SISTEMAS DE ECUACIONES DIFERENCIALES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SISTEMAS DE ECUACIONES DIFERENCIALES"

Transcripción

1 SISTEMAS DE ECUACIONES DIFERENCIALES Tanques interconectados Dos grandes tanques, cada uno de los cuales contiene 24 litros de una solución salina, están conectados entre sí mediante unos tubos. El primer tanque recibe agua pura a razón de 6 litros/minuto y el líquido sale del segundo tanque con la misma razón; además, se bombean 8 litro/minuto de líquido del primer tanque al segundo y 2 litros/minuto del segundo tanque al primero. Los líquidos dentro de cada tanque se mantienen bien revueltos, de modo que cada mezcla es homogénea. Si inicialmente el primer tanque contiene 20 kilogramos de sal y el segundo 12 kilogramos de sal, determine expresión que permite hallar la cantidad de sal en cada tanque en cualquier minuto. Se definen los siguientes elementos para llegar a la solución. Variables Tiempo: t. Variable Independiente. Cantidad de sal en el primer tanque: x = x(t) Variable Dependiente. Cantidad de sal en el segundo tanque: y = y(t) Variable Dependiente. Parámetros Volumen de solución salina en cada tanque: 24 litros. Flujo de entrada al primer tanque: 6 litros por minuto y 2 litros por minuto. Flujo de entrada al segundo tanque: 8 litros por minuto. Flujo de salida del primer tanque: 8 litros por minuto. 1

2 2 Flujo de salida del segundo tanque: 6 litros por minuto y 2 litros por minuto. Concentración de sal de entrada al primer tanque: 0 kilogramos litro. Ecuación diferencial Como se estudió en el caso de un solo tanque en ecuaciones lineales, se utiliza la siguiente relación: Variación de sal dentro de cada tanque=razón de entrada de sal - Razón de salida de sal Así que las ecuaciones diferenciales planteadas son: Primer tanque = 6 litros minuto 0kilogramos + 2 litros litro minuto y kilogramos 8 litros 24 litros minuto x kilogramos 24 litros Segundo Tanque = 1 12 y kg min 1 3 x kg min = 1 3 x y = 8 litros minuto x kilogramos 2 litros 24 litros minuto y kilogramos 6 litros 24 litros minuto y kilogramos 24 litros Sistema de ecuaciones Condiciones iniciales = 1 3 x kg min 1 12 y kg min 1 3 y kg min = 1 3 x 1 3 y = 1 3 x y = 1 3 x 1 3 y Cantidad inicial de sal en el primer tanque: 20 kilogramos de sal, x(0) = 20. Cantidad inicial de sal en el segundo tanque: 10 kilogramos de sal, y(0) = 12. Solución para el ejemplo Al despejar y de la primera ecuación = 1x + 1 y y derivar con respecto al tiempo, resulta 3 12 y(t) = x(t) = x 12d

3 Al reemplazar en la segunda ecuación del sistema y despejar se obtiene una ecuación de segundo orden homogénea como se muestra a continuación = 1 3 x 1 3 y 12 d2 x = 1 3 x 1 3 (12 + 4x) 12x + 8x + x = 0 Cuya solución general es x(t) = C 1 e t/6 + C 2 e t/2. Como y(t) = x(t) se obtiene y(t) = 12 ( 16 C 1e t/6 12 ) C 2e t/2 + 4(C 1 e t/6 + C 2 e t/2 ) 3 y(t) = 2C 1 e t/6 2C 2 e t/2 Al utilizar las condiciones iniciales x(0) = 20 y y(0) = 12. C 1 + C 2 = 20 2C 1 2C 2 = 12 Con la solución C 1 = 13 y C 2 = 7. De modo que La cantidad de sal en el primer tanque x(t) = 13e t/6 + 7e t/2. La cantidad de sal en el segundo tanque y(t) = 26e t/6 14e t/2. Primer tanque Segundo tanque

4 4 Ahora se muestra el comportamiento de la cantidad de sal en los dos tanques (hasta los 15 minutos aproximadamente) sobre un mismo plano. El eje horizontal representa la cantidad de sal en el primer tanque y el eje vertical la cantidad de sal en el segundo tanque. Se observa que la tendencia es que ambos tanques se queden sin sal después de cierto tiempo.

