Tema 4: Redes semánticas y marcos
|
|
|
- Víctor Manuel Poblete Villalobos
- hace 9 años
- Vistas:
Transcripción
1 Inteligencia Artificial 2 Curso Tema 4: Redes semánticas y marcos José A. Alonso Jiménez Francisco J. Martín Mateos José L. Ruiz Reina Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla IA CcIa Redes semánticas y marcos 4.
2 Modelos cognitivo Modelo de procesador cognitivo Referencia: Fernández 00 Cap. 9. IA CcIa Redes semánticas y marcos 4.2
3 Modelos cognitivo Experimento de Collins y Quillian (96) Referencia: Fernández 00 Cap. 9. IA CcIa Redes semánticas y marcos 4.3
4 Modelos cognitivo Ejemplo de red semántica Referencia: Fernández 00 Cap. 9. IA CcIa Redes semánticas y marcos 4.4
5 Redes semánticas Ejemplo de red semántica inicio es_un persona ciudad sevilla es_un es_un estado soltero alumno profesor estado casado es_un es_un es_un es_un juan edad luis edad estado pablo pedro edad ciudad edad 9 24 casado 44 mairena 47 IA CcIa Redes semánticas y marcos 4.5
6 Redes semánticas Representación % Relaciones entre clases: es_un(persona,inicio). es_un(alumno,persona). es_un(profesor,persona). % Relaciones entre instancias y clases: inst(juan,alumno). inst(luis,alumno). inst(pablo,profesor). inst(pedro,profesor). % Propiedades de clases: prop(persona,ciudad,sevilla). prop(alumno,estado,soltero). prop(profesor,estado,casado). % Propiedades de instancias: prop(juan,edad,9). prop(luis,edad,24). prop(luis,estado,casado). prop(pablo,edad,44). prop(pablo,ciudad,mairena). prop(pedro,edad,47). IA CcIa Redes semánticas y marcos 4.6
7 Redes semánticas Razonamiento Sesión?- propiedades_rs(luis,p). P = [ciudad:sevilla, edad:24, estado:casado] Definición propiedades_rs(inst,props) :- props(inst,p_especificas), inst(inst,clase), herencia_rs(clase,p_especificas,props). props(x,props) :- findall(atr:valor,prop(x,atr,valor),props). herencia_rs(inicio,props,props). herencia_rs(clase,p_actuales,props) :- props(clase,p_generales), actualiza(p_actuales,p_generales,n_p_actuales), es_un(clase,super_clase), herencia_rs(super_clase,n_p_actuales,props). actualiza(props,[],props). actualiza(p_actuales,[atr:_valor P_Generales],Props) :- member(atr:_v,p_actuales), actualiza(p_actuales,p_generales,props). actualiza(p_actuales,[atr:valor P_Generales], [Atr:Valor Props]) :- not(member(atr:_v,p_actuales)), actualiza(p_actuales,p_generales,props). IA CcIa Redes semánticas y marcos 4.7
8 Redes semánticas Elementos de la representación Las instancias se representan por constantes Las clases se representan por constantes Las relaciones clase superclase se representan por hechos de la forma es un(<clase>,<super-clase>) Las relaciones instancia clases se representan por hechos de la forma inst(<instancia>,<clase>) Cada propiedad se representa por un predicado binario de la forma prop(<instancia o clase>,<propiedad>,valor>) La constante inicio representa la clase inicial de la jerarquía Las propiedades de una instancia es una lista de pares atributo valor IA CcIa Redes semánticas y marcos 4.8
9 Redes semánticas Comentarios Independencia del orden de las cláusulas en las propiedades específicas Razonamiento sobre clases, p.e. Cúales son las subclases de persona?- es_un(x,persona). X = alumno ; X = profesor ; No Especificación declarativa de la estrategia de herencia Posibilidad de implementar estrategias de herencia múltiple IA CcIa Redes semánticas y marcos 4.9
10 Marcos Ejemplo de marco inicio es_un persona ciudad: sevilla es_un es_un alumno profesor estado: soltero estado: casado inst inst inst inst juan luis pablo pedro edad: 9 edad: 24 estado: casado edad: 44 ciudad: mairena edad: 47 IA CcIa Redes semánticas y marcos 4.0
11 Marcos Representación % Clases; clase(persona,inicio,[ciudad:sevilla]). clase(alumno,persona,[estado:soltero]). clase(profesor,persona,[estado:casado]). % Instancias: instancia(juan,alumno,[edad:9]). instancia(luis,alumno,[edad:24,estado:casado]). instancia(pablo,profesor,[edad:44,ciudad:mairena]). instancia(pedro,profesor,[edad:47]). Razonamiento Sesión?- propiedades_marco(luis,p). P = [ciudad:sevilla, edad:24, estado:casado] Definición propiedades_marco(inst,props) :- instancia(inst,clase,propsinst), herencia_marco(clase,propsinst,props). herencia_marco(inicio,props,props). herencia_marco(clase,p_actuales,props) :- clase(clase,super_clase,p_generales), actualiza(p_actuales,p_generales,n_p_actuales), herencia_marco(super_clase,n_p_actuales,props). IA CcIa Redes semánticas y marcos 4.
