Problema Interferencia de N ranuras.
|
|
|
- María Cristina Ojeda Fernández
- hace 9 años
- Vistas:
Transcripción
1 Problema Interferencia de N ranuras. Considere un obstáculo con tres ranuras separadas por una distancia d e iluminado con una onda plana de longitud de onda λ. Emplee el método de los fasores para representar cualitativamente la intensidad sobre una pantalla a una distancia D (muy alejada) de las fuentes. Represente la intensidad sobre la pantalla en función de su posición respecto al eje de las ranuras. Calcule la separación entre las franjas más brillantes si d = 0.2 mm, λ = 600 nm, D = 3 m. difracción
2 d Δr=dsenθ Intensidad Resultante= A=sum A i (intensidades de cada fuente). Supongo: Todas las fuentes iguales ángulo δ entre dos vectores consecutivos (desfasaje). δ =kd senθ= (2π/λ) d.senθ. R= radio del polígono regular. R δ δ δ 2 R 3 δ/2 R A A δ δ δ δ/2 δ δ δ δ A 0 A 0 A 0 A = A = 0 2R 3δ sen 2R sen 2 A = 3δ sen A 2 0 δ sen 2
3 La intensidad que es proporcional al cuadrado de la amplitud I = I 0 3δ sen 2 δ sen 2 2 Interferencia constructiva d senθ/λ=m, donde m es un número entero. I max =3 2 I 0. Intensidad nula cuando el numerador es cero, pero no lo es el denominador. α senα α senα (2πd/λ).senθ/2 1π/3 (πd/λ).senθ 2π/3 3(2πd/λ).senθ/2 π 3(πd/λ).senθ 2π Mínimos si d senθ/λ=m'/3. donde m' varia 1-3-1, de , etc. m'=3, se excluyen ya que hacen que el numerador y denominador cero simultáneamente, condición de máximo. Hay 3-2 máximos adicionales entre los máximos principales.
4 Volvamos al problema Interferencia de N=3 ranuras. separadas por una distancia d iluminado con una onda plana de longitud de onda λ. Intensidad sobre una pantalla a una distancia D (muy alejada) de las fuentes. Represente la intensidad sobre la pantalla en función de su posición respecto al eje de las ranuras. Calcule la separación entre las franjas más brillantes si d =0.2 mm, λ = 600 nm, D = 3 m. senθ 1 =x 1 /D= λ/d. I = I 0 2 3δ sen 2 δ sen 2 senθ 2 =x 2 /D= 2λ/d. Hay 3-2 máximos adicionales entre los máximos principales x 2 -x 1 = λd/d=19.8 mm.
5 Volvamos al problema Interferencia de N=3 ranuras. separadas por una distancia d iluminado con una onda plana de longitud de onda λ. Intensidad sobre una pantalla a una distancia D (muy alejada) de las fuentes. Represente la intensidad sobre la pantalla en función de su posición respecto al eje de las ranuras. Calcule la separación entre las franjas más brillantes si d =0.2 mm, λ = 600 nm, D = 3 m. senθ 1 =x 1 /D= λ/d. I = I 0 2 3δ sen 2 δ sen 2 senθ 2 =x 2 /D= 2λ/d. Hay 3-2 máximos adicionales entre los máximos principales x 2 -x 1 = λd/d=19.8 mm.
6 Conjunto de N rendijas, de ancho a separadas d. Efecto combinado de difracción más interferencia Hay N-2 máximos secundarios entre dos máximos principales 4 ranuras, ancho 2u separación 8u λ=0.45 u Anula máximo de interferencia orden 4 si N es grande hablamos de Red de Difracción, desaparecen los máximos secundarios
7 Rendijas múltiples-redes Conjunto de N rendijas, de ancho a separadas d. Interferencia + difracción I = I 0 sen( π Ndsenθ / λ) senπ d senθ / λ 2 sen( π a senθ / λ) π a senθ / λ 2 máx sennα = ± N, α = senα mπ senθ = mλ d α=d(senθ)π/λ Según el valor de m, m =1 orden 1; m =2 orden 2, etc.
