CONTROL DISTRIBUIDO PRÁCTICA
|
|
|
- Dolores Ramírez Medina
- hace 9 años
- Vistas:
Transcripción
1 CONTROL DISTRIBUIDO PRÁCTICA 1 ANTONIO LÓPEZ BENÍTEZ DNI: Y
2 Ejercicio 1: Azul: Salida a través de una variable del espacio de trabajo. Rojo: A través de un fichero de simulación.mat. Señal de tipo escalón. Tren de pulsos.
3 Senoide. Señal definida por una variable del espacio de trabajo. Señal definida por un fichero de entra fichero.mat.(en la primera gráfica no se aprecia la linea ya que se encuentra en el limite, pero realmente son iguales).
4 Impulso. Esquema Simulink.
5 Ejercicio 2: Esquema Simulink. b.1)
6 b.2) b.3)
7 b.4) b.5)
8 b.6) Ejercicio 3: Modelo Simulink
9 Evolución de presas frente a depredadores. Presas
10 Depredadores Cuestionario: C1) Indique tres formas de definir una señal de entrada a un sistema en Simulink. Explique como diseñaría una señal de entrada definida por la suma de una senoidal y un escalón. Las tres formas son: -. Se busca un bloque de la señal que queremos definir en la librería de simulink y una vez la hayamos encontrado arrastramos el icono hasta el fichero.mdl. A continuación le daremos los valores deseados. -. Desde el workspace de matlab, creando una tabla de valores manualmente. -. Desde un fichero. Para diseñar ese tipo de señal, lo más facil sería crear ambas señales base(senoidal y escalón) mediante la opción de la librería simulink y a continuación sumarlas mendiante un bloque sum.
11 C2) Cuál es la diferencia entre un parámetro y una entrada de un sistema? Un parámetro es algo característico del sistema como podría ser la capacidad del condensador o el valor de la resistencia. Por otro lado, una entrada de un sistema por el contrario es algo mas general, un ejemplo podría ser un fichero ya creado como lo es el fichero_vin del segundo ejercicio. C3) Qué datos son necesarios para realizar una simulación de un sistema dinámico en un determinado periodo de tiempo? Identifique estos datos en el apartado 2. Los datos necesarios son las señales de entrada, y las ecuaciones que definen el comportamiento del sistema. Los parámetros resistencia y condensador, la señal de entrada que viene dada por el fichero_vin y la señal de salida que la proporciona el fichero_vout. C4) Defina las entradas y las salidas de un sistema descrito por un circuito RC. La entrada seria la tensión aplicada en un momento concreto de tiempo al circuito y la salida es la carga del condensador en ese mismo instante. En el ejercicio 2, como hemos dicho en el apartado anterior, la salida viene dada por el fichero_vout y la entrada por el fichero_vin. C5) Cómo afecta a la salida de un circuito RC frente a una entrada escalón la amplitud de la misma? El valor de la salida va a tender a aproximarse al valor de la amplitud del escalón. C6) Cómo afecta a la salida de un circuito RC frente a una entrada senoide la amplitud, la frecuencia y el valor de continua de la misma? La impedancia de un condensador viene dada por una impedancia de 1/(jC), por tanto afectará la salida retrasandola a la mitad del periodo de la fase con respecto a la señal de entrada del sistema. Si la frecuencia es muy grande, la señal oscilará muy rápido, y el condensador no tendrá tiempo de cargarse. Si por el contrario la frecuencia es pequeña, el condensador tendrá tiempo de cargarse y la señal de salida será sumamente parecida a la señar de entrada.