12 Marcos Elementos de la representación Las instancias se representan por constantes Las clases se representan por constantes Cada propiedad se representa por una igualdad de la forma <atributo>:<valor> Las relaciones clase superclase se representan por hechos de la forma clase(<clase>,<sup-clase>,[<prop->,..,<prop-n>]) Las relaciones instancia clase se representan por hechos de la forma instancia(<clase>,<sup-clase>,[<prop->,..,<prop-n>]) La constante inicio representa la clase inicial de la jerarquía Las propiedades de una instancia es una lista de pares atributo valor IA CcIa Redes semánticas y marcos 4.2
13 Marcos Comentarios Independencia del orden de las cláusulas en las propiedades específicas Razonamiento sobre clases, p.e. Cúales son las subclases de persona?- clase(x,persona,_). X = alumno ; X = profesor ; No Especificación declarativa de la estrategia de herencia Posibilidad de implementar estrategias de herencia múltiple IA CcIa Redes semánticas y marcos 4.3
14 Bibliografía Flach, P. Simply Logical (Intelligent Reasoning by Example) (John Wiley, 994) Cap. 4: Representing structured knowledge. Fernández, G. Representación del conocimiento en sistemas inteligentes (Universidad Politécnica de Madrid, 2000) Cap. 9. La psicología cognoscitiva Lucas, P. y Gaag, L.v.d. Principles of Expert Systems (Addison Wesley, 99). Cap. 4: Frames and inherance. Poole, D.; Mackworth, A. y Goebel, R. Computational Intelligence (A Logical Approach) (Oxford University Press, 998) Cap. 5: Representing knowledge Russell, S. y Norvig, P. Inteligencia artificial (Un enfoque moderno) (Prentice Hall Hispanoamericana, 996) Cap. 0: Sistemas de razonamiento lógico IA CcIa Redes semánticas y marcos 4.4
Tema 3: Representación del conocimiento estructurado
Inteligencia Artificial II Curso 2003 2004 Tema 3: Representación del conocimiento estructurado José A. Alonso Jiménez Carmen Graciani Díaz Francisco Jesús Martín Mateos José Luis Ruiz Reina Dpto. de Ciencias
Tema 3: Sistema inicial de representación y razonamiento
Razonamiento Automático Curso 999 2000 Tema 3: Sistema inicial de representación y razonamiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
Tema 2: Inteligencia computacional y conocimiento
Razonamiento Automático Curso 999 2000 Tema 2: Inteligencia computacional y conocimiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial
Tema 1: Agentes inteligentes: Representación y razonamiento
Inteligencia Artificial 2 Curso 2000 0 Tema : Agentes inteligentes: Representación y razonamiento José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Francisco J. Martín Mateos Dpto. de Ciencias de la Computación
Fundamentos de Inteligencia Artificial
Área de Ingeniería Telemática Universidade de Vigo Fundamentos de Inteligencia Artificial Manuel Ramos Cabrer (Curso 2010/11) Objetivos Introducción a la disciplina de la Inteligencia Artificial desde
Tema 4: Resolución de problemas de espacios de estados
Programación lógica Curso 2004 05 Tema 4: Resolución de problemas de espacios de estados José A. Alonso Jiménez [email protected] http://www.cs.us.es/ jalonso Dpto. de Ciencias de la Computación
Tema 2: Representación de problemas como espacios de estados
Tema 2: Representación de problemas como espacios de estados José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Programación lógica ( )
1 / 48 Programación lógica (2008 09) Tema 4: Resolución de problemas de espacios de estados José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad
Tema 3: Técnicas básicas de búsqueda para la resolución de problemas
Tema 3: Técnicas básicas de búsqueda para la resolución de problemas José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos Departamento de Ciencias de la Computación e Inteligencia Artificial
Tema 3: Demostraciones proposicionales
Razonamiento Automático Curso 2000 200 Tema 3: Demostraciones proposicionales José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Métodos de Inteligencia Artificial
Métodos de Inteligencia Artificial L. Enrique Sucar (INAOE) [email protected] ccc.inaoep.mx/esucar Tecnologías de Información UPAEP Objetivos Estudiar algunas de las metodologías de Inteligencia Artificial,
Tema 1: Introducción a la Inteligencia Artificial
Introducción a la Inteligencia Artificial Curso 2002 2003 Tema : Introducción a la Inteligencia Artificial José A. Alonso Jiménez Francisco J. Martín Mateos Dpto. de Ciencias de la Computación e Inteligencia
Inteligencia Artificial e Ingeniería del Conocimiento
Inteligencia Artificial e Ingeniería del Conocimiento Departamento de Ciencias de la Computación e Inteligencia Artificial Curso 2008/2009 Curso: 4 Cuatrimestre: 1 Tipo: Troncal Nº créditos: 4,5T + 4,5
1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA PRESENTACIÓN
1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: (Créditos) SATCA 1 Programación Lógica y Funcional Ingeniería en Sistemas Computacionales SCC-1019 2 2 4 2.- PRESENTACIÓN
Fundamentos de Inteligencia Artificial. E. Morales/L.E. Sucar CCC, INAOE
Fundamentos de Inteligencia Artificial E. Morales/L.E. Sucar CCC, INAOE Objetivos Estudiar los fundamentos y las principales técnicas de resolución de problemas de la Inteligencia Artificial Identificar
Tema 2: Equivalencias y formas normales
Lógica informática Curso 2003 04 Tema 2: Equivalencias y formas normales José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Tema 5: Conceptualización relacional
Razonamiento Automático Curso 2000 200 Tema 5: Conceptualización relacional José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Tema 6: Programación lógica de segundo orden
Programación Declarativa Curso 2000 200 Tema 6: Programación lógica de segundo orden José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Tema 2: Deducción natural proposicional
Lógica informática Curso 2004 05 Tema 2 Deducción natural proposicional José A. Alonso Jiménez Andrés Cordón Franco Grupo de Lógica Computacional Dpto. de Ciencias de la Computación e Inteligencia Artificial
Inteligencia Artificial II: Conocimiento, Razonamiento y Planeación. Presentación del Curso.
Inteligencia Artificial II: Conocimiento, Razonamiento y Planeación. Presentación del Curso. Dr. Alejandro Guerra-Hernández Departamento de Inteligencia Artificial Universidad Veracruzana Facultad de Física
Programa de estudios por competencias Inteligencia Artificial I
Programa de estudios por competencias Inteligencia Artificial I 1. Identificación del curso Programa educativo: Licenciatura en Ingeniería en Computación Unidad de aprendizaje: Inteligencia Artificial
1. DATOS DE LA ASIGNATURA. Nombre de la Asignatura: Carrera: Clave de la Asignatura: SACTA: PRESENTACION. Caracterización de la asignatura.
1. DATOS DE LA ASIGNATURA Nombre de la Asignatura: Carrera: Clave de la Asignatura: Inteligencia Artificial Ingeniería en Informática SID-1305 SACTA: 2-3-5 2. PRESENTACION Caracterización de la asignatura.
