura oscila alrededor del punto O. Calcula, el momento respecto al punto O de la fuerza que hace oscilar el péndulo en función del ángulo que forma el hilo con la vertical. En qué posición del péndulo el momento es nulo? O 4

5 3. MOMENTO ANGULAR DE UNA PARTÍCULA Cantidad de movimiento... que determina la interacción de una partícula con otras. Si no hay interacción, si está aislada, la cantidad de movimiento de conserva. Momento angular es el momento de la cantidad de movimiento. Unidades L r p L r p sen - Es un vector axial. Es un producto vectorial. - Depende del punto respecto del cual se toman momentos - Si r es a p el momento angular es máximo - Si r es a p el momento angular es cero (mov. rectilíneo) L r p 5

6 MOMENTO ANGULAR DE UN SSTEMA Momento angular de un partícula en movimiento circular L mrvsen 90 mrv mr L 0 0 donde mr es el Momento de inercia L m r m r... m r m r... donde Momento angular de un sólido que tiene un movimiento de rotación en torno a un eje m r i i es el momento de iniercia del sólido rígido Momento de inercia de una esfera y de distintos cuerpos geométricos 1 Lesfera MR L MR 5 cilindro 6

7 Ej-.: Una partícula de 50 g de masa, se mueve en el plano XY con una velocidad de 4,0 m/s a lo largo de una recta de ecuación x-y+=0. Si el móvil se encuentra en el punto (0,). Calcula el módulo, dirección y sentido del momento angular de la partícula. a) Respecto del origen de coordenadas. b) Respecto del punto O de la recta. 1,8 kg m s y 0 Ej-3.: Un automóvil de 1500 kg se mueve en una pista circular de 50 m de radio con una velocidad de 40 m/s. Calcula el momento angular del automóvil respecto del centro de la pista kg m s 7

8 MOMENTO ANGULAR TERRESTRE La Tierra posee dos momentos angulares: - Momento angular orbital: respecto del Sol L0 r M v0 M r 0 0 Ej-4.: Calcula el momento angular orbital de la Tierra alrededor del Sol. L0 M R 5, kg m s - Momento angular intrínseco: debido al movimiento de rotación sobre su eje Ej-5.: Calcula el momento angular intrínseco de rotación de la Tierra. 7, kg m s Los electrones también tiene dos momentos angulares: orbital (l) y de espín (s) 8

9 4. RELACÓN ENTRE EL MOMENTO ANGULAR Y EL MOMENTO DE TORSÓN A partir de la definición de momento angular y derivando respecto al tiempo... L r p derivando respecto del tiempo d L d d p d r r p r p dt dt dt dt d p d dv dl ( m v) m m a F r F M dt dt dt dt d r d L p 0 son vectores paralelos y M dt dt 9

10 CONSERVACÓN DEL MOMENTO ANGULAR Si no actúa ningún momento de torsión sobre una partícula, el momento angular de la partícula permanece constante. dl Si M 0 0 L cte dt Esto ocurre: - Cuando F=0 - Cuando r=0 - Cuando F y r son paralelos. (Fuerzas centrales) Todo cuerpo sometido a fuerzas centrales conserva el momento angular 10

11 ECUACÓN FUNDAMENTAL DE LA DNÁMCA DE ROTACÓN A partir de la relación entre el momento angular y el momento de una fuerza d L d( ) d M dt dt dt M 11

12 PARALELSMO ENTRE TRASLACÓN Y ROTACÓN MAGNTUD TRASLACÓN ROTACÓN RELACÓN Espacio Masa Velocidad Aceleración Momento Ec fundamental E. Cinética F p s s R M v a dp dt 1 mv ma M L Ec M v EcR dl dt 1 a v k M R R R L r p 1

13 5. MOMENTO ANGULAR Y SEGUNDA LEY DE KEPLER Toda partícula que se mueve bajo la acción de una fuerza central conserva su momento angular. Por conservar la dirección: El momento angular será perpendicular al plano que forman los vectores r y v, por tanto la trayectoria de la partícula debe estar en un plano Por conservar el sentido Si L conserva el sentido, la partícula siempre recorrerá la órbita en el mismo sentido, y por tanto las trayectorias de los cuerpos en el seno de campos de fuerzas centrales serán curvas planas Por conservar el módulo: Representa el área del paralelogramo formado por los dos vectores que constituyen el producto vectorial da r dr r vdt r v dt L r mv m r v se deduce da dt y considerando que 1 L m L r da 13 dr

14 La ley de las áreas es aplicable a cualquier fuerza central aunque no fuera proporcional al inverso del cuadrado de la distancia. Esta ley justifica el hecho de que un planeta que gira alrededor del Sol va más deprisa en el perihelio que en el afelio. Si L es constante ra mva rp mvp r v r v A A P P Como la velocidad no es perpendicular en todo momento al vector de posición, se puede concluir que esta fuerza tiene una componente tangencial que modifica el módulo de la velocidad. Del afelio al perihelio acelera y frena de nuevo hacia el afelio. 14