12 C7) Cómo afecta a la salida de un circuito RC frente a una entrada escalón el valor de la resistencia y de la capacidad? No afectaran al valor de la salida, ya que la resistencia y el condensador son parámetros del cirucito y por consiguiente solo afectan al valor de la frecuencia de corte. C8) Depende el valor final de la tensión que cae en el condensador de un circuito RC (Vout) del valor inicial? No depende, tiende a estabilizarse en el valor de entrada. C9) Defina el estado de un sistema. Cuál es el estado de un circuito RC? Y de un sistema definido por la ecuaciones de Lotka Volterra? Indique la relación entre el estado de un sistema y los integradores usados para modelarlo en Simulink. El estado de un sistema es una descripción del mismo en un instante concreto de tiempo. El estado de un circuito RC queda definido por su ecuación: (dvout/dt=1/r*c(vin-vout) Del mismo modo el estado para un sistema de Lotka Volterra viene dado por: dx/dt= alfa*x beta*x*y dy/dt= -gamma*y +delta*x*y Se ha utilizado un integrador por cada estado. C10) Cuales son las entradas y las salidas de un sistema descrito por las ecuaciones de Lotka Volterra? Las entradas del sistema son las contantes usadas en la definición del estado y los valores iniciales de la poblaciones de presas y depredadores. Por otra parte la salida viene dada por los valores de las poblaciones de presas y depredadores. C11) Indique el efecto de las poblaciones iníciales en un sistema descrito por las ecuaciones de Lotka Volterra. El número de individuos de cada especie influirá en la evolución de ambas especies, esto se debe a que si hay muchos depredadores y pocas presas, la continuación de las dos especies se vería en peligro, ya que podrían desaparecer las presas y posteriormente los depredadores al quedarse sin alimento. Es por ello que la perpetuación de ambas especies viene ligada al número de individuos de ambas especies. C12) Es posible que se llegue a la aniquilación de una de las dos
13 especies? Se trata de algo sumamente complejo, ya que las poblaciones de ambas especies sufren una serie de altibajos, en función de la población de la especie contraria de forma que resulta muy dificil que se produzca la extinción de alguna de las especies. C13) Qué ocurriría si no hubiese presas? Y depredadores? Si no existe una de las dos especies se rompe el equilibrio nombrado en el apartado anterior, lo cual provocaría la extinción de los depredadores si no hubiese presas, y en el caso de no haber depredadores imagino que las presas se estabilizarián con respecto a su fuente de alimentos. C14) Estime el tiempo dedicado a realizar esta práctica y su memoria. Aproximadamente le he dedicado unas 11 horas. (Espero que las siguientes no tarde tanto :P).
Práctica 1 Introducción y fundamentos
Práctica 1 Introducción y fundamentos Apartado 1 Sumideros, fuentes y el espacio de trabajo: Entradas y salidas de Simulink. En esta práctica se hará un repaso de las diferentes formas de definir los parámetros
INFORMÁTICA MATLAB GUÍA 5 Simulink
1. INTRODUCCIÓN Es un entorno de diagramas de bloques orientados a la simulación y generación de código en varios campos de la ciencia. Se pueden simular sistemas de tipo mecánico, eléctrico, electrónico
Técnicas Avanzadas de Control Memoria de ejercicios
Memoria de ejercicios Curso: 2007/08 Titulación: Ingeniero Técnico Industrial Especialidad: Electrónica Industrial Alumno: Adolfo Hilario Tutor: Adolfo Hilario Caballero Índice general Presentación. 2..
PRÁCTICA Nº 2 INTRODUCCIÓN A SIMULINK DE MATLAB
UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO EL SABINO PROGRAMA DE INGENIERÍA QUÍMICA DPTO DE MECÁNICA Y TECNOLOGÍA DE LA PRODUCCIÓN DINÁMICA Y CONTROL DE PROCESOS PRÁCTICA
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ ( ) MARÍA ALEJANDRA MEDINA OSPINA ( ) RESUMEN
GANANCIA EN CIRCUITOS AMPLIFICADORES. LAURA MAYERLY ÁLVAREZ JIMÉNEZ (20112007038) MARÍA ALEJANDRA MEDINA OSPINA (20112007050) RESUMEN Observar la amplificación del transistor mediante un análisis y diseño
Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales
"#$%&'()*&+,-#.+#'(/$0%1+*1(%(%( 4*50*.%.,%"(&%#,16.+#*"( 71%'(%(8%#.*&*9:'(&%#,16.+#'(( Prácticas - PSPICE Práctica 5: Amplificadores Operacionales APARTADOS OBLIGATORIOS DE LA PRÁCTICA "#$%&'()*+,-.-*-##(
PRACTICA 9: Convertidores ADC (1)
PRACTICA 9: Convertidores ADC (1) 1 Introducción 1.1 Convertidor de Rampa Digital 1.2 Convertidor de Seguimiento 1.3 Simulaciones Simulink 1 Introducción El objetivo de esta práctica consiste en familiarizarse
