Guía IV: Detectores de Radiación

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Guía IV: Detectores de Radiación"

Transcripción

1 Guía IV: Detectores de Radiación Cátedra de Medicina Nuclear Facultad de Ingeniería, UNER 1. Introducción Al interactuar con la materia, la radiación ionizante puede producir dos efectos: ionización y excitación. Estos dos fenómenos suelen darse en forma simultánea. Ambos son utilizados por diferentes dispositivos para detectar radiación, tanto cuantitativa como cualitativamente. Los detectores, entonces, se agrupan según el siguiente esquema: Tipo de detector Por ionización Por excitación Inmediatos Retardados Inmediatos Retardados Gaseosos De Película Fotográca De Centelleo Termoluminiscentes (Sólidos / Líquidos) TLD Semiconductores Los detectores inmediatos son aquellos que suministran inmediatamente la información al observador. Los retardados, en cambio, lo hacen en forma diferida con respecto al momento en que se procede a la detección, y por lo tanto permiten cuanticar la dosis acumulada. En Radiodiagnóstico y Radioterapia interesan particularmente los detectores inmediatos, en tanto que los retardados son los indicados para dosimetría personal. 2. Detectores Gaseosos Un detector gaseoso consiste, básicamente, en un volumen de gas contenido entre dos electrodos con una diferencia de voltaje entre ellos. Los electrodos pueden ser dos cilindros concéntricos, un cilindro y un alambre, etc. La radiación que incide a través de una ventana ioniza el gas. Figura 1: Detector gaseoso El gas, generalmente, es aislante. Puede ser aire o algún gas noble, dependiendo del detector. Hay tres tipos de detectores gaseosos: Cámaras de Ionización, Contadores Proporcionales y Contadores Geiger Müller, denidos en función de la cantidad de cargas que se generan por cada evento de ionización detectado y del voltaje que se aplica entre placas. Los detectores gaseosos no son muy utilizados en Medicina Nuclear, dado que tienen baja eciencia para la detección de radiación X o γ. Generalmente se utilizan para radioprotección y dosimetría personal. 1

2 2.1. Cámara de Ionización Se utiliza aire como gas. Pueden ser selladas con respecto al exterior, lo que la independiza de variaciones en las condiciones de presión y temperatura en el ambiente de medición. Un sellado defectuoso ocasiona lecturas erróneas. Si no están selladas, se calibran para condiciones determinadas de P y T (P ref = 760 mmhg y T ref = 295K). Si se utiliza la cámara en otras condiciones, la lectura debe corregirse con el factor Ctp: C tp = P ref T P T ref (1) Figura 2: Dosímetro de bolsillo Las corrientes generadas son muy pequeñas, por lo que suelen utilizarse para medir radiación acumulada. La eciencia para RX o gamma es menor al 1 % Contadores Proporcionales Tienen factores de amplicación del orden de 10 6 dependiendo del voltaje aplicado y del diseño de la cámara. La carga producida es proporcional a la cantidad total de energía depositada en el detector por el evento de radiación detectado. Se utilizan gases como el Argón o el Xenón. Como el tamaño del pulso de salida es mayor, puede utilizarse para detectar y contar eventos Contadores Geiger Müller Tienen el máximo efecto de multiplicación (del orden de ). El gas que se utiliza es generalmente argón, con algún gas de quenching o apagado. Los Contadores GM se utilizan para detectar y contar eventos, pero dadas sus características no puede utilizarse para discriminar energías. 3. Detectores Semiconductores Son entre dos y cinco mil veces más densos que los detectores gaseosos, por lo que tienen mayor poder de frenado y mayor eciencia para detectar RX y Rγ. Además, se necesita menor cantidad de energía para producir una ionización (entre 3 y 5 ev contra 34 ev de los gases). Se utilizan varios tipos de cristales, de Si o Ge, puro o con impurezas como el Te. 4. Detectores de Centelleo Sólido Se utilizan para detectar fotones de alta energía. 2

3 El cristal absorbe fotones de RX o Rγ, y al desexcitarse emite fotones visibles o UV. Estos fotones inciden en un fotocátodo, produciendo el desprendimiento de electrones. Estos electrones son muy pocos, por lo que para detectarlos se aumenta su cantidad proporcionalmente dentro de un tubo fotomultiplicador (TFM). Los dinodos del TFM producen electrones secundarios, en función de la energía del electrón incidente y del voltaje aplicado. Estos TFM producen un pulso de corriente. Figura 3: Detector de centelleo La eciencia del fotocátodo es de entre 1 y 3 electrones por cada 10 fotones UV incidentes. En cada TFM hay entre 9 y 12 dinodos. El factor de Multiplicación de los dinodos es, normalmente, de entre 3 y 6 electrones por dinodo. La fuente de alimentación del sistema es de alto voltaje, generalmente mayor a 1 kv, y debe ser muy estable, dado que el factor de multiplicación, y en denitiva la amplitud del pulso de corriente, depende del voltaje. Los cristales más utilizados son el INa (Tl), el BGO y el LSO (Ce). Para compararlos, se calcula el número atómico efectivo, Z ef, que es una estimación del número atómico efectivo que representa las propiedades de atenuación de un compuesto molecular: Z ef = w 1 Z x 1 + w 2Z x w nz x n (2) w i = m i Z i mj Z j (3) Donde m i es el número de i átomos presentes en el compuesto y x es un número que varía entre 1 y Detectores de Centelleo Líquido Se utilizan especialmente muestras biológicas. Se basan en las propiedades de centelleo de algunas moléculas. Se utilizan para detectar radiación poco penetrante (partículas y fotones de energía menor a 100 kev). La muestra se mezcla en un compuesto que contiene un solvente, un soluto primario (que absorbe la radiación de la muestra, POP), un soluto secundario (que absorbe la radiación emitida por el soluto primario y emite fotones del rango detectable del cristal, POPOP) y aditivos para mejorar la eciencia, la solubilidad, etc. 6. Problemas 1. Calcular la caída de voltaje que se produce en un dosímetro de bolsillo de cámara de ionización que recibe una dosis de 0.5 msv de fotones de 200 kev. Se considera que la capacidad de la cámara es de 500 pf. El volumen de aire contenido es de 10 cm3. Suponga una eciencia del dosímetro del 2 % y que el gas está aislado. La energía de ionización del gas es 34 ev en CNPT. La diferencia del Sievert con el Gray (ambas en J/kg) es que en el Sv se contempla el daño biológico que producen las radiación, de modo que 1 Sv = 1 Gy para rayos γ, rayos X y e pero debe multiplicarse por un factor de corrección de 20 para radiación α, de 1 a 20 para neutrones, etc... En este caso, como se trata de fotones, la dosis recibida es de 0,5 msv = 0,5 mgy. Buscamos la masa de aire para luego determinar la energía total absorbida. Entonces, como ρ = 1,205 [kg/m 3 ] se tiene que la 3