15 Ej-6.: Un planeta imaginario se mueve en una órbita elíptica de mucha excentricidad alrededor del Sol. Cuando está en el perihelio el radio vector es km y cuando está en el afelio es km. Si la velocidad en el perihelio es 1000 km/h, calcula: a) La velocidad en el afelio.,7 10 m/s b) La velocidad areolar del planeta m /s c) La excentricidad de la órbita. (e=c/a=(r a -r p )/(r a +r p )) 0,8 Ej-7.: El cometa Halley se mueve en una órbita elíptica alrededor del Sol. El perihelio del cometa está a 8, km y el afelio a 5, km del Sol. a) En cual de los dos puntos el cometa tiene mayor velocidad? Y mayor aceleración? b) En qué punto tiene mayor energía potencial? Y mayor energía mecánica? perihelio; perihelio; afelio; igual Ej-8.: Se lanza un satélite en una dirección paralela a la superficie terrestre a 800 m/s desde 500 km de altura. Determine la velocidad del satélite cuando alcance su máxima altura de 4500 km Que excentricidad tiene la órbita que describe? 5064 m/s y 0, 15

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER

FUERZAS CENTRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER 8 03 FUERZAS CENRALES. COMPROBACIÓN DE LA SEGUNDA LEY DE KEPLER j Actividades. La masa m de la figura siguiente describe una trayectoria circular situada en un plano horizontal. Cuántas fuerzas actúan

Más detalles

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler

4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler 4. Fuerzas centrales. Comprobación de la segunda Ley de Kepler Fuerza central Momento de torsión respecto un punto Momento angular de una partícula Relación Momento angular y Momento de torsión Conservación

Más detalles

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla

Dinámica de la rotación Momento de un vector con respecto a un punto: vectores r y F y el sentido viene dado por la regla 00-0 Dinámica de la rotación Momento de un vector con respecto a un punto: M El momento del vector con respecto al punto O se define como el producto vectorial M r O Es un vector perpendicular al plano

Más detalles

Momento angular de una partícula. Momento angular de un sólido rígido

Momento angular de una partícula. Momento angular de un sólido rígido Momento angular de una partícula Se define momento angular de una partícula respecto de del punto O, como el producto vectorial del vector posición r por el vector momento lineal mv L=r mv Momento angular

Más detalles

Momento angular o cinético

Momento angular o cinético Momento angular o cinético Definición de momento angular o cinético Consideremos una partícula de masa m, con un vector de posición r y que se mueve con una cantidad de movimiento p = mv z L p O r y x

Más detalles

B. REPASO DE MECÁNICA ÍNDICE

B. REPASO DE MECÁNICA ÍNDICE BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL

NOTA CALI/ORDEN/PRES ORTOGRAFÍA PUNTUACIÓN EXPRESIÓN NOTA FINAL 1. a) Qué criterio puedes aplicar para saber si una fuerza dada es conservativa o no? b) Demuestra que la fuerza elástica F = - kx (Ley de Hooke) es conservativa. Res. a) En general, una fuerza F -> que

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

El momento angular y las Leyes de Kepler

El momento angular y las Leyes de Kepler El momento angular y las Leyes de Kepler 1. Define el momento angular de una partícula de masa m y velocidad v respecto a un punto O. Pon un ejemplo razonado y de ley o fenómeno físico que sea una explicación

Más detalles

v m 2 d 4 m d 4 FA FCP m k m m m m m r

v m 2 d 4 m d 4 FA FCP m k m m m m m r Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma

Una partícula de masa m = 10 g oscila armónicamente a lo largo del eje OX en la forma Opción A. Ejercicio Una partícula de masa m = 0 g oscila armónicamente a lo largo del eje OX en la forma x A sen t, con A = 0,2 m y 0 (rad s ). [a] Determine y represente gráficamente la fuerza que actúa

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA JUNIO 009 SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) Según la tercera ley de Kepler: b) k (,5 0 5 s) (,44 0 6 s)

Más detalles

Ley de Gravitación Universal

Ley de Gravitación Universal Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera 2015 2016 Momento de una fuerza, Leyes de Kepler,Ley de Gravitación Rev 01 Universal, Movimiento de satélites. Ley de Gravitación Universal

Más detalles

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO

FISICA 2º BACHILLERATO CAMPO GRAVITATORIO A) Cuando en el espacio vacío se introduce una partícula, ésta lo perturba, modifica, haciendo cambiar su geometría, de modo que otra partícula que se sitúa en él, estará sometida a una acción debida a

Más detalles

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI.