2. Calcule la frecuencia de oscilación del oscilador en doble T de la figura 2.
1/6 ELECTRÓNICA ANALÓGICA II Guía de problemas Nº 9 Osciladores Problemas básicos 1. El oscilador en Puente de Wien de la figura 1 a) tiene dos potenciómetros que le permiten variar la frecuencia de oscilación.
Componentes Electrónicos. Prácticas - PSPICE. Práctica 5: Amplificadores Operacionales
"#$%&'()*&+,-#.+#'(/$0%+*(%(&#%( *0*.%.,%"(&%#,.+#*"( %'(%(8%#.*&*9:'(&%#,.+#'(( Prácticas - PSPICE Práctica : Amplificadores Operacionales PRÁCTICA COMPLETA "#$%&'()*+,-.-*-##( Práctica : Amplificadores
FORMATO GUIA LABORATORIO CONTROL E INSTRUMENTACIÓN TITULO DEL LABORATORIO MATLAB HERRAMIENTA DE ANÁLISIS Y CIRCUITOS DE CONTROL DE POTENCIA.
FORMATO GUIA LABORATORIO ASIGNATURA ELECTRONICA DE POTENCIA CÓDIGO 1803 AREA ING. APLICADA LINEA CONTROL E INSTRUMENTACIÓN TITULO DEL LABORATORIO MATLAB HERRAMIENTA DE ANÁLISIS Y CIRCUITOS DE CONTROL DE
UNIDAD 2: EL AMPLIFICADOR OPERACIONAL - TEORÍA
CURSO: ELECTRÓNICA ANALÓGICA UNIDAD 2: EL AMPLIFICADOR OPERACIONAL PROFESOR: JORGE ANTONIO POLANÍA La electrónica analógica se ha visto enriquecida con la incorporación de un nuevo componente básico: el
GUIA DE LABORATORIO Nº5
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Física FI2003 - Métodos Experimentales Semestre otoño 2009 Profesores: Denise Criado, Claudio Falcón, Nicolás Mujica GUIA
Práctica 2. Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo
Práctica 2 Introducción a la simulación de sistemas mediante Simulink. Sistemas de primer, segundo y tercer orden. Objetivo En esta práctica se pretende que el alumno tome contacto con una herramienta
1 Tablero maestro 1 Tarjeta de circuito impreso EB Multímetro 1 Osciloscopio 1 Generador de funciones. Tabla 1.1. Materiales y equipo.
Contenido Facultad: Estudios Tecnologicos Escuela: Electronica y Biomedica Asignatura: Electrónica de Potencia Curvas de Operación y Funcionamiento del GTO. Objetivos Específicos Visualizar las formas
ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2011/2012 SOLUCIÓN
ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2011/2012 SOLUCIÓN SUGERENCIA: Intenta contestar a cada cuestión y analizar el porqué de cada
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser
FISICA GENERAL III 2012 Guía de Trabajo Practico No 9 ANÁLISIS DE CIRCUITOS RL, RC Y RCL SERIE Y PARALELO. R. Comes y R. Bürgesser Objetivos: Estudiar el comportamiento de distintos elementos (resistores,
Amplificador en Emisor Seguidor con Autopolarización
Practica 3 Amplificador en Emisor Seguidor con Autopolarización Objetivo El objetivo de la práctica es el diseño y análisis de un amplificador colector común (emisor seguidor). Además se aplicara una señal
MATLAB. (PARTE III) APLICACIONES EN CONTROL CON SIMULINK SIMULINK
UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA DEPARTAMENTO DE INGENIERIA ELECTRONICA NUCLEO DE INSTRUMENTACION CONTROL Y SEÑALES LABORATORIO DE INSTRUMENTACION Y CONTROL MATLAB. (PARTE III) APLICACIONES
Aplicaciones de los circuitos RC: Diferenciadores, integradores y filtros de frecuencia
Aplicaciones de los circuitos RC: Diferenciadores, integradores y filtros de frecuencia 21 de mayo de 2008 1. Objetivos Estudio de la carga y descarga de un condensador. Construcción de un diferenciador
Diseño de Estrategias de Control para un Estanque Piloto
Ejercicio Nº 1 EL42D: Control de Sistemas. (Semestre Otoño 2008) Profesora: Dra. Doris Sáez H. Ayudante: Gabriel Moreno C. ([email protected]) Diseño de Estrategias de Control para un Estanque Piloto
EXAMEN DE CIRCUITOS NOMBRE: TEST DE CIRCUITOS 1ª PREGUNTA RESPUESTA
NOMRE: TEST DE CIRCUITOS 1ª PREGUNT RESPUEST El circuito de la figura está formado por 12 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales
PRÁCTICA NÚMERO 3. ESTUDIO DEL CIRCUITO RL.