Sistemas Expertos. Unidad de Aprendizaje: Unidad de Competencia I: Inteligencia Artificial y Sistemas Expertos. M. en C. Edith Cristina Herrera Luna
Ingeniería en Computación Unidad de Aprendizaje: Sistemas Expertos Unidad de Competencia I: Inteligencia Artificial y Sistemas Expertos Mayo 2015 M. en C. Edith Cristina Herrera Luna SISTEMAS EXPERTOS
Tema 5: Procesamiento de lenguaje natural
Programación lógica Curso 2003 04 Tema 5: Procesamiento de lenguaje natural José A. Alonso Jiménez [email protected] http://www.cs.us.es/ jalonso Dpto. de Ciencias de la Computación e Inteligencia
TEC SATCA 1 : Carrera:
1. Datos Generales de la asignatura Nombre de la asignatura: Clave de la asignatura: SATCA 1 : Carrera: Inteligencia Artificial I TEC-1301 2-2-4 Ingeniería en Tecnologías de la Información y Comunicaciones
ASIGNATURA: INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL.
ASIGNATURA: INTRODUCCIÓN A LA INTELIGENCIA ARTIFICIAL. 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Introducción a la Inteligencia Artificial Línea de trabajo: Desarrollo y aplicación de tecnologías
Tema 7: Aprendizaje de árboles de decisión
Inteligencia Artificial 2 Curso 2002 03 Tema 7: Aprendizaje de árboles de decisión José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Francisco J. Martín Mateos José L. Ruiz Reina Dpto. de Ciencias de
Departamento Ingeniería en Sistemas de Información
ASIGNATURA: INTELIGENCIA ARTIFICIAL MODALIDAD: Cuatrimestral DEPARTAMENTO: ING. EN SIST. DE INFORMACION HORAS SEM.: 6 horas AREA: MODELOS HORAS/AÑO: 96 horas BLOQUE TECNOLOGÍA APLICADA HORAS RELOJ 72 NIVEL:
PROYECTO DOCENTE ASIGNATURA: "Inteligencia Artificial"
PROYECTO DOCENTE ASIGNATURA: "Inteligencia Artificial" Grupo: Clases Teór. Inteligencia Artificial Grupo 1 ING. COMPUTADORES(961083) Titulacion: Grado en Ingeniería Informática-Ingeniería de Computadores
SECUENCIA DIDÁCTICA. Nombre de curso: Inteligencia Artificial Clave de curso: COM2508C11
SECUENCIA DIDÁCTICA Nombre de curso: Inteligencia Artificial Clave de curso: COM2508C11 Antecedente: Ninguno Clave de antecedente: Ninguna Módulo Competencia de Módulo: Proponer y aplicar soluciones e
Guía de estudio para el examen de admisión - Convocatoria 2013
Guía de estudio para el examen de admisión - Convocatoria 2013 Tabla de contenido Descripción...3 1. Metodología de la Investigación...3 2. Matemáticas computacional...4 4. Algoritmos y programación...4
Tema 1: Sintaxis y semántica de la lógica proposicional
Lógica informática Curso 2003 04 Tema : Sintaxis y semántica de la lógica proposicional José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Redes Semánticas. IIMAS Inteligencia Artificial. Alumno: Vicente Iván Sánchez Carmona Profesora: Dr. Ana Lilia Laureano
Redes Semánticas IIMAS Inteligencia Artificial Alumno: Vicente Iván Sánchez Carmona Profesora: Dr. Ana Lilia Laureano Representación del conocimento El problema de cómo almacenar el conocimiento a ser
Tema 4: Búsqueda informada mediante técnicas heurísticas
Tema 4: Búsqueda informada mediante técnicas heurísticas José Luis Ruiz Reina José Antonio Alonso Franciso J. Martín Mateos 1 Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad
Lógica matemática y fundamentos ( )
1 / 28 Lógica matemática y fundamentos (2016 17) Tema 2: Deducción natural proposicional José A. Alonso Jiménez María J. Hidalgo Doblado Grupo de Lógica Computacional Departamento de Ciencias de la Computación
Inteligencia Artificial
Inteligencia Artificial Conocimiento y razonamiento 4. Otras representaciones de conocimiento Dr. Edgard Iván Benítez Guerrero 1 Representación del conocimiento La inteligencia de un agente radica principalmente
Tema 3: Técnicas básicas de
Inteligencia Artificial Curso 999 2000 Tema 3: Técnicas básicas de búsqueda José A. Alonso Jiménez Francisco J. Martín Mateos Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de