5 En qué parejas la razón de cambio en el primer tanque es cero? La respuesta se muestra en la siguiente gráfica y corresponden a la recta h Y para el segundo tanque? La respuesta corresponde a la recta i En qué parejas las dos razones de cambio dan cero? Estas rectas dividen al primer cuadrante en tres sectores. Dado si la cantidad inicial de sal en cada tanque se encuentra en uno de estos tres sectores, en la siguiente gráfica se muestran las tendencias que presentarían las cantidades de sal en cada tanque. Para mostrar estas tendencias NO es necesario resolver el sistemas de ecuaciones diferenciales Este corportamiento es consistente con la gráfica anterior? 5 Ejercicios 1. Repita el ejemplo resuelto suponiendo que la cantidad inicial de sal en el primer tanque es de 10 kilogramos y en el segundo tanque es de 40 kilogramos, manteniendo los demás valores iguales. Qué diferencias se encuentran en las soluciones halladas? Dos grandes tanques, cada uno con 100 litros de líquido, están conectados entre sí mediante tubos, de modo que el líquido fluye del tanque A al tanque B a razón de 3 litros/minuto y de B al A a razón de 1 litro/minuto. El líquido dentro de cada tanque se mantiene bien revuelto. Una solución salina con una concentración de 0.2 kilogramos/litro de sal fluye hacia el tanque A a razón de 6 litros/minuto. La solución (diluida) sale del sistema del tanque A a 4 litros/minuto y del tanque B a 2 litros/minuto. Si en un principio, el tanque A contiene agua pura y el tanque B contiene 20 kilogramos de sal, determine la cantidad de sal en cada tanque en cualquier instante de tiempo.

6 6 Diagramas de Fase En el estudio de los sistemas de ecuaciones diferenciales, también se puede realizar un análisis cualitativo para sistemas de ecuaciones autónomos (aquellos en los que en las funciones del lado derecho no aparece la variable independiente) parecido al de campo de direcciones realizado anteriormente. = f(x, y) = g(x, y) Una solución de este problema es un par de funciones x(t) y y(t) que satisfacen el sistema para todo t dentro de algún intervalo I. Estas soluciones como dependen del parámetro t, se pueden visualizar en el plano xy obteniendo una trayectoria solución. Para el sistema anterior, los puntos críticos son aquellos (a, b) donde ambas derivadas son iguales a cero (a, b) = f(a, b) = 0 (a, b) = g(a, b) = 0 Nótese que si (a, b) es un punto crítico, entonces x(t) = a y y(t) = b es una solución del sistema. Para cada pareja en el plano xy se puede calcular las derivadas = f(x, y) y = g(x, y) determinar si x o y crecen o decrecen en ese punto. Según el comportamiento presentado en las trayectorias cercanas a un punto de equilibrio, estos se clasifican en: 1. Nodo Estable

7 7 2. Nodo Inestable 3. Punto de Silla 4. Centro

8 8 5. Espiral Estable 6. Espiral Inestable CRITERIO PARA CLASIFICAR PUNTOS CRÍTICOS Dado un sistema = f(x, y) = g(x, y)