PRÁCTICA NÚMERO 3. ESTUDIO DEL CIRCUITO RL. 3.1. Introducción Teórica. 3.1.1. El inductor o bobina El tercer componente pasivo que vamos a analizar es el que se conoce como inductor o bobina, que consiste
Trabajo opcional tema 4: modulación
Trabajo opcional tema 4: modulación Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 4: modulación angular ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema completo....
El amplificador diferencial (AD) es un circuito utilizado para amplificar la diferencia de dos señales v1 y v2 como se indica en la figura.
CURSO: ELECTRÓNICA ANALÓGICA UNIDAD I: EL AMPLIFICADOR DIFERENCIAL PROFESOR: JORGE ANTONIO POLANÍA El amplificador diferencial es un circuito que constituye parte fundamental de muchos amplificadores y
1.- Tensión colector emisor V CE del punto Q de polarización. a) 10,0 V b) 8,0 V c) 6,0 V
C. Problemas de Transistores. C1.- En el circuito amplificador de la figura se desea que la tensión en la resistencia R L pueda tomar un valor máximo sin distorsión de 8 V. Asimismo, se desea que dicha
Parámetros de Sistemas de Comunicaciones Banda Base
Parámetros de Sistemas de Comunicaciones Banda Base Objetivo El alumno identificará los principales parámetros empleados para evaluar el desempeño de un sistema de comunicaciones banda base. Estos parámetros
SISTEMAS DE ECUACIONES DIFERENCIALES
SISTEMAS DE ECUACIONES DIFERENCIALES Tanques interconectados Dos grandes tanques, cada uno de los cuales contiene 24 litros de una solución salina, están conectados entre sí mediante unos tubos. El primer
Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo.
Convolución: Un proceso natural en los sistemas lineales e invariantes en el tiempo. Introducción. En este documento se describe como el proceso de convolución aparece en forma natural cuando se trata
A. R D. 4R/5 B. 2R E. R/2 C. 5R/4 F. Diferente
TEST 1ª PREGUNT RESPUEST El circuito de la figura está formado por 10 varillas conductoras de igual material y sección, con resistencia R. La resistencia equivalente entre los terminales y B será igual
PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO
PRÁCTICA 5. SERVOMOTOR EN BUCLE CERRADO 1. SISTEMA A CONTROLAR El sistema a controlar es el conjunto motor eléctrico-freno conocido de otras prácticas: Se realizarán experimentos de control de posición
CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR
SEMANA 10 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR TRANSFORMADA DE LA PLACE I. OBJETIVO Solucionar ecuaciones diferenciales mediante la transformada de la place. III. BIBLIOGRAFIA W.