Anexo 3: Implementaciones en Lisp
Anexo 3: Implementaciones en Lisp José A. Alonso Jiménez Carmen Graciani Díaz Francisco Jesús Martín Mateos José Luis Ruiz Reina Dpto. Ciencias de la Computación e Inteligencia Artificial UNIVERSIDAD DE
Tema 4: Definición de funciones
Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Constantes como patrones Variables como
Tema 6: Funciones recursivas
Tema 6: Funciones recursivas Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Tema 6: Funciones
Tema 3: Tipos y clases
Tema 3: Tipos y clases Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Tema 3: Tipos y clases
Análisis Espacial aplicando Técnicas de Inteligencia Artificial
Análisis Espacial aplicando Técnicas de Inteligencia Artificial OBJETIVO. Proporcionar al estudiante técnicas variadas de inteligencia artificial para el tratamiento de datos espaciales y presentar cómo
Tema 3: Tipos y clases
Tema 3: Tipos y clases Programación declarativa (2010 11) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla Tema 3: Tipos y clases
A16. Planificación automática
MÁSTER UNIVERSITARIO EN INVESTIGACIÓN EN INTELIGENCIA ARTIFICIAL UNIVERSIDAD INTERNACIONAL MENÉNDEZ PELAYO Este documento puede utilizarse como documentación de referencia de esta asignatura para la solicitud
Lógica y Programación
Lógica y Programación Sintaxis y semántica de la lógica proposicional Antonia M. Chávez, Carmen Graciani, Agustín Riscos Dpto. Ciencias de la Computacion e Inteligencia Artificial Universidad de Sevilla
(V2.0) SILABO CS261T.
Sociedad Peruana de Computación Facultad de Computación Programa Profesional de (Ciencia de la Computación) (V2.0) SILABO CS261T. Inteligencia Artificial (Obligatorio) 2010-1 0. DATOS GENERALES 0.1 CARRERA
Tema 8: Árboles de decisión
Introducción a la Ingeniería del Conocimiento Curso 2004 2005 Tema 8: Árboles de decisión Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL. ASIGNATURA Inteligencia Artificial II. Ingeniería Aplicada
UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA SUR DEPARTAMENTO ACADÉMICO DE SIS COMPUTACIONALES INGENIERÍA EN TECNOLOGÍA COMPUTACIONAL ASIGNATURA Inteligencia Artificial II ÁREA DE Ingeniería Aplicada CONOCIMIENTO
Representación de Conocimientos
Representación de Conocimientos Asunción Gómez-Pérez [email protected] Despacho 2104 Departamento de Inteligencia Artificial Facultad de Informática Universidad Politécnica de Madrid Campus de Montegancedo
ECSDI - Ingeniería del Conocimiento y Sistemas Distribuidos Inteligentes
Unidad responsable: Unidad que imparte: Curso: Titulación: Créditos ECTS: 2015 270 - FIB - Facultad de Informática de Barcelona 723 - CS - Departamento de Ciencias de la Computación GRADO EN INGENIERÍA
Problemas de Satisfacción de Restricciones
Problemas de Satisfacción de estricciones José Luis uiz eina José Antonio Alonso Jiménez Franciso J. Martín Mateos María José Hidalgo Doblado Dpto. Ciencias de la Computación e Inteligencia Artificial
Tema 4: Definición de funciones
Tema 4: Definición de funciones Informática (2010 11) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla 2 / 30 Tema 4: Definición
Tema 8: Formas normales.
Lógica informática Curso 2003 04 Tema 8: Formas normales. Cláusulas José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla LI 2003
Tema 3: Tipos y clases
Tema 3: Tipos y clases Informática (2016 17) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad de Sevilla 2 / 32 IM Tema 3: Tipos y clases
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL
INTRODUCCION A LA INTELIGENCIA ARTIFICIAL MODULO 3- REPRESENTACION DEL CONOCIMIENTO Referencias: Inteligencia Artificial Russell and Norvig Cap.6,7,8, 9,10.. Artificial Intellingence Nils Nilsson Chap.