4 masa de aire correspondiente a 10 [cm 3 ] es 1, [kg]. La energía absorbida es: [ ] J E T = D m = 0, , [Kg] = 6, [J] (4) Kg La relación entre J y ev está dada por 1J = 6, ev o también 1, J = 1eV. Entonces [ ] ev E T = 6, [J] 6, = 3, [ev ] (5) J El nro de cargas generadas es: n = 3, [ev ] 34[eV ] = 1, (6) A partir de aquí se puede calcular la carga correspondiente a las ionizaciones producidas: 1[C] = 6, [e ] 1, [e ] = 1, [C] (7) Y de allí el voltaje en el capacitor: V = q C = 1, [C] [F ] = 0, 354[V ] (8) 2. En una cámara de ionización incide una partícula α 2+ con una energía cinética de 1,75 MeV. La partícula pierde una energía promedio de 33,7 ev por cada par de iones producidos en el aire de la cámara. La partícula es absorbida totalmente por la cámara, que posee una capacitancia de 10 pf. ¾Cuál será la amplitud del pulso de voltaje producido? Explique por qué la eciencia de estos detectores para radiación X o γ es tan baja. El número de pares de iones producido por esta particula es de: n = 1, [ev] 33, 7[eV] = 51, [iones] (9) La carga asociada a este número es: El voltaje se puede calcular como: q = 51, [iones] V = 8, [C] [F] 1[C] 6, [iones] = 8, [C] (10) = 8, [V] = 832[µV] (11) 3. Un centro de radioterapia posee una cámara de ionización no sellada tipo cilíndrica. El factor de calibración para la cámara y el electrómetro que se posee en el Centro es de 52 [mgy/nc]. Se realiza el procedimiento de calibración en agua del equipo de Cobaltoterapia mediante la toma de 10 lecturas con irradiación de 1 min cada una. El valor promedio de las lecturas es de 5,4 nc/min. La presión y la temperatura en la sala del equipo son 755 mmhg y 25 C respectivamente. Calcular la tasa de dosis que brinda el equipo en el punto de calibración. C T P = P ref T P T ref (12) 4

5 C T P = (13) C T P = 1, 017 (14) Las lecturas estarán afectadas por este valor, entonces 5, 4nC/min 1, 017 = 5, 5nC/min. La tasa de dosis se obtiene calculando primero la dosis acumulada en 1 minuto. D ac,1min = [ ] mgy 5, 5[nC] 52 nc (15) D ac,1min = 286[mGy] (16) Ahora escalamos este valor para obtener la dosis por segundo Ḋ = 286[mGy] 60[seg] [ ] mgy Ḋ = 4, 77 seg (17) (18) 4. Compare dos cristales de centelleo, el BGO (Bi4Ge3O12) y el INa(Tl) ioduro de sodio con impurezas de talio, desde el punto de vista de su número atómico efectivo. Suponga x = 3. ¾Qué puede concluirse? ¾Por qué se preere el BGO para detectar positrones? En el cristal de ioduro de sodio, se supone que las impurezas de talio están en una proporción de 1 en 8 con respecto a los otros átomos. a) Para el BGO el número atómico efectivo se calcula así: m Be Z Be = 4 83 = 332 (19) m Ge Z Ge = 3 32 = 96 (20) m Be Z Be = 12 8 = 96 (21) m i Z i = 524 (22) i Z ef = [ ] (23) Z ef = 71, 700 (24) a) Para el INa(Tl) el número atómico efectivo se calcula así: m Na Z Na = 8 53 = 424 (25) m Ge Z Ge = 8 11 = 88 (26) m Be Z Be = 1 81 = 81 (27) m i Z i = 593 (28) i Z ef = [ ] (29) Z ef = 56, 382 (30) Se preere el BGO para detectar positrones por su excelente eciencia a 511 kev. 5

6 5. Indique el valor de la fuente de alto voltaje que se necesita para alimentar un Tubo Fotomultiplicador de 12 dinodos, considerando que la diferencia de voltaje entre el fotocátodo y el primer dinodo debe ser de +300 V, y entre cada par de dinodos debe haber un incremento de voltaje de +150 V. ¾Qué características debe tener la fuente? El voltaje entre el fotocátodo y el primer dinodo es de 300 V, luego entre el primer y el segundo dinodo se incrementa el voltaje en 150 V, entre el segundo y el tercero otros 150 V y así sucesivamente. Al llegar al último dinodo, los electrones son acelerados hacia el ánodo, el cual suponemos también a 150 V de diferencia respecto del doceavo dinodo, con lo cual la fuente deberá tener = 2100V La fuente debe ser muy estable, porque pequeños cambios en su voltaje determinan cambios en el factor de multiplicación de la señal. 6. Explique los cambios que haría en un detector de centelleo utilizado para radiación de 1 MeV, si quisiera medir radiación de energía del orden de los 2 MeV. Para un detector de centelleo dado (ya construido) sólo se puede afectar el sistema de amplicación electrónica (el fotomultiplicador). La diferencia al incidir haces de fotones de distinta energía es la altura del pulso que produce (a mayor energía de los rayos γ se generan más fotones que van a ser detectados por el tubo fotomultiplicador). 7. En un centro de Medicina Nuclear, se realizan estudios de diagnóstico con SPECT. El equipo cuenta con un cristal de centelleo de INa(Tl). Generalmente, se utiliza Tc99m. Se pide calcular la amplitud del pulso de corriente que se obtiene a la salida del detector, si se utiliza para su calibración en energías una fuente de Tc99m de 250 mci de actividad. Considere que, debido a la geometría y el montaje del detector, llega a su supercie el 70 % de la radiación emitida, y que el cristal tiene un espesor de 1.27 cm, lo que determinará su eciencia. Además, el 80 % de la luz emitida por el cristal es absorbida por el fotocátodo, que, a su vez, tiene una eciencia de electrones por cada fotón. El TFM posee 12 dinodos con un factor de multiplicación de 3 para esa energía. La calibración realizada, ¾serviría en el caso de querer utilizar I131 para hacer los estudios? Explique. Primero calculo cuántos fotones se producen por segundo en la fuente: 1Ci = 3, [Bq] (31) 250mCi = 9, [Bq] (32) La fuente emite entonces 9, de 140 kev por cada segundo. El 70 % corresponde a 6, fotones. ¾Y ahora de dónde sale el dato de la eciencia asociada al espesor del cristal? Suponiendo que el cristal tiene 100 % de eciencia y que el 80 % de lo que emite es absorbida por el fotocátodo, entonces en éste se [ reciben 0, 8 6, fotones. La cantidad de electrones que se producen es 5, , 075 Si el factor de multiplicación es 3 en cada dinodo entonces su factor de multiplciación total es de 3 12 e foton ]. 6