8 Red de Difracción máx sennα = ± N, α = senα mπ senθ = mλ d Si incide luz blanca, máximos diferentes para distintos valores de λ. La red de difracción es la base de los monocromadores El diagrama consistirá en una serie de franjas brillantes, correspondientes a los máximos principales de la interferencia de N fuentes dada por a senθ/λ=m con m=0, ±1, ±2, d θ λ rojo >λ violeta λ 1 >λ 2, θ 1 >θ 2 θ rojo >θ violeta λs
9 USO: mediciones precisas de longitud de onda, como en Espectrógrafos y Espectrómetros. Resolución: Red de difracción 2 long de onda (λ 1 y λ 2 ) está resueltas si λ media / (λ 1 - λ 2 ) < mn m = orden N = Nº de ranuras iluminadas λmedia = (λ1 + λ2)/2
10 Espectros de emisión o de absorción λ 1 >λ 2, θ 1 >θ 2 Uso de la espectroscopía: Kirchoff y Bunsen identificación de elementos en el Sol Balmer 1885-serie del hidrógeno en el visible (ni=2). (transiciones electrónicas entre niveles atómicos)
11 Ejemplo: utilización de una Red de Difracción Dada una red de difracción de 600 líneas por mm, calcular la anchura angular del espectro visible en el primer orden. máx sennα = ± N, α = senα mπ senθ = mλ d m = 1 implica senθ = λ/d d=(1/600)mm rojo: λ = 700 nm θ r = 24,8 violeta: λ = 400 nm θ v = 13,9 θ = θ r - θ v = 10,9
12 Resolución La capacidad de los sistemas ópticos para distinguir entre objetos muy próximos es limitada debido a la naturaleza ondulatoria de la luz. Criterio de Rayleigh: dos imágenes se vuelven resolubles cuando el centro del patrón de difracción de una de ellas se encuentra en el mínimo de difracción de la otra imágenes están resueltas si θ min = λ/a (rendijas) imágenes están resueltas si θ min =1.22 λ/d (diafragmas)
13 Ejemplo-resolución Calcule el ángulo de resolución limitante para el ojo humano suponiendo que su resolución está limitada sólo por difracción. λ= 550 nm. Supongo un diámetro de la pupila de 2 mm. θ min =1.22 λ/d=1.22x550nm/2mm=3.3x10-4 rad d min? senθ min ~θ min =d min /L d min = θ min L Si L=25cm=Xpp d min =8.3x10-3 cm (aprox el espesor de un cabello)
14 Interacción de la radiación con la materia, absorción dispersión Cuando incide radiación electromagnética sobre un material la radiación puede: ser absorbida o parte de la radiación puede ser dispersada o re-emitida, con o sin cambio en la longitud de onda. Técnicas basadas en la absorción Donde se origina la absorción? Los electrones atómicos pueden promover de nivel al absorber energía. Electrónica Espectro UV-Visible Las moléculas (iones) absorben energía que modifica la vibración o rotación. Rotacional e Vibracional IR Fotometría Color: como ayuda para reconocer las sustancias químicas; Así se puede estudiar la absorción de sustancias Se denomina espectrofotometría a la medición de la cantidad de energía radiante que absorbe un sistema químico en función de la longitud de onda de la radiación.
15 Espectrofotometro Lampara computadora Detector Celda Selector
16 Espectrofotometro Lampara computadora Detector Celda Selector
2- Describa y deduzca las expresiones matemáticas correspondientes al experimento de la doble rendija de Young.
ASIGNATURA FISICA II AÑO 2012 GUIA NRO. 14 INTERFERENCIA, DIFRACCION Y POLARIZACION Bibliografía Obligatoria (mínima) Capítulos 37 y 38 Física de Serway Tomo II PREGUNTAS SOBRE LA TEORIA Las preguntas
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón
MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0
Problemas. La interferencia constructiva se dará cuando se cumpla la ecuación
Problemas 1. Dos rendijas estrechas distantes entre si 1,5 mm se iluminan con la luz amarilla de una lámpara de sodio de 589 nm de longitud de onda. Las franjas de interferencia se observan sobre una pantalla
ESPECTROFOTOMETRÍA UV-VISIBLE. Mª Luisa Fernández de Córdova Universidad de Jaén
ESPECTROFOTOMETRÍA UV-VISIBLE 1. Propiedades de la luz 2. Absorción de luz 2.1. Fenómeno de la absorción 2.2. Espectros de absorción molecular 2.3. Tipos de transiciones electrónicas 3. Ley de Lambert-Beer
Practica nº n 5: Fenómenos de Difracción.