9 9 al calcular ( los ) valores propios λ 1, λ 2 de la matriz Jacobiana f J = x f y g x g y se puede determinar la naturaleza del punto de equilibrio según: 1. Nodo Estable. λ 1 < 0 y λ 2 < Nodo Inestable. λ 1 > 0 y λ 2 > Punto de Silla. λ 1 < 0 y λ 2 > Centro. λ 1,2 = ±βi 5. Espiral Estable. λ 1,2 = α ± βi,con α < Espiral Inestable. λ 1,2 = α ± βi,con α > 0. Ejemplo Modelo Depredador-Presa Una de las aplicaciones de los sistemas de ecuaciones diferenciales es el concerniente a los modelos depredador-presa. Estos modelos suponen la interacción de dos especies: depredadores x(t) y y(t) presas. A continuación se presenta un ejemplo de un modelo de Lotka-Volterra. = 0,1x + 0,02xy = 0,2y 0,025xy Donde las poblaciones x(t) y y(t), se miden en miles. Los puntos críticos son (0, 0) y (8, 5). (El de mayor importancia para el análisis es (8, 5) ya que x(t) 0, y(t) 0) ( ) 0,1 + 0,02y 0,02x La matriz Jacobiana es J = 0,025y 0,2 0,025x ( ) 0,1 0 Evaluada en (0, 0), J(0, 0) = cuyos valores propios son -0.1 y 0.2, por lo 0 0,2 tanto ( este punto ) crítico se clasifica como un punto de silla. Evaluada en (8, 5), J(8, 5) = 0 0,16 cuyos valores propios son±0,14i, así que este punto crítico corresponde a 0,125 0 un centro. Se muestra las direcciones alrededor del punto (8, 5). En el siguiente gráfico, las flechas horizontales indican el crecimiento(hacia la derecha) o decrecimiento(hacia la izquierda) de la población de depredadores. Y las verticales aumento (hacia arriba) o disminución (hacia abajo) de la población de presas.

10 10 Estas direcciones se indican sobre el campo de direcciones de la función f g a continuación.

11 Se muestran las direcciones alrededor de (0, 0). Teniendo en cuenta que los cuadrantes III y IV, no tienen sentido en el crecimiento de las poblaciones. Se muestran para ilustrar el por qué del punto de silla. 11 Ejercicios 1. Determine que sucede con la población de depredadores y presas en el ejemplo, si la población inicial de depredadores es de 9 y la de presas es de 4. Determine los puntos críticos, clasifíquelos, haga un bosquejo del diagrama de fase. 2. = 5x 3y 2 = 4x 3y 1

12 = y(y 2) = (x 2)(y 2) = x2 1 = xy = y2 3y + 2 = (x 1)(y 2) 6. Considere el modelo de competencia = 2x 0,4x2 0,3xy = y 0,1y2 0,3xy donde las poblaciones x(t), y(t) se miden en miles y el tiempo en años. Determine los puntos críticos, clasifíquelos y haga un bosquejo del diagrama de fase. Además, determine qué sucede con las poblaciones si se tienen las condiciones A. x(0) = 1,5, y(0) = 3,5. B. x(0) = 4,5, y(0) = 0,5.

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

x = t 3 (x t) 2 + x t. (1)

x = t 3 (x t) 2 + x t. (1) Problema 1 - Considera la siguiente ecuación de primer orden: x = t 3 (x t + x t (1 (a Comprueba que x(t = t es solución de la ecuación (b Demuestra que si x = x(t es la solución que pasa por el punto

Más detalles

EJERCICIOS UNIDADES 1, 2 Y 3

EJERCICIOS UNIDADES 1, 2 Y 3 EJERCICIOS UNIDADES 1, Y 3 Nota: En adelante utilizaremos la abreviación ED para ecuación diferencial. TEMAS A EVALUAR Unidad 1 o Clasificación de las ecuaciones diferenciales o Problemas de valor inicial

Más detalles

VELOCIDAD Y ACELERACION. RECTA TANGENTE.

VELOCIDAD Y ACELERACION. RECTA TANGENTE. VELOCIDAD Y ACELERACION. RECTA TANGENTE. 3. Describir la trayectoria y determinar la velocidad y aceleración del movimiento descrito por las curvas siguientes: (a) r (t) = i 4t 2 j + 3t 2 k. (b) r (t)

Más detalles

DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN

DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN DIAGRAMAS DE FASE DE SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN Alejandro Lugon 26 de mayo de 2010 1. Ecuaciones planares: dos dimensiones Las soluciones del sistema homogéneo: ẋ = ax

Más detalles

Aplicaciones de los S.E.D.O.