Índice. Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento. Ejemplos. Leyes de la Dinámica en SRNI. Índice Leyes de Newton Interacción Gravitatoria Reacción en Apoyos Leyes del Rozamiento Ejemplos Leyes de la Dinámica en SRNI Ejemplos Teorema de la Cantidad de Movimiento. Conservación. Teorema del Momento

Más detalles

6299, 2m s ; b) E= -3, J

6299, 2m s ; b) E= -3, J 1 Problemas de Campo gravitatorio. Caso part. Terrestre 2º de bachillerato. Física 1. Plutón describe una órbita elíptica alrededor del Sol Indique para cada una de las siguientes magnitudes si su valor

Más detalles

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie?

2.- Cuánto valen el potencial y la intensidad del campo gravitatorio creado por la Tierra en un punto de su superficie? PROBLEMAS 1.- Con una órbita de 8000 Km de radio gira alrededor de la Tierra un satélite de 500 Kg de masa. Determina: a) su momento angular b) su energía cinética c) su energía potencial d) su energía

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS LEYES DE KEPLER 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10¹¹ m. Si Júpiter tiene un período de

Más detalles

MOVIMIENTO OSCILATORIO O VIBRATORIO

MOVIMIENTO OSCILATORIO O VIBRATORIO MOVIMIENTO OSCILATORIO O VIBRATORIO 1. Movimiento armónico simple (MAS). 2. Ecuaciones del MAS. 3. Dinámica del MAS. 4. Energía del MAS. 5. El oscilador armónico. 6. El péndulo simple. Física 2º bachillerato

Más detalles

2 o Bachillerato. Conceptos básicos

2 o Bachillerato. Conceptos básicos Física 2 o Bachillerato Conceptos básicos Movimiento. Cambio de posición de un cuerpo respecto de un punto que se toma como referencia. Cinemática. Parte de la Física que estudia el movimiento de los cuerpos

Más detalles

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1

FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 FÍSICA - 2º BACHILLERATO INTERACCIÓN GRAVITATORIA - HOJA 1 1. Describe el modelo planetario de Ptolomeo. a) Ptolomeo utiliza epiciclos y deferentes. Qué son? Por qué hace uso de este artificio? b) El modelo

Más detalles

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s

g planeta = g tierra / 2 = 4 9 m/s 2 v planeta = 11 2 / 2 = 5 6 km/s PAU MADRID JUNIO 2003 Cuestión 1.- Suponiendo un planeta esférico que tiene un radio la mitad del radio terrestre e igual densidad que la tierra, calcule: a) La aceleración de la gravedad en la superficie

Más detalles

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho

BACHILLERATO FÍSICA B. REPASO DE MECÁNICA. Dpto. de Física y Química. R. Artacho BACHILLERATO FÍSICA B. REPASO DE MECÁNICA R. Artacho Dpto. de Física y Química B. REPASO DE MECÁNICA ÍNDICE 1. Las magnitudes cinemáticas 2. Movimientos en una dimensión. Movimientos rectilíneos 3. Movimientos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA Preguntas de opción múltiple (4 puntos c/u) TERCERA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 05 SOLUCIÓN ) Un auto y un camión parten del reposo y aceleran al mismo ritmo. Sin embargo, el auto acelera por

Más detalles

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física A.B.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS 1. La luz del Sol tarda 5 10² s en llegar a la Tierra y 2,6 10³ s en llegar a Júpiter. Calcula: a) El período de Júpiter orbitando alrededor del Sol.

Más detalles

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA...

1.1. LEY DE GRAVITACIÓN UNIVERSAL INTENSIDAD DEL CAMPO GRAVITACIONAL POTENCIAL ENERGÍA PONTENCIAL GRAVITATORIA... TEMA 1 1.1. LEY DE GRAVITACIÓN UNIVERSAL... 1 1.2. INTENSIDAD DEL CAMPO GRAVITACIONAL.... 4 1.3. POTENCIAL... 11 1.4. ENERGÍA PONTENCIAL GRAVITATORIA... 16 1.5. LEYES DE KEPLER... 18 1.6. VELOCIDAD DE

Más detalles

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME:

EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: EJERCICIOS DE MOVIMIENTO CIRCULAR UNIFORME: 1.-Un carro de juguete que se mueve con rapidez constante completa una vuelta alrededor de una pista circular (una distancia de 200 metros) en 25 seg. a) Cual

Más detalles

Mecánica Rotacional (MCU II)

Mecánica Rotacional (MCU II) C U R S O: FÍSICA Mención MATERIAL: FM-10 Mecánica Rotacional (MCU II) Fuerza centrípeta Si el movimiento que describe el cuerpo en la figura 1 es un MCU entonces tiene aceleración y concluimos, por la

Más detalles

transparent MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016

transparent   MECÁNICA CLÁSICA Prof. Jorge Rojo Carrascosa 9 de septiembre de 2016 transparent www.profesorjrc.es MECÁNICA CLÁSICA 9 de septiembre de 2016 MECÁNICA CLÁSICA MECÁNICA CLÁSICA 1 CINEMÁTICA 2 DINÁMICA 3 ENERGÍA Y TRABAJO 4 DINÁMICA DE ROTACIÓN MECÁNICA CLÁSICA www.profesorjrc.es

Más detalles

UD 11. Aplicaciones de la dinámica

UD 11. Aplicaciones de la dinámica UD 11. Aplicaciones de la dinámica 1- Leyes de Kepler. 2- Momento angular. 3- Dinámica del movimiento circular. 4- Definición de fuerza central, campo. 5- La interacción gravitatoria. 6- La interacción

Más detalles

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil.