Facultad de Farmacia Universidad de Granada Departamento de Química Física Practica nº n 5: Fenómenos de Difracción. OBJETIVOS 1.Observar los fenómenos de difracción Rendija simple Rendija doble 2.Calcular
PRACTICO N 1: ESPECTROFOTOMETRIA
UNIVERSIDAD MAYOR FACULTAD DE MEDICINA ESCUELA DE TECNOLOGIA MEDICA BIOQUIMICA PRACTICO N 1: ESPECTROFOTOMETRIA 1.- INTRODUCCIÓN Utilizando términos quizás excesivamente simplistas puede definirse la espectrofotometría
Velocidad de la Luz. c = (2,9979 ± 0,0001) x 10 8 m/s
Velocidad de la Luz Métodos fallidos, como el de Galileo Galilei en 1667. Método astronómico de Olaf Roemer en 1675, concluye que c > 2 x 10 8 m/s (periodo de eclipse de satélites de Jupiter). Método de
Interferencia Luminosa: Experiencia de Young
Interferencia Luminosa: Experiencia de Young Objetivo emostrar el comportamiento ondulatorio de la luz a través de un diagrama de interferencia. Equipamiento - Lámpara de Filamento rectilíneo - Soporte
CAPITULO I: La Luz CAPITULO I: LA LUZ 1
CAPITULO I: La Luz CAPITULO I: LA LUZ 1 1.- La luz 1.1.- El nanómetro 1.2.- El espectro visible 1.3.- Naturaleza de la luz 1.4.- Fuentes de luz 2.- La Materia y la luz 2.1.- Fórmula R.A.T. 22-2.2. Absorción
TEMA 4: OPTICA. Cómo puede un buceador estimar la profundidad a la que se encuentra?
Cómo puede un buceador estimar la profundidad a la que se encuentra? http://www.buceando.es/ Física A qué distancia podemos distinguir los ojos de un gato montés? Soy daltónico? La luz: naturaleza dual
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA.
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. I. OBJETIVO GENERAL Conocer y aplicar los fundamentos de la ESPECTROFOTOMETRÍA para la determinación de concentraciones en
BLOQUE 4.1 ÓPTICA FÍSICA
BLOQUE 4.1 ÓPTICA FÍSICA 1. NATURALEZA DE LA LUZ Hasta ahora hemos considerado a la luz como algo que transporta energía de un lugar a otro. Por otra parte, sabemos que existen dos formas básicas de transportar
OPTICA ONDULATORIA: Interferencia, Difracción, Redes. Física Moderna FS 2411
UNIVERSIDAD SIMON BOLIVAR División de Física y Matemáticas Departamento de Física OPTICA ONDULATORIA: Interferencia, Difracción, Redes Física Moderna FS 2411 Problemario propuesto por: Estrella Abecassis
Interferencia y Difracción
Universidad Nacional de Tucumán Facultad de Ciencias Exactas y Tecnología Año 2011 Proyecto de Física III Interferencia y Difracción Integrantes Lomenzo, María Florencia Ing. Biomédica ([email protected])
Problemario de Ondas Electromagnéticas, Luz y Óptica
Universidad Central de Venezuela Facultad de Ciencias Escuela de Física Problemario de Ondas Electromagnéticas, Luz y Óptica Física General III Prof. Anamaría Font Marzo 2009 Índice 1. Ondas Electromagnéticas
LOS OBJETOS. Textos y fotos Fernando Moltini
LOS OBJETOS Textos y fotos Fernando Moltini Como son percibidos los colores de los objetos. Un cuerpo opaco, es decir no transparente absorbe gran parte de la luz que lo ilumina y refleja una parte más
Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro.
Calibración de un espectrómetro y medición de longitudes de onda de las líneas de un espectro. Objetivo Obtener la curva de calibración de un espectrómetro de red de difracción. Determinar la longitud
N Las diferentes ondas procedentes de dichas fuentes se pueden escribir como N/2 N/2
ifracción 1.- Introducción Todo el mundo esta familiarizado con la idea de que podemos oír al otro lado de una esquina pero quizás es más difícil de entender que la luz también puede doblar las esquinas
INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO. Cap. 13
INTRODUCCION A LA ESPECTROSCOPIA DE ABSORCION MOLECULAR UV/VIS Y DE INFRARROJO CERCANO Cap. 13 Medición de la absorbancia y la transmitancia Recipiente produce pérdidas por: reflexión (aire/pared, pared/solución)
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS II TÉRMINO 2011-2012 PRIMERA EVALUACIÓN DE FÍSICA GENERAL II SOLUCIÓN PRIMERA PARTE: Ejercicios de opción múltiple (2 puntos c/u)
Capítulo 4. Rejillas de difracción.