7 8. En un Servicio de Medicina Nuclear en el que se cuenta con un equipo PET se trabaja principalmente con FDG marcada con F-18. a. ¾Qué detector utilizaría para medir la actividad que se le suministra al paciente? Justique su elección. b.- Suponga que se cuenta con un detector de centelleo sólido con un cristal de INa(Tl) para detectar los fotones de aniquilación. Explique cuál sería la desventaja de utilizar ese cristal para detectar fotones de esa energía. 7

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI

LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI LOS RAYOS X FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI FUNDAMENTOS FÍSICOS DE IMÁGENES DIAGNÓSTICAS - PILAR INFANTE L - FIACIBI -Se propagan en línea recta. -Ionizan el aire.

Más detalles

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA

TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA TÉCNICAS EXPERIMENTALES V FÍSICA CUÁNTICA P1 Medida de la Constante de Planck. Efecto fotoeléctrico. RNB P2 Experimento de Franck-Hertz. Niveles de energía de los átomos RNB P3 Dispersión de Rutherford

Más detalles

GUÍA DE PROBLEMAS Radiodiagnóstico por Imágenes

GUÍA DE PROBLEMAS Radiodiagnóstico por Imágenes GUÍA DE PROBLEMAS Radiodiagnóstico por Imágenes Durante el desarrollo del proceso de enfermedad se producen inicialmente cambios bioquímicos y fisiológicos, que se manifiestan luego como cambios estructurales

Más detalles

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Interacción de las Radiaciones con la Materia Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Interacción de las Radiaciones con la Materia Medicina Nuclear (993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER. Interacción de la radiación ionizante con la materia Cuando la radiación

Más detalles

DETECTORES DE RADIACIÓN IONIZANTE

DETECTORES DE RADIACIÓN IONIZANTE DETECTORES DE RADIACIÓN IONIZANTE Objetivos Conocer el funcionamiento físico los diferentes tipos de detectores Identificar cual tipo de detector es recomendable usar con cada tipo de energía Introducción

Más detalles

Mapa Dosimétrico de Radiaciones Ionizantes Ambientales

Mapa Dosimétrico de Radiaciones Ionizantes Ambientales Mapa Dosimétrico de Radiaciones Ionizantes Ambientales Ciudad de Córdoba, Argentina AUTORES Germanier, Alejandro Rubio, Marcelo Campos, Manuel Sbarato, Darío (dsbarato@yahoo.com.ar) Sbarato, Viviana Ortega

Más detalles

Conceptos básicos sobre interacción de la radiación ionizante con la materia

Conceptos básicos sobre interacción de la radiación ionizante con la materia Conceptos básicos sobre interacción de la radiación ionizante con la materia Martín Gascón Introducción al laboratorio de Física Nuclear Técnicas experimentales avanzadas Departamento de Física de Partículas

Más detalles

Resolución PRÁCTICO 9

Resolución PRÁCTICO 9 Resolución PRÁCTICO 9 1- Complete las siguientes ecuaciones nucleares, remplazando las X por los símbolos o números correspondientes (Nota: X toma diferentes números y símbolos en cada una de las situaciones):

Más detalles

JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES

JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES JORNADA SOBRE EVALUACION DE UNIDADES TECNICAS DE PROTECCION RADIOLOGICA RADIACIONES IONIZANTES TECNICAS DE ANALISIS Y GESTION DE AGENTES FISICOS. RADIACIONES IONIZANTES. INSTALACIONES RADIOLOGICAS CENTRO

Más detalles

Principios Básicos de la Protección Radiológica

Principios Básicos de la Protección Radiológica Principios Básicos de la Protección Radiológica JUSTIFICACIÓN OPTIMIZACIÓN LIMITES Y RESTRICCIONES DE LAS DOSIS Límite de dosis para el trabajador: 20mS al año Límite de dosis para el público en general:

Más detalles

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA

Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Centro de Investigaciones Nucleares TECNOLOGÍA DE LA PROTECCIÓN RADIOLÓGICA Tipos de exposición a la radiación Interna Ingestión o inhalación de radionucleídos Externa Fuentes radiactivas o equipos generadores

Más detalles

Guía II: Dosimetría de Fuentes Externas

Guía II: Dosimetría de Fuentes Externas Guía II: Dosimetría de Fuentes Externas Cátedra de Medicina Nuclear (93) / Radioterapia y Radiodiagnóstico (08) Facultad de Ingeniería, UNER 1. Introducción La dosimetría tiene por objetivo la cuanticación

Más detalles

Masterclass Aceleradores de partículas

Masterclass Aceleradores de partículas Unidad de Divulgación Científica del Centro Nacional de Aceleradores (CNA) Masterclass Aceleradores de partículas 1. Técnicas experimentales empleadas en el CNA 2. Ley de decaimiento radiactivo y su aplicación

Más detalles

Magnitudes y Unidades en Protección Radiológica. César F. Arias carias@fi.uba.ar

Magnitudes y Unidades en Protección Radiológica. César F. Arias carias@fi.uba.ar Magnitudes y Unidades en Protección Radiológica César F. Arias carias@fi.uba.ar Publicaciones de: Principales Fuentes de Información Comisión Internacional de Unidades de Radiación ICRU (En Particular

Más detalles

Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER

Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (2008) Facultad de Ingeniería, UNER Radiactividad Medicina Nuclear (1993) Radioterapia y Radiodiagnóstico (008) Facultad de Ingeniería, UNER 1. Ley de decaimiento En la naturaleza hay isótopos inestables y metaestables que pueden emitir

Más detalles

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC)

Radiología General. Magnitudes y Unidades en Radiología. Miguel Pombar Facultad de Medicina y Odontología (USC) Radiología General Magnitudes y Unidades en Radiología Miguel Pombar Facultad de Medicina y Odontología (USC) Magnitudes y unidades radiológicas Actividad Exposición Dosis Absorbida Dosis Equivalente Dosis