Lógica y Programación
Lógica y Programación Diagramas de Decisión Binarios J.-A. Alonso, F.-J. Martín-Mateos, J.-L. Ruiz-Reina Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Lógica y Programación
Sistemas Expertos Unidad 2. Prof. Francklin Rivas Echeverría Universidad de Los Andes Laboratorio de Sistemas Inteligentes
Sistemas Expertos Unidad 2 Prof. Francklin Rivas Echeverría Universidad de Los Andes Laboratorio de Sistemas Inteligentes 2005 Sistemas basados en conocimiento Los Sistemas basados en conocimiento constituyen
Tema 9: Modelos de Herbrand
Lógica informática Curso 2003 04 Tema 9: Modelos de Herbrand José A. Alonso Jiménez Andrés Cordón Franco Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla LI 2003 04
Tema 2: Introducción a la programación con Haskell
Tema 2: Introducción a la programación con Haskell Programación declarativa (2009 10) José A. Alonso Jiménez Grupo de Lógica Computacional Departamento de Ciencias de la Computación e I.A. Universidad
Proyecto: Programación Declarativa: Lenguaje Prolog
Facultad de Ciencias de la Administración Licenciatura en Sistemas Proyecto: Programación Declarativa: Lenguaje Prolog Materia Optativa para Régimen de Créditos Profesores: Lic. Lidia Graciela Denegri
Tema 5: Problemas de satisfacción de restricciones
Tema 5: Problemas de satisfacción de restricciones José Luis uiz eina José Antonio Alonso Franciso J. Martín Mateos María José Hidalgo Departamento de Ciencias de la Computación e Inteligencia Artificial
Las redes semánticas intentan trasladar esa afirmación a un formalismo Una red semántica será un grafo donde:
Redes Semánticas Redes semánticas La lógica como lenguaje de representación tiene dificultades prácticas Son necesarios mecanismos mas intuitivos y fáciles de usar La psicología cognitiva afirma: La representación
Tema 2: Listas, aritmética y operadores
Programación Declarativa Curso 200 2002 Tema 2: Listas, aritmética y operadores José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad
Tema 7: Aplicaciones de PD: problemas de grafos y el problema de las reinas
Programación declarativa Curso 2003 04 Tema 7: Aplicaciones de PD: problemas de grafos y el problema de las reinas Grupo de Programación Declarativa {José A. Alonso, Andrés Cordón y Miguel A. Gutiérrez}
Redes Semánticas. Redes semánticas. Limitaciones de las redes semánticas. Notas
Redes semánticas Redes Semánticas La lógica como lenguaje de representación tiene dificultades prácticas Son necesarios mecanismos mas intuitivos y fáciles de usar La psicología cognitiva afirma: La representación
Tema 1: Revisión de Prolog
Razonamiento Automático Curso 999 2000 Tema : Revisión de Prolog José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Programación Declarativa Curso Tema 3: Estructuras. José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo
Programación Declarativa Curso 200 2002 Tema 3: Estructuras José A. Alonso Jiménez Miguel A. Gutiérrez Naranjo Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla PD 200
Inteligencia en Redes de Comunicaciones - 03 Sistemas Basados en Conocimiento
El objetivo de este Tema 3 es presentar los conceptos principales de los llamados Sistemas Basados en Conocimiento. Se empieza presentando las definiciones, razón de ser y fundamentos de este tipo de sistemas.
Tema AA-4: Sesgo inductivo
Razonamiento Automático Curso 2002 2003 Tema AA-4: Sesgo inductivo Miguel A. Gutiérrez Naranjo José A. Alonso Jiménez Dpto. de Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla
Inteligencia Artificial
Inteligencia Artificial Guía de Aprendizaje Información al estudiante 1. Datos Descriptivos Asignatura Materia Departamento responsable Inteligencia Artificial Ingeniería del Software, Sistemas Informáticos