Capítulo 4 Rejillas de difracción. 4.1 Introducción. En este capítulo se estudiarán las rejillas de difracción así como se mencionará el papel que juega dentro de la óptica, también se muestra una imagen
7. Difracción n de la luz
7. Difracción n de la luz 7.1. La difracción 1 7. Difracción de la luz. 2 Experiencia de Grimaldi (1665) Al iluminar una pantalla opaca con una abertura pequeña, se esperaba que en la pantalla de observación
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED
Los fundamentos de la espectroscopia: teoría CONSTRUYENDO UNA CIENCIA MEJOR ENTRE AGILENT Y USTED 1 Agilent es una empresa comprometida con la comunidad educativa y no duda en ofrecer acceso a materiales
Problemario FS107 Óptica Básica Cal16B. Parámetros ópticos
Problemario FS107 Óptica Básica Cal16B Parámetros ópticos 33.3 Un haz de luz tiene una longitud de onda de 650 nm en el vacío. Cuál es la rapidez de esta luz en un líquido cuyo índice de refracción a esta
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES
LIGHT SCATTERING MEASUREMENTS FROM SMALL DIELECTRIC PARTICLES M.Sc. Abner Velazco Dr. Abel Gutarra [email protected] Laboratorio de Materiales Nanoestructurados Facultad de ciencias Universidad Nacional
B.0. Introducción y unidades de medida
B.0. Introducción y unidades de medida B.0.1. La era de la información. Corresponde al auge de la optoelectrónica. Optoelectrónica: técnica de procesar la información mediante la luz. Necesidad de medios
Espectroscopia de absorción visible-ultravioleta
Práctica 6 Espectroscopia de absorción visible-ultravioleta Objetivo Parte A.- Comprobación de la Ley de Beer-Lambert y determinación del coeficiente de absorción molar para disoluciones acuosas de NiSO
Radiación. Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler. L. Infante 1
Radiación Cuerpo Negro Espectros Estructura del Atomo Espectroscopia Efecto Doppler L. Infante 1 Cuerpo Negro: Experimento A medida que el objeto se calienta, se hace más brillante ya que emite más radiación
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA. Grupo: Equipo: Fecha: Nombre(s):
CONOCIMIENTO DE TÉCNICAS ANALÍTICAS PARTE I: FUNDAMENTOS DE ESPECTROFOTOMETRÍA Laboratorio de equilibrio y cinética Grupo: Equipo: Fecha: Nombre(s): I. OBJETIVO GENERAL Conocer y aplicar los fundamentos
Unidad 1 Estructura atómica de la materia. Teoría cuántica
Unidad 1 Estructura atómica de la materia. Teoría cuántica 1.El átomo y la constitución de la materia DALTON NO ACEPTADO POR LOS FÍSICOS que creían en la idea de que los átomos se encontraban como disueltos
Espectroscopia ultravioleta-visible (temas complementarios)
1 Espectroscopia ultravioleta-visible (temas complementarios) Ley de Lambert y Beer Cuando se hace incidir radiación electromagnética en un medio, la energía dependerá de la longitud de onda de la radiación
La luz su naturaleza y su velocidad. Naturaleza de la luz II
Tema IV Lección 1ª La luz su naturaleza y su velocidad La luz vista por Newton y por Einstein. La luz como onda. Polarización, reflexión y refracción Propagación de la luz. Espejismos y arco iris Lección
Ejercicio 1. Ejercicio 2. Ejercicio 3.
Ejercicio 1. Suponiendo que la antena de una espacio de radio de 10 [kw] radia ondas electromagnéticas esféricas. Calcular el campo eléctrico máximo a 5 [km] de la antena. Ejercicio 2. La gente realiza
22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN
22. DETERMINACIÓN DE ÍNDICES DE REFRACCIÓN OBJETIVOS Determinación del índice de refracción de un cuerpo semicircular, así como del ángulo límite. Observación de la dispersión cromática. Determinación
VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.
VIBRACIÓN Y ONDAS DEFINICIÓN DE ONDA Una partícula realiza un movimiento vibratorio cuando realiza una oscilación alrededor del punto de equilibrio. Un ejemplo de movimiento vibratorio lo constituye la
Parte 4: La Luz. Telescopio óptico espacial Hubble. Telescopio de Galileo. J.M. Maxwell
Parte 4: La Luz 1 Parte 4: La Luz J.M. Maxwell 1831-1879 Telescopio de Galileo Es imposible pensar en vida sin luz. Los vegetales, base de la cadena alimenticia, a través de la fotosíntesis extraen de
Tutoría 2: Experimentos de difracción
Tutoría 2: Experimentos de difracción T2.1 Introducción En esta tutoría trataremos la cuestión fundamental de cómo conocemos donde se sitúan los átomos en un sólido. La demostración realizada se basa en
Examen Final Fisi 3162/3172 Nombre: lunes, 18 de mayo de 2009
Universidad de Puerto Rico Recinto Universitario de Mayagüez Departamento de ísica Examen inal isi 3162/3172 Nombre: lunes, 18 de mayo de 2009 Sección: Prof. Lea cuidadosamente las instrucciones. Seleccione
MÉTODOS ESPECTROMÉTRICOS DE ANÁLISIS
MÉTODOS ESPECTROMÉTRICOS DE ANÁLISIS Introducción: Además de las volumetrías y gravimetrías estudiadas, el químico analítico posee otros métodos de análisis que se basan, en general, en las propiedades
Se tiene para tener una idea el siguiente cuadro de colores perceptibles por el ojo humano dependiendo de la longitud de onda.