DINAMICA DEL PUNTO. Es el momento con respecto a un punto O de la cantidad de movimiento de una partícula móvil. DINMIC DEL PUNTO Leyes de Newton Primera ley o ley de inercia: si sobre un sistema material no actúa fuerza alguna sigue en reposo o movimiento rectilíneo uniforme si inicialmente lo estaba. Segunda ley

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo

Más detalles

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m

1. Suponiendo que los planetas Venus y la Tierra describen órbitas circulares alrededor del Sol, calcula: =365 (1,08. 1, m Física º Bachillerato Ejercicios resueltos 1. ASRONOMÍA 1.1. Introducción 1.. Astronomía pre-newtoniana 1. Suponiendo que los planetas Venus y la ierra describen órbitas circulares alrededor del Sol, calcula:

Más detalles

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 2ª EVALUACIÓN

I.E.S. FRANCISCO GARCIA PAVÓN. CURSO DEPARTAMENTO DE FÍSICA Y QUÍMICA FÍSICA 2º BACHILLER CONTROL 2ª EVALUACIÓN NOMBRE: SOLUCIONADO CURSO: BCT FECHA: 18/01/01 TEMA 3. LEY DE GRAVITACIÓN UNIVERSAL DE NEWTON. TEMA 4. LEYES DE KEPLER: FUERZAS CENTRALES. TEMA 5. CAMPO GRAVITATORIO. NORMAS GENERALES - Escriba a bolígrafo.

Más detalles

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2

Peso = m.g, Fuerza recuperadora = k x. m g = k x x /g = m / k = 0'05 / 9'81 = 0'005 s 2 PAU MADRID JUNIO 2004 Cuestión 1.- a) Al colgar una masa en el extremo de un muelle en posición vertical, éste se desplaza 5 cm; de qué magnitudes del sistema depende la relación entre dicho desplazamiento

Más detalles

Física 2º Bachillerato Curso

Física 2º Bachillerato Curso 1 Cuestión (2 puntos) Madrid Junio 1996 Cuando una partícula se mueve en un campo de fuerzas conservativo sometida a la acción de la fuerza del campo, existe una relación entre las energías potencial y

Más detalles

Momento angular Ecuación fundamental de la dinámica de rotación. Salvador Olivares Campillo

Momento angular Ecuación fundamental de la dinámica de rotación. Salvador Olivares Campillo Momento angular Ecuación fundamental de la dinámica de rotación Salvador Olivares Campillo Índice General 1 Momento angular 1 2 Ecuación fundamental de la dinámica de rotación 2 2.1 Actividades................

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A SEPTIEMBRE 3 DE 2014 SOLUCIÓN Pregunta 1 (2 puntos) Un grifo

Más detalles

Capítulo 10. Rotación de un Cuerpo Rígido

Capítulo 10. Rotación de un Cuerpo Rígido Capítulo 10 Rotación de un Cuerpo Rígido Contenido Velocidad angular y aceleración angular Cinemática rotacional Relaciones angulares y lineales Energía rotacional Cálculo de los momentos de inercia Teorema

Más detalles

FA FCP m k d d T d T d

FA FCP m k d d T d T d Concepto de campo: Se define un campo como una zona del espacio en la que se deja sentir una magnitud; a cada punto del espacio se le puede dar un valor de esa magnitud en un instante determinado. Los

Más detalles

RESUMEN DE FÍSICA - 2º BACH.

RESUMEN DE FÍSICA - 2º BACH. pg. 1 de 9 RESUMEN DE FÍSICA - 2º BACH. PARTE IIA - GRAVITACIÓN/CAMPO ELÉCTRICO Emiliano G. Flores egonzalezflores@educa.madrid.org Resumen Este documento contiene un resumen de los conceptos y expresiones

Más detalles

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA

FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA FÍSICA de 2º de BACHILLERATO MECÁNICA E INTERACCIÓN GRAVITATORIA EJERCICIOS RESUELTOS QUE HAN SIDO PROPUESTOS EN LOS EXÁMENES DE LAS PRUEBAS DE ACCESO A ESTUDIOS UNIVERSITARIOS EN LA COMUNIDAD DE MADRID

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EVALUACIÓN DE FÍSICA A MARZO 4 DE 015 SOLUCIÓN Analice las siguientes siete preguntas,

Más detalles

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS]

Problema. Cuestiones. Laboratorio. Física 2º Bach. Campo gravitatorio 15/12/06 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: [4 PUNTOS] Física º Bach. Campo gravitatorio 15/1/06 DEPARTAMENTO DE FÍSICA E QUÍMICA Problema Nombre: [4 PUNTOS] Calcula: a) Cuántos días terrestres dura un año de Venus. b) La rapidez con la que chocaría Venus

Más detalles

Estática. M = r F. donde r = OA.