Aplicaciones de los S.E.D.O. Tema 7 Aplicaciones de los S.E.D.O. 7. Introducción Nota: APUNTES INCOMPLETOS Estudiaremos en este Tema algunos modelos de interés en las Ciencias Naturales que utilizan para su modelización sistemas de

Más detalles

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA

ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA ECUACIONES DIFERENCIALES CARLOS RUZ LEIVA Definición de ecuación diferencial Una ecuación que relaciona una función desconocida y una o más de sus derivadas se llama ecuación diferencial. Instituto de

Más detalles

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1

El plano cartesiano y Gráficas de ecuaciones. Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 El plano cartesiano y Gráficas de ecuaciones Copyright 2013, 2009, 2006 Pearson Education, Inc. 1 Sistema de coordenadas rectangulares En el cap 2 presentamos la recta numérica real que resulta al establecer

Más detalles

UNIDAD IV. Ecuaciones diferenciales Lineales

UNIDAD IV. Ecuaciones diferenciales Lineales UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.

Más detalles

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES

SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES SESIÓN N 07 III UNIDAD RELACIONES Y FUNCIONES RELACIONES BINARIAS PAR ORDENADO Es un arreglo de dos elementos que tienen un orden determinado donde a es llamada al primera componente y b es llamada la

Más detalles

DERIVADAS PARCIALES Y APLICACIONES

DERIVADAS PARCIALES Y APLICACIONES CAPITULO IV CALCULO II 4.1 DEFINICIÓN DERIVADAS PARCIALES Y APLICACIONES En cálculo una derivada parcial de una función de diversas variables es su derivada respecto a una de esas variables con las otras

Más detalles

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales.

Lección 4. Ecuaciones diferenciales. 1. Ecuaciones diferenciales de primer orden. Trayectorias ortogonales. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Ecuaciones diferenciales de primer orden. Traectorias ortogonales. Muchas aplicaciones problemas de la ciencia, la ingeniería la economía se formulan en términos

Más detalles

CM2 ENRICH CREUS CARNICERO Nivel 2

CM2 ENRICH CREUS CARNICERO Nivel 2 CM ENRICH CREUS CARNICERO Nivel Unidad Cónicas Conocimientos previos CONOCIMIENTOS PREVIOS PARA CÓNICAS Antes de comenzar con el Trabajo Práctico, necesitás repasar algunas cuestiones como: ) graficar

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200

CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0200 CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E000 () Obtener la ecuación de la recta tangente a la curva x 3 +y 3 =9xy en el punto (, ). () La ley adiabática (sin pérdida ni ganancia de

Más detalles

Formulación del problema de la ruta más corta en programación lineal

Formulación del problema de la ruta más corta en programación lineal Formulación del problema de la ruta más corta en programación lineal En esta sección se describen dos formulaciones de programación lineal para el problema de la ruta más corta. Las formulaciones son generales,

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales UNIVERSIDAD DIEGO PORTALES Ecuaciones Diferenciales 1 ECUACIONES DIFERENCIALES Una ecuación diferencial contiene una función desconocida y algunas de sus derivadas. He aquí algunos ejemplos: (1) y ' =

Más detalles

Programación NO Lineal (PNL) Optimización sin restricciones

Programación NO Lineal (PNL) Optimización sin restricciones Programación NO Lineal (PNL) Optimización sin restricciones Ejemplos de los problemas que se aplica la programación NO Lineal: Problema de transporte con descuentos por cantidad : El precio unitario de

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 13 Capítulo 6 Año 5 6.1. Modelo 5 - Opción A Problema 6.1.1 ( puntos) Justificar razonadamente

Más detalles

Unidad IV: Sistemas de ecuaciones diferenciales lineales

Unidad IV: Sistemas de ecuaciones diferenciales lineales Unidad IV: Sistemas de ecuaciones diferenciales lineales 4.1 Teoría preliminar 4.1.1 Sistemas de EDL Los problemas de la vida real pueden representarse de mejor manera con la ayuda de múltiples variables.