La luz es una forma de energía la cual llega a nuestros ojos y nos permite ver, es un pequeño conjunto de radiaciones electromagnéticas de longitudes de onda comprendidas entre los 380 nm y los 770 nm.(nm
TEMA 9. DETERMINACIÓN DE ESTRUCTURAS MEDIANTE MÉTODOS FÍSICOS
TEMA 9. DETERMINACIÓN DE ESTRUCTURAS MEDIANTE MÉTODOS FÍSICOS 1. Interacción de la energía radiante y la materia orgánica. 2. Fundamentos de la espectroscopia infrarroja: regiones del IR y modos fundamentales
Tema 7: Técnicas de Espectroscopía atómica. Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas.
Tema 7: Técnicas de Espectroscopía atómica Principios de espectrometría de Absorción y Emisión. Espectrometría de masas atómicas. Espectroscopía Las técnicas espectrométricas son un amplio grupo de técnicas
II.3 Difracción. Introducción:
II.3 Difracción Introducción: Todos estamos habituados a la idea de que el sonido dobla las esquinas. Si así no fuese no podríamos oír una sirena policial que suena a la vuelta de la esquina o lo que nos
Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1
Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una
ESPECTRÓMETROS. Máster. Astrofísica. sica INSTRUMENTACIÓN N ASTRONÓMICA
INSTRUMENTACIÓN N ASTRONÓMICA Máster Astrofísica sica ESPECTRÓMETROS 1 ESPECTRÓMETROS Espectroscopía. Resolución espectral. Espectrógrafos de prismas Espectrógrafos sin rendija. Prisma objetivo. Componentes
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III
ABSORCIÓN DE RADIACIÓN QUÍMICA ANALÍTICA III Tipos Colorímetro Fotómetro Espectrofotómetro Componentes Fuentes de radiación Selectores de longitud de onda Recipientes para muestras Detectores de radiación
ESPECTROMETRÍA VISIBLE Y ULTRAVIOLETA
FACULTAD DE CIENCIAS QUÍMICAS Espectrometría Objeto de Estudio Nº 4 LECTURA N 6 ESPECTROMETRÍA VISIBLE Y ULTRAVIOLETA Bibliografía: SKOOG, D.A.; Leary J.J., Holler F. James; PRINCIPIOS DE ANÁLISIS INSTRUMENTAL,
Práctica de espectrofotometría UV-Visible (Cumplimiento de la Ley de Lambert-Beer y análisis de mezclas)
Práctica de espectrofotometría UV-Visible (Cumplimiento de la Ley de Lambert-Beer y análisis de mezclas) FUNDAMENTO DE LA TÉCNICA Como es sabido, las técnicas espectroscópicas se basan en la interacción
5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON
5.1. INTERFERENCIA MEDIDA DE LA LONGITUD DE ONDA Y ANÁLISIS DE LA POLARIZACIÓN MEDIANTE UN INTERFERÓMETRO DE MICHELSON 5.1.1 OBJETIVOS: Comprender los aspectos fundamentales de un interferómetro de Michelson.
13. Por qué no se observa dispersión cuando la luz blanca atraviesa una lámina de vidrio de caras planas y paralelas? 14. Sobre una lámina de vidrio,
PROBLEMAS ÓPTICA 1. Una de las frecuencias utilizadas en telefonía móvil (sistema GSM) es de 900 MHz. Cuántos fotones GSM necesitamos para obtener la misma energía que con un solo fotón de luz violeta,
Práctica 4. Interferómetro de Michelson
. Interferómetro de Michelson 1. OBJETIVOS Estudiar una de las propiedades ondulatorias de la luz, la interferencia. Aplicar los conocimientos para la medida (interferometría) de longitudes de onda o distancias.
4. Identificar un isótopo radiactivo del carbono e indicar su uso. 5. Cuál es la configuración electrónica del vanadio?
ESTRUCTURA ATÓMICA 1. Qué afirmación sobre el número de electrones, protones y neutrones del átomo es correcta? A El número de neutrones menos el número de electrones es cero. B. El número de protones
FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE
MERCOSUL/XLIII SGT Nº 11/P.RES. Nº FARMACOPEA MERCOSUR: MÉTODO GENERAL PARA ESPECTROFOTOMETRIA ULTRAVIOLETA Y VISIBLE VISTO: El Tratado de Asunción, el Protocolo de Ouro Preto y las Resoluciones N 31/11
Química Biológica I TP 1: ESPECTROFOTOMETRIA
Química Biológica I TP 1: ESPECTROFOTOMETRIA OBJETIVOS: - Reforzar el aprendizaje del uso del espectrofotómetro. - Realizar espectro de absorción de sustancias puras: soluciones de dicromato de potasio.