Estática. M = r F. donde r = OA. Estática. Momento de un vector respecto de un punto: Momento de una fuerza Sea un vector genérico a = AB en un espacio vectorial V. Sea un punto cualesquiera O. Se define el vector momento M del vector

Más detalles

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r

Energía potencial gravitatoria (largo alcance) Comparo con el caso general. Se acostumbra tomar nula a la energía potencial gravitatoria cuando r Energía potencial gravitatoria (largo alcance) Comparo con el caso general Se acostumbra tomar nula a la energía potencial gravitatoria cuando r 1 Propiedades de los campos de fuerzas conservativos independiente

Más detalles

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN

Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN Física P.A.U. GRAVITACIÓN 1 GRAVITACIÓN PROBLEMAS SATÉLITES 1. El período de rotación de la Tierra alrededor del Sol es un año y el radio de la órbita es 1,5 10 11 m. Si Júpiter tiene un período de aproximadamente

Más detalles

Física: Movimiento Circular y Gravitación

Física: Movimiento Circular y Gravitación Física: Movimiento Circular y Gravitación Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Movimiento circular uniforme Propiedades: Este objeto tiene una trayectoria circular. El objeto demora el

Más detalles

CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I)

CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I) UNIVERSIDAD JOSÉ ANTONIO PÁEZ FACULTAD DE INGENIERÍA ESCUELA DE INGENIERIA MECÁNICA MECÁNICA DINÁMICA SECCIÓN 204N1 CINEMÁTICA DE CUERPOS RÍGIDOS (Parte I) (Contenido correspondiente a parcial #3) CINEMÁTICA

Más detalles

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas.

Las áreas barridas por el radio vector que une el Sol con un planeta son directamente proporcionales a los tiempos empleados en barrerlas. 1. Leyes de Kepler En 1609, como resultado de una serie de observaciones y del análisis de los datos recibidos, Kepler enuncia sus tres famosas leyes empíricas que rigen el movimiento de los planetas.

Más detalles

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω

ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω ECUACION DINÁMICA DE ROTACIÓN PURA DE UN CUERPO RIGIDO ALREDEDOR DE UN EJE ω Suponiendo un cuerpo rígido que gira con velocidad angular ω alrededor del eje Z que permanece fijo al cuerpo. dl = ( dm R 2

Más detalles

MOVIMIENTO ARMÓNICO SIMPLE

MOVIMIENTO ARMÓNICO SIMPLE MOVIMIENTO ARMÓNICO SIMPLE Estudio del movimiento armónico simple. Desde el punto de vista dinámico, es el movimiento de una partícula que se mueve sobre una recta, sometida a la acción de una fuerza atractiva

Más detalles

LEYES DE KEPLER (Johannes Kepler )

LEYES DE KEPLER (Johannes Kepler ) LEYES DE KEPLER (Johannes Kepler 1571-1630) ü Matemático y astrónomo alemán ü Fue colaborador de Tycho Brahe, de quien obtuvo las mediciones que le permitieron plantear sus leyes del movimiento planetario

Más detalles

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006

MECÁNICA CLÁSICA CINEMATICA. FAyA Licenciatura en Química Física III año 2006 Física III año 26 CINEMATICA MECÁNICA CLÁSICA La cinemática estudia el movimiento de los cuerpos, sin tener en cuenta las causas que lo producen. Antes de continuar establezcamos la diferencia entre un

Más detalles

Ing. Jonathan Torres Barrera. 11 de Agosto de 2018

Ing. Jonathan Torres Barrera. 11 de Agosto de 2018 FÍSICA III. UNIDAD I: SISTEMA DE CUERPOS RÍGIDOS. Ejemplo 1: Calcular la rapidez del planeta Tierra alrededor del Sol si su período es de 365 días y la distancia media al Sol es de 150 millones de kilómetros.

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA SEGUNDA EVALUACIÓN DE FÍSICA A FEBRERO 18 DE 2015 SOLUCIÓN Analice las siguientes preguntas

Más detalles

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos)

punto) [c] Calcule la máxima velocidad de oscilación trasversal de los puntos de la cuerda. (0,5 puntos) Opción A. Ejercicio 1 Por una cuerda tensa se propaga, en el sentido positivo del eje x, una onda armónica transversal. Los puntos de la cuerda oscilan con una frecuencia f = 4 Hz. En la gráfica se representa

Más detalles

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones.

Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Dinamica de rotacion. Torque. Momentum Angular. Aplicaciones. Movimiento de rotación. Cuerpos rígidos un cuerpo con una forma definida, que no cambia en forma que las partículas que lo componen permanecen

Más detalles

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que:

Para establecer la relación entre coordenadas cartesianas y polares es suficiente proyectar r sobre los ejes x e y. De la gráfica se sigue que: COORDENADAS POLARES. Algunas veces conviene representar un punto P en el plano por medio de coordenadas polares planas (r, ), donde r se mide desde el origen y es el ángulo entre r y el eje x (ver figura).

Más detalles

NOMBRE Nota 08/05/2012

NOMBRE Nota 08/05/2012 Instrucciones: Duración 50 minutos. Puede utilizar calculadora no programable, ni gráfica ni con capacidad para transmitir datos Los ejercicios deberán estar: razonados, limpios y correctamente resueltos

Más detalles

FÍSICA I 13/06/03 2 a Ev. Teoría. DNI Centre Assignatura Parc. Per. Grup VALOR DE LA PRUEBA: 30% del examen.

FÍSICA I 13/06/03 2 a Ev. Teoría. DNI Centre Assignatura Parc. Per. Grup VALOR DE LA PRUEBA: 30% del examen. 2 a Ev. Teoría DNI Centre Assignatura Parc. Per. Grup 2 2 0 1 3 2 1 0 0 2 0 Cognoms: Nom: Indica si las siguientes propuestas son CIERTAS (opción A) o FALSAS (opción B) VALOR DE LA PRUEBA: 30% del examen.

Más detalles

Cinemática: parte de la Física que estudia el movimiento de los cuerpos.

Cinemática: parte de la Física que estudia el movimiento de los cuerpos. CINEMÁTICA Cinemática: parte de la Física que estudia el movimiento de los cuerpos. Movimiento: cambio de posición de un cuerpo respecto de un punto de referencia que se supone fijo. Objetivo del estudio

Más detalles

EXAMEN DE FÍSICA E21A_1516 OPCIÓN A

EXAMEN DE FÍSICA E21A_1516 OPCIÓN A ORIENTACIONES: Comente sus planteamientos de tal modo que demuestre que entiende lo que hace. Tenga en cuenta que la etensión de sus respuestas está limitada por el tiempo el papel de que dispone. Recuerde

Más detalles

PROBLEMAS COMPLEMENTARIOS

PROBLEMAS COMPLEMENTARIOS Problema nº1 Un electrón penetra por la izquierda con una velocidad de 5.000 m/s, paralelamente al plano del papel. Perpendicular a su dirección y hacia dentro del papel existe un campo magnético constante

Más detalles

Física y Química 1º Bachillerato LOMCE. IES de Castuera INTRODUCCIÓN A LA CINEMÁTICA Rev 01. Mecánica. Óptica.

Física y Química 1º Bachillerato LOMCE. IES de Castuera INTRODUCCIÓN A LA CINEMÁTICA Rev 01. Mecánica. Óptica. Física y Química 1º Bachillerato LOMCE FyQ 1 IES de Castuera INTRODUCCIÓN A LA CINEMÁTICA 2015 2016 Rev 01 Física Clásica Mecánica Óptica Termodinámica Cinemática Dinámica Trabajo y Energía Electromagnetismo

Más detalles

Dinámica del movimiento rotacional

Dinámica del movimiento rotacional Dinámica del movimiento rotacional Torca, momento angular, momento cinético o momento de torsión: La habilidad de una fuerza para rotar o girar un cuerpo alrededor de un eje. τ = r F r= es la posición

Más detalles

Tema 6: Cinética de la partícula

Tema 6: Cinética de la partícula Tema 6: Cinética de la partícula FISICA I, 1º Grado en Ingeniería Civil Departamento Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Trabajo mecánico

Más detalles

Perí odo orbital de la tierra = 365'25 dí as

Perí odo orbital de la tierra = 365'25 dí as PAU MADRID SEPTIEMBRE 2004 Cuestión 1.- La luz solar tarda 8'31 minutos e llegar a la Tierra y 6'01 minutos en llegar a Venus. Suponiendo que las órbitas de los planetas son circulares, determine el perí

Más detalles

P. A. U. FÍSICA Madrid Septiembre 2005

P. A. U. FÍSICA Madrid Septiembre 2005 P. A. U. FÍSICA Madrid Septiembre 2005 CUESTIÓN 1.- Se tienen dos muelles de constantes elásticas k 1 y k 2 en cuyos extremos se disponen dos masas m 1 y m 2 respectivamente, siendo m 1 < m 2. Al oscilar,