Más detalles

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA

GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA GUÍA DOCENTE ABREVIADA DE LA ASIGNATURA G75 - Radiofísica Grado en Física Curso Académico 2015-2016 1. DATOS IDENTIFICATIVOS Título/s Grado en Física Tipología y Optativa. Curso 4 Curso Centro Módulo /

Más detalles

Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I

Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I Programas de formación especializada y capacitación específica para el licenciamiento de personal de instalaciones radiactivas Clase I GUÍA AR 10 REVISIÓN 0 Aprobada por Resolución ARN Nº 3/04 Autoridad

Más detalles

Interacción de neutrones con la materia. Laura C. Damonte 2014

Interacción de neutrones con la materia. Laura C. Damonte 2014 Interacción de neutrones con la materia Laura C. Damonte 2014 Interacción de neutrones con la materia La interacción de los neutrones con la materia tiene interés tanto experimental y teórico como también

Más detalles

DETERMINACIÓN DE LA VIDA MEDIA RADIACTIVA DEL 40 K

DETERMINACIÓN DE LA VIDA MEDIA RADIACTIVA DEL 40 K DETERMINACIÓN DE LA VIDA MEDIA RADIACTIVA DEL 40 K Nicolás Di Fiori Federico Foieri Matías Rodríguez nicolasdf@fibertel.com.ar, fedefoieri@hotmail.com, srv@labs.df.uba.ar Laboratorio 5 FCEyN UBA, Octubre

Más detalles

Descarga Glow. Introducción. Características de la descarga glow

Descarga Glow. Introducción. Características de la descarga glow Descarga Glow Introducción La descarga glow es una descarga eléctrica autosostenida que se produce en un medio gaseoso. Consideremos un dispositivo como el que se esquematiza en la Figura 1. Una fuente

Más detalles

Las radiaciones ionizantes en aplicaciones hospitalarias

Las radiaciones ionizantes en aplicaciones hospitalarias Las radiaciones ionizantes en aplicaciones hospitalarias Las aplicaciones hospitalarias de las radiaciones ionizantes pueden dividirse en tres grandes grupos: Diagnóstico Rx, Tomografía y Med.Nuclear Laboratorio

Más detalles

DETEC DETE TORE ORE DE RADIAC RADIA IÓN IONIZANTE

DETEC DETE TORE ORE DE RADIAC RADIA IÓN IONIZANTE DETECTORES DE RADIACIÓN IONIZANTE Nuevo símbolo ISO de advertencia por presencia de Radiación FENÓMENOS FÍSICOS UTILIZADOS PARA LA DETECCIÓN Ionización de los gases Excitación y luminiscencia de los

Más detalles

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON.

EL ÁTOMO CONTENIDOS. ANTECEDENTES HISTÓRICOS. ( ) MODELOS ATÓMICOS. RAYOS CATÓDICOS. MODELO DE THOMSON. EL ÁTOMO CONTENIDOS. 1.- Antecedentes históricos.( ) 2.- Partículas subatómicas. ( ) 3.- Modelo atómico de Thomsom. 4.- Los rayos X. 5.- La radiactividad. 6.- Modelo atómico de Rutherford. 7.- Radiación

Más detalles

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES

Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES Tema 15 RADIACIONES IONIZANTES Y NO IONIZANTES CONCEPTO DE RADIACION Concepto y tipos de radiaciones Radiaciones ionizantes Unidades de medida Efectos biológicos: radiosensibilidad Reglamento de protección

Más detalles

CURSO DE RADIOPROTECCION. Msc. Gerardo Lázaro Moreyra 2008. Instituto Peruano de Energía Nuclear. IPEN : Trabajando en las fronteras de la ciencia

CURSO DE RADIOPROTECCION. Msc. Gerardo Lázaro Moreyra 2008. Instituto Peruano de Energía Nuclear. IPEN : Trabajando en las fronteras de la ciencia Instituto Peruano de Energía Nuclear CURSO DE RADIOPROTECCION Msc. Gerardo Lázaro Moreyra 2008 Diapositiva 1 IPEN, Noviembre 2003 De donde viene las radiaciones? Las propiedades químicas de un átomo son

Más detalles

Espectrometría de Radiación gamma

Espectrometría de Radiación gamma Espectrometría de Radiación gamma B.C. Paola Audicio Asistente de Radiofarmacia, CIN Fundamento La espectrometría gamma consiste en la obtención del espectro de las radiaciones gamma emitidas por los radionucleidos.

Más detalles

Capítulo 26. Física Nuclear

Capítulo 26. Física Nuclear Capítulo 26 Física Nuclear 1 Energía de enlace El núcleo de un átomo se designa mediante su símbolo químico, su número atómico Z y su número de masa A de la forma: A ZX La unidad de masa atómica unificada

Más detalles

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA.

ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. ESTRUCTURA DE LA MATERIA VICENTE PUCHADES PUCHADES. SERVICIO DE RADIOFÍSICA Y PROTECCIÓN RADIOLÓGICA DEL HGU SANTA LUCÍA. CARTAGENA. INDICE Qué es la materia? Modelos de la materia Fuerzas Fundamentales

Más detalles

Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl)

Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl) Espectrometría de rayos gamma del molibdeno mediante un detector de INa(Tl) Julián Giles En el siguiente trabajo se realizó un análisis del decaimiento radiactivo de una sal de molibdeno activada neutrónicamente,

Más detalles

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones.

Núcleo Atómico. El núcleo es una masa muy compacta formada por protones y neutrones. Núcleo Atómico Profesor: Robinson Pino H. 1 COMPONENTES DEL NÚCLEO ATÓMICO El núcleo es una masa muy compacta formada por protones y neutrones. PROTÓN PROTÓN(p + ) Es una partícula elemental con carga

Más detalles

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS

J.M.L.C. IES Aguilar y Cano ALGUNOS DERECHOS RESERVADOS La radiactividad o radioactividad es un fenómeno físico natural, por el cual algunas sustancias o elementos químicos llamados radiactivos, emiten radiaciones que tienen la propiedad de impresionar placas

Más detalles

Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro:

Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro: RESPUESTAS BLOQUE III Ponte en forma 1.- Realiza las actividades que se te solicitan a continuación: a) Completa el siguiente cuadro: Tipo de raciación Partículas Carga eléctrica Masa(uma) Alfa α +2 4

Más detalles

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev.