DEPARTAMENTO DE FÍSICA COLEGIO "LA ASUNCIÓN"
COLEGIO "LA ASUNCIÓN" 1(8) Ejercicio nº 1 La ecuación de una onda armónica es: Y = 0 02 sen (4πt πx) Estando x e y expresadas en metros y t en segundos: a) Halla la amplitud, la frecuencia, la longitud
Práctica 1 DETERMINACIÓN ESPECTROFOTOMÉTRICA DE UNA MEZCLA DE SUSTANCIAS
Universidad de Granada Facultad de Farmacia. Departamento de Química Física. Práctica 1 DETERMINACIÓN ESPECTROFOTOMÉTRICA DE UNA MEZCLA DE SUSTANCIAS Objetivo de la práctica: Determinar las concentraciones
Espectrofotometría UV- VIS
Universidad Central de Venezuela Facultad de Agronomía Departamento de Química y Tecnología Cátedra de Análisis de Productos Agrícolas I 1 09/03/2015 9:20 Prof. Fanny Molina 5 1 Rad Electromagnética o
Capítulo 23. Microscopios
Capítulo 23 Microscopios 1 Aumento angular El aumento angular m (a) de una lente convergente viene dado por: m (a) = tan θ rmim tan θ ob = q 0.25 (d + q )p en donde d es la separación entre la lente y
SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA.
SESIÓN Nº 8: REDES DE DIFRACCIÓN. ANALIZADOR DE PENUMBRA. TRABAJO PREVIO 1. Conceptos fundamentales 2. Cuestiones 1. Conceptos fundamentales. A) Difracción. La difracción es un fenómeno óptico que se produce
Técnicas Observacionales
Técnicas Observacionales 1 Técnicas Observacionales 1. Técnicas generales y particulares 2. Instrumentos 2 1. Técnicas generales y particulares 1.1. Técnicas generales Análisis de la Posición Análisis
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO RESUMEN. GENERACIÓN DE LINEAS: Leyes de Kirchhoff
LAS LEYES DE LA RADIACIÓN EN LA TIERRA Y EN EL ESPACIO OBJETIVO Aproximarnos a los procesos que absorben y generan radiación electromagnética en la Tierra y en el espacio. Basada en presentación de Tabaré
[a] Se cumple que la fuerza ejercida sobre el bloque es proporcional, y de sentido contrario, a la
Opción A. Ejercicio 1 Un bloque de 50 g, está unido a un muelle de constante elástica 35 N/m y oscila en una superficie horizontal sin rozamiento con una amplitud de 4 cm. Cuando el bloque se encuentra
PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN
PRÁCTICA DE LABORATORIO DE QUÍMICA ANÁLISIS POR ESPECTROFOTOMETRÍA DE ABSORCIÓN 1. OBJETIVOS. Conocer y aplicar la ley de Lambert - Beer Determinar la concentración de una solución por espectrofotometría.
Principios básicos de Absorciometría
Principios básicos de Absorciometría Prof. Dr. Luis Salazar Depto. de Ciencias Básicas UFRO 2004 NATURALEZA DE LA LUZ MECÁNICA CUÁNTICA Isaac Newton (1643-1727) Niels Bohr (1885-1962) Validación del modelo
Espectro Electromagnético
1 Espectro Electromagnético La luz es radiación electromagnética y está compuesta por una parte eléctrica y otra magnética. Las particulas subatómicas, electrones y fotones, tienen propiedades de partículas
5.1. Magnitudes radiométricas
5. Radiometría y fotometría 5.1. Magnitudes radiométricas y fotométricas tricas 1 5. Radiometría y fotometría. 2 Magnitudes radiométricas y fotométricas tricas Radiometría rama de la Física dedicada a
UNIVERSIDAD CATOLICA ANDRES BELLO FACULTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA LABORATORIO DE FÍSICA II TELECOMUNICACIONES OPTICA FISICA
UNIVERSIDAD CATOICA ANDRES BEO FACUTAD DE INGENIERIA DEPARTAMENTO DE FÍSICA ABORATORIO DE FÍSICA II TEECOMUNICACIONES OPTICA FISICA Una onda es una perturbación física de algún tipo que se propaga en el
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León.
Universidad de San Carlos de Guatemala. Facultad de Ingeniería. Escuela de Ciencias. Departamento de Química. Catedrática: Tania de León. Química General. Código: 0348. Primer semestre. Hoja de trabajo.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas.