Más detalles

FÍSICA- Gymnasium-4ºB. Movimiento Curvilíneo (Notas Teóricas y Preguntas/Problemas para 13/08/2014)

FÍSICA- Gymnasium-4ºB. Movimiento Curvilíneo (Notas Teóricas y Preguntas/Problemas para 13/08/2014) Movimiento curvilineo: (apunte a completar en clase) Movimiento en el plano XY; se sitúa un sistema de coordenadas y se representa la trayectoria del móvil (conjunto de puntos del plano por los que pasa

Más detalles

EL CAMPO GRAVITATORIO

EL CAMPO GRAVITATORIO EL CAMPO GRAVITATORIO 1. A qué altura el valor de la gravedad se reduce a la mitad del valor que tiene en la superficie terrestre? S: h = 0,41 R T 2. Si la densidad de la Tierra fuese tres veces mayor,

Más detalles

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL

EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL EJERCICIOS DE SELECTIVIDAD CAMPO GRAVITACIONAL P1- JUNIO 2010 A) Deduzca la expresión de la energía cinética de un satélite en órbita circular alrededor de un planeta en función del radio de la órbita

Más detalles

Física: Torque y Momento de Torsión

Física: Torque y Momento de Torsión Física: Torque y Momento de Torsión Dictado por: Profesor Aldo Valcarce 2 do semestre 2014 Relación entre cantidades angulares y traslacionales. En un cuerpo que rota alrededor de un origen O, el punto

Más detalles

Tema 9: Introducción a la Dinámica

Tema 9: Introducción a la Dinámica Tema 9: Introducción a la Dinámica 1º Ingenieros Aeronáuticos Escuela Técnica Superior de Ingenieros Universidad de Sevilla 1 Situación en la asignatura Primer Parcial Introducción Mecánica Cinemática

Más detalles

Refuerzo Educativo Física 1º BTO

Refuerzo Educativo Física 1º BTO Refuerzo Educativo Física 1º BTO 1º Evaluación: Temas 1, 2 y 3 (hasta dinámica de la rotación) 2º Evaluación: Temas 3 (continuación) y 4 3º Evaluación: Tema 5 y 6 Tema 1: CÁLCULO VECTORIAL. - Coordenadas

Más detalles

F2 Bach. Fundamentos de Mecánica. Magnitudes vectoriales Derivación Integración Cinemática Dinámica. Dinámica del sólido rígido

F2 Bach. Fundamentos de Mecánica. Magnitudes vectoriales Derivación Integración Cinemática Dinámica. Dinámica del sólido rígido F Bach Fundamentos de Mecánica Magnitudes vectoriales Derivación Integración Cinemática Dinámica Energía mecánica Dinámica del sólido rígido 1. Magnitudes vectoriales Magnitudes escalares y vectoriales.

Más detalles

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos.

CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. CINEMÁTICA 1. Sistema de referencia. 2. Trayectoria. 3. Velocidad. 4. Aceleración. 5. Movimientos simples. 6. Composición de movimientos. Física 1º bachillerato Cinemática 1 CINEMÁTICA La cinemática es

Más detalles

DEPARTAMENT DE FÍSICA I QUÍMICA

DEPARTAMENT DE FÍSICA I QUÍMICA CAMPO GRAVITATORIO. PROBLEMAS PAU JUNIO 2007. COMUNIDAD VALENCIANA. PROBLEMAS Un objeto de masa M 1 = 100 kg está situado en el punto A de coordenadas (6, 0) m. Un segundo objeto de masa M2 = 300 kg está

Más detalles

Más ejercicios y soluciones en fisicaymat.wordpress.com

Más ejercicios y soluciones en fisicaymat.wordpress.com GRAVITACIÓN 1- a) Escriba y comente la Ley de Gravitación Universal. b) El satélite Jasón-2 realiza medidas de la superficie del mar con una precisión de pocos centímetros para estudios oceanográficos.

Más detalles

Tema 7. Fuerzas gravitatorias y elásticas

Tema 7. Fuerzas gravitatorias y elásticas 1 Tema 7 Fuerzas gravitatorias y elásticas Una fuerza una magnitud vectorial (módulo, dirección y sentido) capaz de modificar el estado de reposo o movimiento de un cuerpo o de producir deformaciones.

Más detalles

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1

FÍSICA. 2º BCN CONTROL BLOQUE I Examen 1 Examen 1 1. La ley de la gravitación universal de Newton. 2. Dibuja la órbita de un planeta alrededor del Sol y las fuerzas que intervienen en el movimiento de aquél, así como la velocidad del planeta

Más detalles

Magnitudes y Unidades. Cálculo Vectorial.