POTENCIAL CRITICO: Energía mínima para hacer saltar un electrón desde su orbital normal al inmediato superior expresado en ev. MECANISMOS DE CONDUCCION ELECTRICA EN GASES Para estudiar el proceso de conducción en gases tenemos que considerar que el gas se encuentra contenido en una ampolla de vidrio, la cual está ocupada únicamente

Más detalles

ANEXO II. Estimación de dosis por exposición externa

ANEXO II. Estimación de dosis por exposición externa ANEXO II. Estimación de dosis por exposición externa A) Definición de los términos utilizados en el presente anexo Dosis equivalente ambiental H* (d): dosis equivalente en un punto determinado de un campo

Más detalles

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s

MODELOS ATOMICOS. Solución Å; Ultravioleta; 1106 m/s MODELOS ATOMICOS 1. Calcular el valor del radio de la órbita que recorre el electrón del hidrogeno en su estado normal. Datos. h = 6 63 10 27 erg s, m(e ) = 9 1 10 28 gr, q(e ) = 4 8 10-10 u.e.e. Solución.

Más detalles

mediante contador Geiger-Müller.

mediante contador Geiger-Müller. Prácticas de Laboratorio: Detección de radiación mediante contador Geiger-Müller. 1. Introducción El contador Geiger-Müller es un detector de radiación que contiene un gas que se ioniza al paso de la misma

Más detalles

DETECTORES DE RADIACIÓN IONIZANTE

DETECTORES DE RADIACIÓN IONIZANTE DETECTORES DE RADIACIÓN IONIZANTE Nuevo símbolo ISO de advertencia por presencia de Radiación FENÓMENOS FÍSICOS UTILIZADOS PARA LA DETECCIÓN Ionización de los gases Excitación y luminiscencia de los

Más detalles

RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES.

RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES. RADIACIONES IONIZANTES. PRODUCCIÓN. INTERACCIÓN CON LA MATERIA. MEDIDA DE LA RADIACIÓN. MAGNITUDES Y UNIDADES. Xavier Pifarré Scio Radiofísica Hospital Puerta de Hierro Mayo 2014 Desde la antigüedad el

Más detalles

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18

TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA. 1. Introducción a la mecánica cuántica Nanotecnología 18 TEMAS SELECTOS DE FÍSICA CONTEMPORÁNEA 3 horas a la semana 6 créditos 3 horas teóricas y 0 de laboratorio OBJETIVO: Que el alumno adquiera conceptos básicos de física contemporánea y que construya una

Más detalles

Generadores de Radiación Ionizante Formulas & Ejercicios

Generadores de Radiación Ionizante Formulas & Ejercicios Generadores de Radiación Ionizante Formulas & Ejercicios Dr. Willy H. Gerber Instituto de Fisica Universidad Austral Valdivia, Chile Objetivos: Dominar los modelos asociados a la generación de radiación

Más detalles

Metrología de radioisótopos. Laboratorio de Metrología de Radioisótopos

Metrología de radioisótopos. Laboratorio de Metrología de Radioisótopos Metrología de radioisótopos Laboratorio de Metrología de Radioisótopos Metrología de radioisótopos Radioisótopos Breve reseña histórica del uso de los radioisótopos en medicina En 1941 se emplea una dosis

Más detalles

Vida media del 40 K. Lorena Sigaut a y Pablo Knoblauch b Laboratorio 5 Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Vida media del 40 K. Lorena Sigaut a y Pablo Knoblauch b Laboratorio 5 Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Vida media del K Lorena Sigaut a y Pablo Knoblauch b Laboratorio 5 Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Noviembre de 21 Con un centelleador del tipo Yoduro de Sodio dopado

Más detalles

Medicina Nuclear. Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación

Medicina Nuclear. Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación Medicina Nuclear Es la especialidad médica que utiliza los radionúclidos (isótopos radiactivos) en el diagnóstico, la terapia y la investigación Medicina Nuclear Diagnóstica: Estudios funcionales Radioinmunoamálisis

Más detalles

Valladolid Salazar José Vidal. Universidad Nacional Mayor de San Marcos

Valladolid Salazar José Vidal. Universidad Nacional Mayor de San Marcos Valladolid Salazar José Vidal Universidad Nacional Mayor de San Marcos Evaluación y clasificación de varios diodos para aplicaciones medicas dosimétricas. Estudio de la factibilidad del uso del diodo PIN

Más detalles

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón

MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS. Partícula Masa (g) Carga (Coulombs) Carga unitaria. Electrón MATERIA MOLÉCULAS ÁTOMOS PARTÍCULAS SUBATÓMICAS Partícula Masa (g) Carga (Coulombs) Carga unitaria Electrón 9.10939 10-28 -1.6022 10-19 -1 Protón 1.67262 10-24 +1.6022 10-19 +1 Neutrón 1.67493 10-24 0

Más detalles

Guía del Curso Operador de Rayos X

Guía del Curso Operador de Rayos X Guía del Curso Operador de Rayos X Modalidad de realización del curso: Número de Horas: Titulación: A distancia y Online 160 Horas Diploma acreditativo con las horas del curso OBJETIVOS La radiografía

Más detalles

UNIVERSIDAD DE MURCIA CURSO DE PROMOCIÓN EDUCATIVA

UNIVERSIDAD DE MURCIA CURSO DE PROMOCIÓN EDUCATIVA UNIVERSIDAD DE MURCIA CURSO DE PROMOCIÓN EDUCATIVA TÍTULO DEL CURSO PROTECCIÓN RADIOLÓGICA Y GARANTÍA DE CALIDAD EN RADIODIAGNÓSTICO. Curso de Teleenseñanza. Departamento/Centro/Servicio: AREA DE RADIOLÓGIA

Más detalles

Tema 20 Propiedades eléctricas de los materiales.