Ejercicios de Ondas Mecánicas y Ondas Electromagnéticas. 1.- Determine la velocidad con que se propagación de una onda a través de una cuerda sometida ala tensión F, como muestra la figura. Para ello considere
Luz y sistema visual humano
Luz y sistema visual humano Fundamentos de procesamiento de imágenes IIC / IEE 3713 1er semestre 2011 Cristián Tejos Basado en material desarrollado por Marcelo Guarini, Domingo Mery, libro Digital Image
Tema 2: Propiedades y medición de la radiación electromagnética
Tema 2: Propiedades y medición de la radiación electromagnética Espectro de la radiación electromagnética Conceptos básicos para la medición: Densidad de flujo Luminosidad Intensidad Brillo superficial
MATERIAL 08 TEMA: COMPONENTES DE LOS INSTRUMENTOS Y CLASIFICACIÓN DE LOS MÉTODOS ÓPTICOS
MATERIAL 08 TEMA: COMPONENTES DE LOS INSTRUMENTOS Y CLASIFICACIÓN DE LOS MÉTODOS ÓPTICOS La espectroscopia puede ser de emisión, absorción, fluorescencia, o dispersión; según se emita, absorba, fluoresca,
15/03/2010. Espectrofotometría INTRODUCCIÓN
Espectrofotometría Daniel Olave Tecnología Médica 2007 INTRODUCCIÓN Espectrofotometría Es la medida de la cantidad de energía radiante absorbida por las moléculas a longitudes de onda específicas. La espectrofotometría
Tema 6: Ondas. periodicidad temporal: F( x, t ) = F( x, t + T ) tiempo. Onda: Perturbación espacial y/o temporal de una propiedad de un sistema
Tema 6: Ondas Onda: Perturbación espacial y/o temporal de una propiedad de un sistema Propiedad del sistema velocidad de propagación Tiempo 1 Tiempo 2 Tiempo 3 Posición espacial Onda periódica: El valor
Departamento de Física y Química
1 PAU Física, septiembre 2011 OPCIÓN A Cuestión 1.- Un espejo esférico convexo, proporciona una imagen virtual de un objeto que se encuentra a 3 m del espejo con un tamaño 1/5 del de la imagen real. Realice
Este anexo explica la radiación UV e índices en Colombia tomando
APÉNDICE E 5. LA RADIACIÓN ULTRAVIOLETA (UV) Y SUS ÍNDICES EN COLOMBIA Este anexo explica la radiación UV e índices en Colombia tomando la Red Nacional de Radiación; se destaca entre otros la determinación
F2 Bach. Movimiento ondulatorio
1. Introducción. Noción de onda. Tipos de ondas 2. Magnitudes características de una onda 3. Ecuación de las ondas armónicas unidimensionales 4. Propiedad importante de la ecuación de ondas armónica 5.
Robert A. MILLIKAN ( )
Robert A. MILLIKAN (1906 1914) Modelo atómico de Rutherford - Todo átomo está formado por un núcleo y corteza. - El núcleo, muy pesado, y de muy pequeño tamaño, formado por un número de protones igual
EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.
EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación
RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS
RESUMEN DE PROPIEDADES DE LAS ONDAS ELECTROMAGNETICAS 1. Pueden ser generadas por la aceleración de cargas eléctricas oscilantes con alta frecuencia. 2. Las ondas se desplazan a través del vacio con: B
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso
PROBLEMAS Y CUESTIONES SELECTIVO. M.A.S. y ONDAS. I.E.S. EL CLOT Curso 2014-15 1) (P Jun94) La ecuación del movimiento de un impulso propagándose a lo largo de una cuerda viene dada por, y = 10 cos(2x-
ESPECTROSCOPIA DE ABSORCIÓN UV - VISIBLE Q.F. ALEX SILVA ARAUJO
ESPECTROSCOPIA DE ABSORCIÓN UV - VISIBLE Q.F. ALEX SILVA ARAUJO TÉRMINOS EMPLEADOS EN ESPECTROSCOPIA DE ABSORCIÓN Transmitancia (T): Es la fracción de radiación incidente transmitida por la solución. A
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA
PRUEBAS DE ACCESO A LA UNIVERSIDAD MATERIAS DE MODALIDAD: FASES GENERAL Y ESPECÍFICA CURSO 013 014 CONVOCATORIA: PROBLEMAS OPCIÓN A MATERIA: FÍSICA De las dos opciones propuestas, sólo hay que desarrollar
Para lograr una radiación de las características necesarias la fuente más común son las lámparas de cátodo hueco.