Experimento 5: Transistores BJT como interruptores
I Instituto Tecnológico de Costa Rica Escuela de Ingeniería Electrónica Profesores: Dr.-Ing. Pablo Alvarado M., Dipl.-Ing. Eduardo Interiano S. Laboratorio de Elementos Activos I Semestre 2005 Objectivo
Inversores Resonantes
Inversores Resonantes Actualmente, en los sistemas electrónicos de alimentación modernos se requiere: Una alta calidad. Un tamaño y peso pequeño. Aumentar la densidad de potencia. Buen rendimiento en la
Proyecto: Posicionamiento de una Antena Parabólica
Capítulo Proyecto: Posicionamiento de una Antena Parabólica. Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia
1.- En el circuito de la figura 5.1 la impedancia de salida Ro es. Figura 5.1
Tema 5. Amplificadores con BJT 1.- En el circuito de la figura 5.1 la impedancia de salida Ro es RC 1 hre R c 1 Figura 5.1 2.- En el circuito de la figura 5.1 la impedancia de entrada es igual a R1 h ie
Contenido. Circuitos Eléctricos - Dorf. Alfaomega
CAPÍTULO 1 Variables de circuitos eléctricos... 1 1.1 Introducción... 1 1.2 Circuitos eléctricos y corriente... 1 1.3 Sistemas de unidades... 5 1.4 Voltaje... 7 1.5 Potencia y energía... 7 1.6 Análisis
Control Lineal: Descripciones matemáticas de sistemas y simulacion en MATLAB/Simumlink
: Descripciones matemáticas de sistemas y simulacion en MATLAB/Simumlink Dr. J. Fermi Guerrero Benemérita Universidad Autónoma de Puebla Facultad de Ciencias de la Electrónica Lic. Ciencias de la Electrónica
TRABAJO PRÁCTICO DE LABORATORIO 6. Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA.
TRABAJO PRÁCTICO DE LABORATORIO 6 Física General III 2013 CIRCUITOS RC, RL Y RLC EN ALTERNA. OBJETIVO: Analizar el comportamiento de circuitos RC, RL y RLC cuando son alimentados con corriente alterna.
Practica No. 2 MODELADO DE UN MOTOR DC. Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control
Practica No. 2 MODELADO DE UN MOTOR DC Pontificia Universidad Javeriana Facultad de Ingeniería Departamento de Electrónica Laboratorio de Control 1. Introducción En esta práctica se realiza la formulación
Caracterización de defectos en sistemas de aislamiento mediante detección de descargas parciales
Universidad Carlos III de Madrid Repositorio institucional e-archivo Trabajos académicos http://e-archivo.uc3m.es Proyectos Fin de Carrera 2002 Caracterización de defectos en sistemas de aislamiento mediante
INTRODUCCIÓN: OBJETIVOS:
INTRODUCCIÓN: En el desarrollo de esta práctica se observará experimentalmente el comportamiento del transistor bipolar BJT como amplificador, mediante el diseño, desarrollo e implementación de dos amplificadores
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT
PRÁCTICA 1. AMPLIFICADORES MONOETAPA CON BJT 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
Transistor (2 parte) Bipolar de union 20
Transistor (2 parte) Bipolar de union 20 Introduccion En este capítulo comenzaremos a utilizar el transistor para amplificar pequeñas señales. Aprenderemos a manipular las relaciones de corrientes entre
GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo
GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres
Cálculo de las tensiones y corrientes en un transistor
Cálculo de las tensiones y corrientes en un transistor Analicemos el circuito de la Figura 1. FIGURA 1: Circuito a analizar Este es un circuito genérico, pensado solamente para ver como se plantean las
Fundamentos Físicos de la Informática. Prácticas de Laboratorio curso
Práctica 2ª Introducción al Manejo del Generador de Funciones y el Osciloscopio Hoja de Respuestas Apellidos:...Nombre:... Apellidos:...Nombre:... Grupo de Prácticas:... Puesto:... A. Medida de amplitudes.