Tema 20 Propiedades eléctricas de los materiales. Tema 20 Propiedades eléctricas de los materiales. Las propiedades eléctricas miden la respuesta del material cuando se le aplica un campo eléctrico. Conductividad eléctrica R i = V ; R= resistencia del

Más detalles

U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON

U N A M. Facultad de Ingeniería MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON MODELO ATÓMICO DE J. J. THOMSON MODELO ATÓMICO DE ERNEST RUTHERFORD DESCUBRIMIENTO DEL PROTÓN Y DEL NEUTRON M. C. Q. Alfredo Velásquez Márquez Modelo Atómico de J. J. Thomson Electrones de Carga Negativa

Más detalles

Física y Química 3º ESO

Física y Química 3º ESO 1. Física y Química. Ciencias de la medida forman parte de las necesitan Ciencias de la naturaleza medir las propiedades de los cuerpos que se dividen en para lo cual se emplean lo que siempre conlleva

Más detalles

Estructura de la materia y Sistema Periódico

Estructura de la materia y Sistema Periódico Estructura de la materia y Sistema Periódico 1 - Respecto el número cuántico «n» que aparece en el modelo atómico de Bohr indicar de manera razonada cuáles de las siguientes frases son correctas y cuáles

Más detalles

LAS MEDICIONES FÍSICAS. Estimación y unidades

LAS MEDICIONES FÍSICAS. Estimación y unidades LAS MEDICIONES FÍSICAS Estimación y unidades 1. Cuánto tiempo tarda la luz en atravesar un protón? 2. A cuántos átomos de hidrógeno equivale la masa de la Tierra? 3. Cuál es la edad del universo expresada

Más detalles

TEMA 4 DOSIMETRÍA DE LA RADIACIÓN

TEMA 4 DOSIMETRÍA DE LA RADIACIÓN TEMA 4 DOSIMETRÍA DE LA RADIACIÓN ÍNDICE: 1.- DEFINICIÓN DE DOSIMETRÍA. DOSIMETRÍA AMBIENTAL Y PERSONAL. 2.- MONITORES Y DOSÍMETROS DE RADIACIÓN. 2.1. Dosímetros personales. 2.2. Dosímetros operacionales.

Más detalles

ESPECTROMETRIA DE MASAS

ESPECTROMETRIA DE MASAS ESPECTROMETRIA DE MASAS Se puede sub-dividir en dos áreas de aplicación: Espectrometría de masas atómica EMA: determinar cuali y cuantitativamente los elementos presentes en una muestra. Espectrometría

Más detalles

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 5: DOSIMETRÍA DE LA RADIACIÓN. DOSIMETRÍA DE LA RADIACIÓN EXTERNA.

Curso de SUPERVISORES de instalaciones radiactivas (IR) MÓDULO BÁSICO TEMA 5: DOSIMETRÍA DE LA RADIACIÓN. DOSIMETRÍA DE LA RADIACIÓN EXTERNA. TEMA 5: DOSIMETRÍA DE LA RADIACIÓN. DOSIMETRÍA DE LA RADIACIÓN EXTERNA. CSN-2013 ÍNDICE: 1. INTRODUCCIÓN... 3 2. MONITORES PARA LA MEDIDA DE TASA DE DOSIS... 4 2.1. Monitores basados en detectores de ionización

Más detalles

DETECTORES SEMICONDUCTORES. Enrique Nácher

DETECTORES SEMICONDUCTORES. Enrique Nácher DETECTORES SEMICONDUCTORES Enrique Nácher Señal eléctrica en el detector Cuando los e - secundarios ya no tienen energía suficiente para ionizar otros átomos 1) Detectores gaseosos: Toda la carga liberada

Más detalles

PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA

PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA PROGRAMA ANALÍTICO Y BIBLIOGRAFIA ESPECÍFICA DEL CURSO: RADIOFISICA SANITARIA Y BIOFÍSICA ONDULATORIA NOTA: LA CÁTEDRA DE BIOFÍSICA PARTICIPA CON RESPONSABILIDAD PRIMARIA EN LOS MODULOS CUYAS BIBLIOGRAFIAS

Más detalles

So S l o u l c u i c o i n o e n s e

So S l o u l c u i c o i n o e n s e Soluciones SOLUCIONES mezclas homogéneas de dos sustancias: SOLUTO SOLVENTE SEGÚN EL ESTADO FISICO DEL SOLVENTE SOLIDA LIQUIDA GASEOSA Cuando un sólido se disuelve en un líquido las partículas que lo

Más detalles

Del LASER I Principio de funcionamiento del láser

Del LASER I Principio de funcionamiento del láser Del LASER I Principio de funcionamiento del láser Gilberto Basilio Sánchez La palabra láser proviene del acrónimo en inglés Ligth Amplification by Stimulated Emission of Radiation; en español, láser(1)

Más detalles

BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES

BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES BALANCES DE MASA Y ENERGÍA CAPITULO 1: BALANCES DE MATERIALES 1.1 INTRODUCCION Proceso: Cualquier operación o serie de operaciones que produce un cambio físico o químico en una sustancia o en una mezcla

Más detalles

Detectores de Partículas

Detectores de Partículas Detectores de Partículas Física de Astropartículas Master de Física Fundamental Juan Abel Barrio, Curso 12/13 Universidad Complutense de Madrid 1 Detección de radiación Radiación Detector Señal Amplificación

Más detalles

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller

Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller CODIGO: LABPR-005 FECHA: / / INSTRUCTOR: Título: ESTUDIO DE LAS CARACTERÍSTICAS DE UN Contador Geiger Muller I. Objetivo: Determinacion de las características de un tubo Geiger Muller (GM) y determinacion

Más detalles

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI)

ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) ESPECTROMETRÍA DE RAYOS GAMMA DE MUESTRAS DE AU 198 USANDO UN DETECTOR DE INa(TI) Llaneza, Natalia Orso, josé A. Resumen: Se utilizan varias muestras radiactivas de Au 198 para obtener su periodo de semidesintegración

Más detalles

Dosimetría del Paciente Dosimetría Ocupacional

Dosimetría del Paciente Dosimetría Ocupacional 4a. Jornada Protección Radiológica del Paciente. Dosimetría del Paciente Dosimetría Ocupacional ING. RICARDO SACC CER CONSULTORÍA EN RADIACIONES Objetivo de la Presentación Lineamientos para Determinación

Más detalles

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales

TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales TEMA 1 EL ÁTOMO Miguel Alcaraz Baños Objetivos generales 1. Describir las partes del átomo y enumerar los componentes más importantes. 2. Enunciar que es el numero atómico Z. 3. Explicar qué propiedades

Más detalles

TEMA 3 MAGNITUDES Y UNIDADES RADIOLÓGICAS Miguel Alcaraz Baños

TEMA 3 MAGNITUDES Y UNIDADES RADIOLÓGICAS Miguel Alcaraz Baños TEMA 3 MAGNITUDES Y UNIDADES RADIOLÓGICAS Miguel Alcaraz Baños Objetivos generales. 1. Definir el Roentgenio. 2. Definir el C/Kg como unidad de exposición en el Sistema Internacional. 3. Explicar el concepto

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Recomendaciones generales para la obtención y renovación de permisos individuales para operadores de equipos de gammagrafía industrial

Recomendaciones generales para la obtención y renovación de permisos individuales para operadores de equipos de gammagrafía industrial Recomendaciones generales para la obtención y renovación de permisos individuales para operadores de equipos de gammagrafía industrial GUÍA AR 5 REVISIÓN 1 Aprobada por Resolución ARN Nº 7/10 Autoridad