Fundamento teórico El fundamento más elemental de los métodos espectrométricos es la Teoría Cuántica, propuesta en 1900 por Max Planck, que postula que los átomos, iones y moléculas sólo pueden existir
3B SCIENTIFIC PHYSICS
3B SCIENTIFIC PHYSICS Equipo de óptica ondulatoria con Láser U17303 Instrucciones de uso 10/08 Alf 1. Advertencias de seguridad El Láser emite una radiación visible de una longitud de onda de 635 nm con
Introducción a la teoría del COLOR
Introducción a la teoría del COLOR Qué es la LUZ? La luz es una corriente de partículas infinitamente pequeñas llamadas fotones que se irradia desde cualquier fuente luminosa a la fantástica velocidad
Modelos de la luz. Germán Arenas Sicard Físico, Dr. rer. nat. Bogotá, agosto de 2012
Modelos de la luz Germán Arenas Sicard Físico, Dr. rer. nat. Bogotá, agosto de 2012 1 Por qué modelos? La luz es algo que se da por asegurado; la mayoría ( todos?) de los seres vivos tenemos una respuesta
EXTRUCTURA ATOMICA ACTUAL
ATOMOS Y ELEMENTOS TEMA 4 Química ATOMOS EXTRUCTURA ATOMICA ACTUAL PARTICULA UBICACION CARGA MASA PROTON NUCLEO + SI NEUTRON NUCLEO 0 SI ELECTRON ORBITAS - DESPRECIABLE La masa del átomo reside en el núcleo.
TEMA 3.- CARACTERÍSTICAS FOTOMÉTRICAS DE LOS INSTRUMENTOS ÓPTICOS
1/ 1 TEM 3.- CRCTERÍSTICS FOTOMÉTRICS DE LOS INSTRUMENTOS ÓPTICOS Magnitudes fotométricas. Relaciones básicas de la fotometría. Iluminación de la imagen proporcionada por un Instrumento Óptico Objetivo.
Repaso del 1º trimestre: ondas y gravitación 11/01/08. Nombre: Elige en cada bloque una de las dos opciones.
Repaso del 1º trimestre: ondas y gravitación 11/01/08 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Elige en cada bloque una de las dos opciones. Bloque 1. GRAVITACIÓN. Elige un problema: puntuación 3 puntos
Apéndice 2. Puesta a punto y uso del Espectrómetro
Puesta a punto del espectrómetro 1 Apéndice 2. Puesta a punto y uso del Espectrómetro I) INTRODUCCIÓN II) DESCRIPCIÓN DEL EQUIPO III) ENFOQUE IV) MEDIDA DE ÁNGULOS DE DIFRACCIÓN V) USO DE LA REJILLA DE
S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS
S.E.P. S.E.I.T DIRECCION GENERAL DE INSTITUTOS TECNOLOGICOS NOMBRE DE LA ASIGNATURA: QUIMICA ANALITICA II (4-2-10) NIVEL: LICENCIATURA. CARRERA: INGENIERIA BIOQUIMICA INGENIERIA QUIMICA CLAVE: ACC-9331
3. Física de la luz, fenómenos ópticos y su reproducción por com
3. Física de la luz, fenómenos ópticos y su reproducción por computador Tercera sesión 3 de agosto de 2010 Contenido 1 ¾Qué es la luz? 2 La luz Naturaleza de la luz Teoría corpuscular Trabajos preliminares
Conceptos básicos sobre interacción de la radiación ionizante con la materia
Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas
Pr.B Boletín de problemas de la Unidad Temática B.III: Detección y generación de señales luminosas Pr.B.4. Detección de luz e imágenes 1. Un detector de Ge debe ser usado en un sistema de comunicaciones
Soluciones. k = 2π λ = 2π 0,2 = 10πm 1. La velocidad de fase de una onda también es conocida como la velocidad de propagación: = λ T = 1,6m / s.
Ejercicio 1 Soluciones Una onda armónica que viaje en el sentido positivo del eje OX tiene una amplitud de 8,0 cm, una longitud de onda de 20 cm y una frecuencia de 8,0 Hz. El desplazamiento transversal
APLICACIONES LIDAR MEDICIÓN DE CONTAMINANTES Alejandra Sosa Izábal
APLICACIONES LIDAR MEDICIÓN DE CONTAMINANTES Alejandra Sosa Izábal Antecedentes: Las ondas de radio y las microondas se han usado para detectar objetos lejanos a través del uso de RADAR (RAdiowave Detection
6. ESPECTROS DE EMISIÓN ATÓMICA
6. ESPECTROS DE EMISIÓN ATÓMICA 6.1. OBJETIVOS Medir la longitud de onda de las líneas espectrales emitidas en la región visible por varios gases altamente diluidos. Medir la constante de Rydberg a partir
Solicitud de espectrómetro al Parque de las Ciencias de Granada. Proyecto de Modelado de espectros lumínosos con Geogebra y cálculo integral
página 1/8 Solicitud de espectrómetro al Parque de las Ciencias de Granada. Proyecto de Modelado de espectros lumínosos con Geogebra y Presentación del proyecto y justificación Centro: Colegio Marista