Magnitudes y Unidades. Cálculo Vectorial. Magnitudes y Unidades. Cálculo Vectorial. 1. Se tiene las expresiones siguientes, x es posición en el eje X, en m, v la velocidad en m/s y t el tiempo transcurrido, en s. Cuáles son las dimensiones y unidades

Más detalles

Tres leyes de Newton. Teorema de la cantidad de movimiento. Campos de fuerzas. Fuerzas conservativas y energía mecánica. Potencia

Tres leyes de Newton. Teorema de la cantidad de movimiento. Campos de fuerzas. Fuerzas conservativas y energía mecánica. Potencia Dinámica del punto Tres leyes de Newton Ley de gravitación universal Teorema de la cantidad de movimiento Campos de fuerzas Trabajo realizado por una fuerza. Energía cinética Fuerzas conservativas y energía

Más detalles

MOVIMIENTO CIRCULAR UNIFORME.

MOVIMIENTO CIRCULAR UNIFORME. Física y Química 4 ESO MOVIMIENTO CIRCULAR Pág. 1 TEMA 4: MOVIMIENTO CIRCULAR UNIFORME. Un móvil posee un movimiento circular uniforme cuando su trayectoria es una circunferencia y recorre espacios iguales

Más detalles

Departamento de Física y Química. Departamento de Física y Química

Departamento de Física y Química. Departamento de Física y Química 1. Un astronauta se aproxima a un planeta desconocido que posee un satélite. El astronauta lleva a cabo rápidamente las siguientes mediciones: i) radio del planeta; ii) radio de la órbita circular del

Más detalles

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita

Junio Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita Junio 2012. Pregunta 1A.- Un satélite de masa m gira alrededor de la Tierra describiendo una órbita 4 circular a una altura de 2 10 km sobre su superficie. a) Calcule la velocidad orbital del satélite

Más detalles

SOLUCIÓN DE LA PRUEBA DE ACCESO

SOLUCIÓN DE LA PRUEBA DE ACCESO Física Física COMUNIDAD FORAL DE NAVARRA CONVOCATORIA SEPTIEMRE 009 SOLUCIÓN DE LA PRUEA DE ACCESO AUTOR: Tomás Caballero Rodríguez Ejercicio a) La energía mecánica es constante en todos los puntos de

Más detalles

R 5,69 10 m. q v B 1, ,6 10 N

R 5,69 10 m. q v B 1, ,6 10 N Campo Magnético 01. Un electrón que se mueve a través de un tubo de rayos catódicos a 10 7 m/s, penetra perpendicularmente en un campo de 10-3 T que actúa sobre una zona de 4 cm a lo largo del tubo. Calcula:

Más detalles

Módulo 1: Mecánica Energía

Módulo 1: Mecánica Energía Módulo 1: Mecánica Energía Por qué ayuda la energía? El movimiento, en general, es difícil de calcular Y si usamos fuerzas, aceleración, etc. se complica porque son todo vectores (tienen módulo y dirección)

Más detalles

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones:

Dpto. de Física y Química 2º BCH FÍSICA. Cuestiones: Cuestiones: 1. a) Leyes de Kepler. b) Demuestra la tercera ley de Kepler a partir de la ley de gravitación universal de Newton para una órbita circular. 2. a) Enuncie la ley de gravitación universal y

Más detalles

Tema 8 Trabajo potencia y energía

Tema 8 Trabajo potencia y energía 1. Trabajo Tema 8 Trabajo potencia y energía En física, decimos que hay trabajo cuando una fuerza provoca un desplazamiento En la naturaleza se produce transferencia de energía entre unos sistemas y otros.

Más detalles

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c

Opción B ANDALUCÍA CONVOCATORIA JUNIO GM T m s (3R T ) 2 Despejando la velocidad orbital: m s v 0 (3R T ) F g F c Física 1 Física SOLUCIÓN DE LA PRUEBA DE ACCESO AUTOR: Tomás Caballero Rodríguez Opción A a) I 1 B B 1 F 1, F, 1 Vemos que la lente divergente desvía los rayos paralelos al eje óptico y que los rayos que

Más detalles

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO

Campo Gravitatorio. I.E.S. Pablo Gargallo Departamento de Física y Química Curso FÍSICA DE 2º DE BTO I.E.S. Pablo Gargallo Departamento de Física y Química Curso 2008-09 FÍSICA DE 2º DE BTO Campo Gravitatorio 1.- La Tierra tarda un año en realizar su órbita en torno al Sol. Esta órbita es aproximadamente

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Aeroespacial Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras

Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Departamento de Ciencias y Tecnología Miss Yorma Rivera M. Prof. Jonathan Castro F. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Integras Guía de repaso Prueba Semestral de Física

Más detalles

Olimpiadas de Física Córdoba 2010

Olimpiadas de Física Córdoba 2010 E n el interior encontrarás las pruebas que componen esta fase local de las olimpiadas de Física 2010. Están separadas en tres bloques. Uno relativo a dinámica y campo gravitatorio (obligatorio) y otros

Más detalles