Más detalles

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso:

E.E.T. Nº9. Físico-Química de 2do año. Guía Nº3. Profesor: Alumno: Curso: E.E.T. Nº9 Físico-Química de 2do año Guía Nº3 Profesor: Alumno: Curso: Soluciones Una solución es un sistema homogéneo formado por dos o más componentes. En una solución formada por dos componentes se

Más detalles

Estudio Comparativo de las Propiedades Termoluminiscentes de UF:Mg,Cu,P, LiF:Mg,Ti y TLD-100 Irradiados con Rayos- X

Estudio Comparativo de las Propiedades Termoluminiscentes de UF:Mg,Cu,P, LiF:Mg,Ti y TLD-100 Irradiados con Rayos- X XIII Congreso Nacional Sobre Dosimetría de Estado Sólido Estudio Comparativo de las Propiedades Termoluminiscentes de UF:Mg,Cu,P, LiF:Mg,Ti y TLD-00 Irradiados con Rayos- X Azorín J. ' 2, Rivera T. '',

Más detalles

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser:

N está formado por 7 protones y 8 neutrones, luego su masa teórica debería ser: 01. Calcular la energía de enlace por nucleón del isótopo 15 N sabiendo que su masa es 15,0001089 u. Datos: 1 u = 1, 10-2 g ; m p = 1,002 u; m n = 1,0085 u El núcleo 15 N está formado por protones y 8

Más detalles

En el caso particular de una transición mezcla MI + E2 ó El + M2

En el caso particular de una transición mezcla MI + E2 ó El + M2 445 INIS-mf 10017 DISEÑO, CONSTRUCCIÓN Y CALIBRACIÓN DE UN POLARIMETRO PARA RADIACIÓN GAMMA * A.O.Macchiavelli, G.Martí, C.Giménez, J.Laffranchi y M.Behar Departamento de Física, Comisión Nacional de Energía

Más detalles

LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS APUNTES DE INTRODUCCIÓN ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA 2 - DETECTORES DE RADIACIÓN

LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS APUNTES DE INTRODUCCIÓN ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA 2 - DETECTORES DE RADIACIÓN LABORATORIO DE FÍSICA NUCLEAR Y DE PARTÍCULAS ÍNDICE 1 - INTERACCIÓN RADIACIÓN-MATERIA - PARTÍCULAS PESADAS CARGADAS - ELECTRONES - RAYOS GAMMA - COMPARATIVA Y NEUTRONES 2 - DETECTORES DE RADIACIÓN APUNTES

Más detalles

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME

DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME DINÁMICA DE UN ELÉCTRON EN UN CAMPO ELÉCTRICO UNIFORME Maicol Llano Moncada, Alex Rollero Dita, Carlos Martínez Agudelo, Luis Santos ID: 000294172, ID: 000293236, ID: 000170111, ID: 000292336 Maicol.llano@upb.edu.co,

Más detalles

OBJETIVO. Lograr un conocimiento básico de la física del método que les permita su adecuada. mismo

OBJETIVO. Lograr un conocimiento básico de la física del método que les permita su adecuada. mismo PRINCIPIOS FÍSICOS DE LA TOMOGRAFÍA COMPUTADA Cátedra de Diagnóstico por Imágenes y Terapia Radiante OBJETIVO Lograr un conocimiento básico de la física del método que les permita su adecuada interpretación

Más detalles

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme

1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1 PRÁCTICA DE LABORATORIO: MOVIMIENTO DE ELCTRONES EN UN CAMPO ELÉCTRICO UNIFORME 1.1. OBJETIVO GENERAL: Estudiar el movimiento de electrones en un campo eléctrico uniforme 1.2. OBJETIVOS ESPECÍFICOS -

Más detalles

KIT SENSOR DE LLAMAS S320090

KIT SENSOR DE LLAMAS S320090 KIT SENSOR DE LLAMAS S320090 Introducción El sensor de llamas conectado a su circuito puede detectar la llama de un mechero a una distancia de 5 metros. Este detector es muy útil a la hora de detectar

Más detalles

La uma, por ser una unidad de masa, tiene su equivalencia en gramos:

La uma, por ser una unidad de masa, tiene su equivalencia en gramos: UNIDAD 2 Magnitudes atómico-moleculares Introducción Teórica La masa de un átomo depende del átomo en cuestión, es decir del número de protones y neutrones que contenga su núcleo. Dicha magnitud es muy

Más detalles

TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1)

TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1) TRANSDUCCIÓN Y MEDICIÓN DE EVENTOS FISIOLÓGICOS (parte 1) * Transductores Dispositivos que convierten eventos fisiológicos en señales eléctricas, aplicando también a la conversión de un tipo de energía

Más detalles

TOMOGRAFÍA POR EMISIÓN DE POSITRONES. EL PODER DE LAS IMÁGENES MOLECULARES. Miguel Ángel Ávila Rodríguez, Ph.D. Facultad de Medicina, UNAM

TOMOGRAFÍA POR EMISIÓN DE POSITRONES. EL PODER DE LAS IMÁGENES MOLECULARES. Miguel Ángel Ávila Rodríguez, Ph.D. Facultad de Medicina, UNAM V CONGRESO NACIONAL DE TECNOLOGÍA APLICADA A CIENCIAS DE LA SALUD Generación de Nuevas Técnicas de Diagnóstico y Tratamiento TOMOGRAFÍA POR EMISIÓN DE POSITRONES. EL PODER DE LAS IMÁGENES MOLECULARES Miguel

Más detalles

La radiación es el transporte o la propagación de energía en forma de partículas u

La radiación es el transporte o la propagación de energía en forma de partículas u La radiación es el transporte o la propagación de energía en forma de partículas u ondas. Si la radiación es debida a fuerzas eléctricas o magnéticas se llama radiación electromagnética. Pero la materia

Más detalles

Ejercicios de Física cuántica y nuclear. PAU (PAEG)

Ejercicios de Física cuántica y nuclear. PAU (PAEG) 1. Las longitudes de onda del espectro visible están comprendidas, aproximadamente, entre 390 nm en el violeta y 740 nm en el rojo. Qué intervalo aproximado de energías, en ev, corresponde a los fotones

Más detalles

Atomos, Moléculas e Iones. Basado en Capítulo 2 de Química (Chang, 2010) Dr. Hernández Castillo