Considerando los siguientes parámetros para el motor: I m. Corriente de armadura (Amp) PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD
PROYECTO # 5 CONTROL DE POSICIÓN DE UN MOTOR DE CD Para un motor de CD controlado por armadura como el mostrado en la figura si suponemos que la corriente del campo se mantiene constante y se aplica un
Análisis a gran señal del amplificador diferencial básico con BJT s
Análisis a gran señal del amplificador diferencial básico con BJT s. NTRODUON Habitualmente, cuando se estudia el bloque amplificador diferencial (a partir de ahora A.d.), se pasan por alto características
CIRCUITOS ELECTRÓNICOS. Práctica nº 1. Software de simulación de circuitos
CIRCUITOS ELECTRÓNICOS Práctica nº 1 Software de simulación de circuitos Trabajo a realizar en la práctica La práctica consiste en introducir al alumno en la utilización de la herramienta software LTspice
Tema 2: Representación y modelado de sistemas dinámicos
Fundamentos de Control Automático 2º G. Ing. Tecn. Industrial Tema 2: Representación y modelado de sistemas dinámicos Índice del tema Tema 2: Representación y modelado de sistemas dinámicos 2. Señales
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos
Práctica 2: Análisis de circuitos básicos con diodos y transistores Utilización del PSIM para análisis de circuitos electrónicos básicos EJERCICIO 1: Rectificador de onda completa con puente de diodos
TRABAJO PRÁCTICO Nº 3 FILTROS
TRABAJO PRÁCTICO Nº 3 FILTROS El objetivo de esta práctica es que vuelva a estudiar algunos circuitos sencillos que seguramente vio en Física 3 y en Laboratorio 3, pero desde otro punto de vista. La idea
Verificar experimentalmente la operación teórica del oscilador basado en el puente de Wien.
Electrónica II. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Electrónica II. Lugar de ejecución: Fundamentos Generales, aula 3.21 (Edificio 3, 2da planta). OSCILADOR DE PUENTE DE WIEN
Integrador, realimentación y control
Prctica 1 Integrador, realimentación y control El programa Simulink es un programa incluido dentro de Matlab que sirve para realizar la integración numérica de ecuaciones diferenciales a efectos de simular
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA. Objetivo:
PRACTICA 1 CIRCUITO AMPLIFICADOR EN EMISOR COMÚN CON POLARIZACIÓN FIJA Objetivo: Comprender el comportamiento de un transistor en un amplificador. Diseñando y comprobando las diferentes configuraciones
Simulink. Capítulo Inicio de Simulink
Capítulo 1 Simulink 1.1. Inicio de Simulink Para usar Simulink debemos estar trabajando con MATLAB. Simulink se puede iniciar con una pulsación en el icono de Simulink mostrado en la figura 17.1 y que
CIRCUITO 1: CIRCUITO RC
CIRCUITOS DIDACTICOS DE LA MATERIA DE DISPOSITIVOS Y CIRCUTOS ELECTRONICOS Y DE DISEÑO DE SISTEMAS DIGITALES. JUSTIFICACION. Los siguientes circuitos son considerados ejemplos didácticos y representativos
Componentes Electrónicos. Prácticas - Laboratorio. Práctica 2: Diodos
Prácticas Laboratorio Práctica 2: Diodos Ernesto Ávila Navarro Práctica 2: Diodos (Montaje y medida en laboratorio) Índice: 1. Material de prácticas 2. Medida de las características del diodo 2.2. Diodo
Taller y Laboratorio Filtros RC
Taller y Laboratorio Filtros RC En la práctica de aula disponemos de plaquetas que contienen 2 resistencias (R1= 220 Ω y R2= 560 Ω, y 2 capacitores (C1= 0,22µF y C2= 0,1µF). Tomamos R1 y C1 y armamos un
TCI - Teoría de Circuitos
Unidad responsable: 330 - EPSEM - Escuela Politécnica Superior de Ingeniería de Manresa Unidad que imparte: 750 - EMIT - Departamento de Ingeniería Minera, Industrial y TIC Curso: 2016 Titulación: Créditos
PRÁCTICA 4. Polarización de transistores en emisor/colector común
PRÁCTICA 4. Polarización de transistores en emisor/colector común 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la polarización de un transistor y la influencia de distintos parámetros
Trabajo opcional tema 3: modulación lineal
Trabajo opcional tema 3: modulación lineal Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 3: modulación lineal ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB
SIMULACIÓN DE LA MODULACIÓN POR AMPLITUD DE PULSOS (PAM) EN MATLAB 1. OBJETIVOS: General: o Implementar en simulink un sistema de bloques que permita simular Modulación por Amplitud de Pulsos (PAM), a
PRÁCTICA 3. Simulación de amplificadores con transistores
PRÁCTICA 3. Simulación de amplificadores con transistores 1. Objetivo El objetivo de la práctica es recordar el uso de MicroCap, esta vez en su versión de simulador de circuitos analógicos, analizando
Proyecto: Posicionamiento de una Antena Parabólica
Capítulo 1 Proyecto: Posicionamiento de una Antena Parabólica 1.1 Descripción del sistema y especificaciones Se pretende controlar la posición angular (θ) de una antena parabólica de acuerdo a una referencia
PRÁCTICA LTC-11: DIGITALIZACIÓN DE UNA SEÑAL SENOIDAL
PRÁCTICA LTC-11: DIGITALIZACIÓN DE UNA SEÑAL SENOIDAL 1.- Descripción de la práctica Una señal senoidal de 2 Khz y 5 voltios de amplitud se digitaliza mediante el circuito de la figura. Como señal de muestreo
Curso Eléctrico Palas P&H 4100XPC Codelco Andina.
Curso Eléctrico Palas P&H 4100XPC Codelco Andina. Sist em a RPC y Sup r esora Introducción La cabina RPC se encarga mantener una potencia reactiva los mas cercana a uno, descargando bancos de condensadores
1. PRESENTANDO A LOS PROTAGONISTAS...
Contenido Parte 1. PRESENTANDO A LOS PROTAGONISTAS... 1 1. Un primer contacto con la instrumentación... 3 1.1 Introducción... 3 1.2 Conceptos de tierra y masa. Riesgos eléctricos... 4 1.2.1 La conexión
ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2012/2013
ASIGNATURA: ANÁLISIS DE CIRCUITOS (2º Curso Grado Ingeniero Tecnologías Industriales) Test de conocimientos 2012/2013 SUGERENCIA: Intenta contestar a cada cuestión y analizar el porqué de cada respuesta
TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS 1. INTRODUCCIÓN DE SISTEMAS DISCRETOS EN SIMULINK
TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS OBJETIVOS DE LA PRÁCTICA Estudiar las funciones disponibles en Matlab y Simulink para el modelado y simulación de sistemas discretos
Laboratorio de Señales Práctica de Laboratorio 1
Laboratorio de Señales Práctica de Laboratorio 1 Introducción Objetivo El objetivo general de esta práctica es estudiar el comportamiento de algunos circuitos, donde se verán experimentalmente algunas
Experimento 4: Circuitos Recortadores y Sujetadores con Diodos
Tecnológico de Costa Rica I Semestre 2012 Escuela de Ingeniería Electrónica Laboratorio de Electrónica Analógica Profesor: Ing. Javier Pérez R. I Experimento 4: Circuitos Recortadores y Sujetadores con
Circuitos de Corriente Alterna
Fundamentos Físicos y Tecnológicos de la nformática Circuitos de Corriente Alterna - Función de transferencia. Agustín Álvarez Marquina Departamento de Arquitectura y Tecnología de Sistemas nformáticos
ELECTRONICA GENERAL. Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB
Tema 6. El Amplificador Operacional. 1.- En un amplificador operacional ideal, el CMRR es a) Infinito b) Cero c) 3dB 2.- La realimentación negativa: a) Desestabiliza la ganancia del sistema, haciéndolo
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA. Práctica 2 de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO
ESCUELA SUPERIOR DE INGENIEROS DE SAN SEBASTIÁN TECNUN UNIVERSIDAD DE NAVARRA Práctica de Laboratorio ESTUDIO DEL RÉGIMEN TRANSITORIO EL OSCILOSCOPIO DIGITAL Circuitos. Estudio del Régimen Transitorio.