Atomos, Moléculas e Iones. Basado en Capítulo 2 de Química (Chang, 2010) Dr. Hernández Castillo Atomos, Moléculas e Iones Basado en Capítulo 2 de Química (Chang, 2010) Dr. Hernández Castillo Atomo Grecia Demócrito Filosofía Química??? Materialismo monista atomos significaba indivisible Teoría Atómica

Más detalles

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son:

Procesos Físicos. Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Capítulo 3. Procesos Físicos. 3.1. Rayos Gamma Los rayos gamma son un tipo de radiación electromagnética de muy alta energía. Sus características son: Frecuencia: Mayores a 1 x 10 20 Hz Longitud de Onda:

Más detalles

Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría

Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría Universidad Nacional de Villa Mercedes Facultad de Ciencias Médicas Lic. en Kinesiología y Fisiatría ONDAS DEFINICION: Propagación de una perturbación (fenómeno ondulatorio) Propiedad de un medio, (densidad,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 QUÍMICA TEMA 2: LA ESTRUCTURA DEL ÁTOMO Junio, Ejercicio 2, Opción A Reserva 1, Ejercicio 2, Opción A Reserva 2, Ejercicio 3, Opción B Reserva 3, Ejercicio

Más detalles

DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º (*)

DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º (*) DENOMINACIÓN ASIGNATURA: FÍSICA II GRADO: INGENIERÍA BIOMÉDICA CURSO: 1º CUATRIMESTRE: 2º CRONOGRAMA ASIGNATURA DESCRIPCIÓN DEL CONTENIDO DE LA SESIÓN SE- MA- NA SE- SIÓN 1 1 T1. La primera ley de la Termodinámica

Más detalles

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre Fase específica OPCIÓN A

IES Atenea (S.S. de los Reyes) Departamento de Física y Química. PAU Química. Septiembre Fase específica OPCIÓN A 1 PAU Química. Septiembre 2010. Fase específica OPCIÓN A Cuestión 1A. Considere las sustancias: cloruro de potasio, agua, cloro y sodio. a) Indique el tipo de enlace que presenta cada una de ellas. b)

Más detalles

Instituto Balseiro Protección Radiológica PRINCIPIOS DE DETECCIÓN DE LA RADIACION

Instituto Balseiro Protección Radiológica PRINCIPIOS DE DETECCIÓN DE LA RADIACION Pág. 1 de 31 PRINCIPIOS DE DETECCIÓN DE LA RADIACION INTRODUCCION Los detectores de radiaciones ionizantes pueden clasificarse en detectores inmediatos o retardados, según que la información suministrada

Más detalles

Sensor de humedad. Además estos sensores existen en formas tanto analógicas como digitales.

Sensor de humedad. Además estos sensores existen en formas tanto analógicas como digitales. Sensor de humedad Fundamentos básicos Un sensor de humedad es un dispositivo que mide la humedad relativa en un área dada, este puede ser utilizado tanto en interiores como en exteriores. Además estos

Más detalles

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III

DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III DEPARTAMENTO DE FÍSICA DE LA UNIVERSIDAD DE SONORA ORGANIZACIÓN DE LA MATERIA DE FÍSICA III HERMOSILLO, SONORA, OCTUBRE DEL 2005 NOMBRE: FISICA III CON LABORATORIO UNIDAD REGIONAL: CENTRO EJE BÁSICO DE

Más detalles

FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO

FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO FACULTAD DE CIENCIAS FISICO-MATEMATICAS DIVISION DE ESTUDIOS DE POSTGRADO DETECCION, MEDICION Y EVALUACION DE RIESGOS POR RADIACION IONIZANTE EN EL PROCESO DE SOLDADURA POR ARCO ELECTRICO T E S I S Que

Más detalles

Tomografía Computada. NIB Facultades de Medicina e Ingeniería. Ing. Daniel Geido

Tomografía Computada. NIB Facultades de Medicina e Ingeniería. Ing. Daniel Geido Tomografía Computada NIB Facultades de Medicina e Ingeniería Ing. Daniel Geido Introducción Desventajas de la radiografía convencional Los objetos son distorcionados. Los objetos a ser radografiados son

Más detalles

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos)

Theory Spanish (Costa Rica) El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Q3-1 El Gran Colisionador de Hadrones (Large Hadron Collider LHC) (10 puntos) Por favor asegúrese de leer las instrucciones generales del sobre adjunto antes de comenzar a resolver este problema. En este

Más detalles

Servicio de Radioterapia Hospital México. Juan Carlos Rivera C

Servicio de Radioterapia Hospital México. Juan Carlos Rivera C Servicio de Radioterapia Hospital México Juan Carlos Rivera C Tópicos de la presentación Aplicación del uso de las Radiaciones ionizantes en la Radioterapia. Como se desarrolla y quién respalda la metrología

Más detalles

LA MATERIA. Características de los átomos

LA MATERIA. Características de los átomos LA MATERIA Características de los átomos Años más tarde del modelo atómico de Rutherford (1911) se descubrió una nueva partícula en el núcleo, el neutrón. Esta fue descubierta por Chadwick en 1932, y se

Más detalles

TEMA 4 DETECCION DE RADIACION IONIZANTE Miguel Alcaraz Baños

TEMA 4 DETECCION DE RADIACION IONIZANTE Miguel Alcaraz Baños TEMA 4 DETECCION DE RADIACION IONIZANTE Miguel Alcaraz Baños Objetivos Generales 1. Explicar la detección como resultado de la interacción radiación-materia. 2. Distinguir entre radiación directa e indirectamente

Más detalles

Modelo Pregunta 1A a) b) Septiembre Pregunta A1.- a) b) c) d) Junio Pregunta 1A a) b) c) d) Solución. Modelo Pregunta 1B.

Modelo Pregunta 1A a) b) Septiembre Pregunta A1.- a) b) c) d) Junio Pregunta 1A a) b) c) d) Solución. Modelo Pregunta 1B. Modelo 2014. Pregunta 1A.- Cuando una muestra de átomos del elemento con Z = 19 se irradia con luz ultravioleta, se produce la emisión de electrones, formándose iones con carga +1. a) Escriba la configuración

Más detalles

ORGANIZACIÓN DOCENTE del curso 2013-14

ORGANIZACIÓN DOCENTE del curso 2013-14 ORGANIZACIÓN DOCENTE del curso 2013-14 1. DATOS GENERALES DE LA ASIGNATURA NOMBRE Detección experimental de radiaciones ionizantes PÁGINA WEB http://webct6.unican.es/webct/urw/ lc9140001.tp0/cobaltmainframe.do

Más detalles