TEORÍA DE SISTEMAS. Un ejemplo de representación de un sistema mediante Simulink sería el siguiente:
TEORÍA DE SISTEMAS PRÁCTICA 2: INTRODUCCIÓN A SIMULINK 1. CARACTERÍSTICAS BÁSICAS DE SIMULINK Funcionalidad básica: simulación de sistemas dinámicos. Características principales: - Se trata de un entorno
RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL
RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ Departamento de Electricidad y Electrónica UNIVERSIDAD FRANCISCO DE PAULA
1º. CIRCUITO CON R: Empezaremos con un circuito formado por una resistencia alimentada por una fuente de tensión alterna senoidal:
CIRCUITOS EN CORRIENTE ALTERNA. Estudiaremos los circuitos básicos, formados por resistencias (R), condensadores (C) y bobinas (L), cuando se alimentan por una fuente de tensión alterna senoidal. En corriente
6 Emisor Receptor AM. 6.1 Objetivo de la práctica. 6.2 Introducción teórica.
6 Emisor Receptor AM 6.1 Objetivo de la práctica El objetivo de esta práctica es que el alumno utilice los dispositivos electrónicos estudiados a lo largo de la asignatura para la realización de circuitos
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II
PRÁCTICA 12. AMPLIFICADOR OPERACIONAL II 1. Objetivo El objetivo de esta práctica es el estudio del funcionamiento del amplificador operacional (op-amp), en particular de tres de sus montajes típicos que
2.3 Filtros. 2 Electrónica Analógica TEMA II. Electrónica Analógica. Transformada de Laplace. Transformada de Laplace. Transformada inversa
TEMA II Electrónica Analógica 2.3 Filtros -Transformada de Laplace. -Teoremas valor inicial y valor final. -Resistencia, condensador, inductor. -Función de transferencia -Diagramas de Bode -Filtros pasivos.
EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE
EL TEMPORIZADOR 555 FUNCIONAMIENTO BÁSICO. FUNCIONAMIENTO COMO MONOESTABLE. FUNCIONAMIENTO COMO AESTABLE EL TEMPORIZADOR 555. El temporizador 555 es un dispositivo versátil y muy utilizado, por que puede
PAU CASTILLA Y LEON JUNIO Y SEPTIEMBRE M.A.S. ONDAS José Mª Martín Hernández
MAS Estudio dinámico y cinemático 1. (90-J11) Una pequeña plataforma horizontal sufre un movimiento armónico simple en sentido vertical, de 3 cm de amplitud y cuya frecuencia aumenta progresivamente. Sobre
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN
PRÁCTICA 10. EMISOR COMÚN Y COLECTOR COMÚN 1. Objetivo El objetivo de la práctica es comprobar experimentalmente la amplificación de dos monoetapas con un transistor BJT (emisor común y colector común)
CIRCUITOS RC Y RL OBJETIVO. Parte A: Circuito RC EQUIPAMIENTO TEORÍA
CIRCUITOS RC Y RL OBJETIVO Estudiar empíricamente la existencia de constantes de tiempo características tanto para el circuito RC y el RL, asociadas a capacidades e inductancias en circuitos eléctricos
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL"
UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 5 "GENERADORES DE SEÑAL" OBJETIVOS: Conocer el funcionamiento de circuitos
EXP203 ARREGLO DARLINGTON
EXP203 ARREGLO DARLINGTON I.- OBJETIVOS. Demostrar el uso de un arreglo darlington en una configuración colectorcomún como acoplador de impedancias. Comprobar el funcionamiento de amplificadores directamente
El amplificador operacional
Tema 8 El amplificador operacional Índice 1. Introducción... 1 2. El amplificador diferencial... 2 3. El amplificador operacional... 4 3.1. Configuración inversora... 5 3.2. Configuración no inversora...
ARRANQUE DE LÁMPARAS FLUORESCENTES
4 ARRANQUE DE LÁMPARAS FLUORESCENTES 4. INTRODUCCIÓN En el uso de sistemas de iluminación fluorescente es necesario alimentar a la lámpara de descarga con el voltaje adecuado para evitar un mal funcionamiento
Parcial_1_Curso.2012_2013. Nota:
Parcial_1_Curso.2012_2013. 1. El valor medio de una señal ondulada (suma de una señal senoidal con amplitud A y una señal de componente continua de amplitud B) es: a. Siempre cero. b. A/ 2. c. A/2. d.
Parcial_2_Curso.2012_2013
Parcial_2_Curso.2012_2013 1. La función de transferencia que corresponde al diagrama de Bode de la figura es: a) b) c) d) Ninguna de ellas. w (rad/s) w (rad/s) 2. Dado el circuito de la figura, indique