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA

Trabajo Práctico 2 - ECUACIÓN DE LA RECTA Trabajo Práctico - ECUACIÓN DE LA RECTA ) Un barril tiene una capacidad de 00 litros. El barril se encuentra sobre una balanza y al echarle distintas cantidades de un aceite, se puede tomar el peso que

Más detalles

Modelización por medio de sistemas

Modelización por medio de sistemas SISTEMAS DE ECUACIONES DIFERENCIALES LINEALES. Modelización por medio de sistemas d y dy Ecuaciones autónomas de segundo orden: = f ( y, ) Una variable independiente. Una variable dependiente. La variable

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3

CENTRO REGIONAL UNIVERSITARIO BARILOCHE TALLER DE MATEMATICA INGRESO 2016 LIC. ENFERMERÍA PRACTICO UNIDAD 3 PRACTICO UNIDAD 3 Nota: Los ejercicios propuestos en los prácticos deben servirle para afianzar y practicar temas. Si nota que algunos ejercicios ya los sabe hacer bien, continúe con otros que le impliquen

Más detalles

Introducción a la teoría de ciclos ĺımite

Introducción a la teoría de ciclos ĺımite Introducción a la teoría de ciclos ĺımite Salomón Rebollo Perdomo srebollo@inst-mat.utalca.cl Instituto de Matemática y Física 05-09 de enero, 2015. Talca, CL Contenido 1 Introducción Qué es un ciclo ĺımite?

Más detalles

Derivada y diferencial

Derivada y diferencial Derivada y diferencial Una cuestión, que aparece en cualquier disciplina científica, es la necesidad de obtener información sobre el cambio o la variación de determinadas cantidades con respecto al tiempo

Más detalles

Tasa de variación. Tasa de variación media

Tasa de variación. Tasa de variación media Tasa de variación Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento de x (Δx). Se llama

Más detalles

SESIÓN 10 FUNCIONES Y GRÁFICAS

SESIÓN 10 FUNCIONES Y GRÁFICAS SESIÓN 10 FUNCIONES Y GRÁFICAS I. CONTENIDOS: 1. Funciones. 2. Variables dependientes e independientes. 3. Gráfica de funciones y su aplicación. II. OBJETIVOS: Al término de la Sesión, el alumno: Comprenderá

Más detalles

Tema II: Programación Lineal

Tema II: Programación Lineal Tema II: Programación Lineal Contenido: Solución a problemas de P.L. por el método gráfico. Objetivo: Al finalizar la clase los alumnos deben estar en capacidad de: Representar gráficamente la solución

Más detalles

UNIDAD II Ecuaciones diferenciales con variables separables

UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD II Ecuaciones diferenciales con variables separables UNIDAD ECUACIONES DIFERENCIALES CON VARIABLES SEPARABLES Ecuaciones diferenciales de primer orden y de primer grado. Una ecuación diferencial

Más detalles

UNA INTERPRETACIÓN CUALITATIVA DE LOS DIAGRAMAS DE FASE EN UN CONTEXTO ECONÓMICO RESUMEN. x = f (x,y) ɺ ɺ

UNA INTERPRETACIÓN CUALITATIVA DE LOS DIAGRAMAS DE FASE EN UN CONTEXTO ECONÓMICO RESUMEN. x = f (x,y) ɺ ɺ UNA INTERPRETACIÓN CUALITATIVA DE LOS DIAGRAMAS DE FASE EN UN CONTEXTO ECONÓMICO RESUMEN Las soluciones a un sistema de ecuaciones del tipo = f (,) = g(, ) puede representarse de manera gráfica de distintas

Más detalles

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca

x = u + v 2 y = u v. Finalmente, volviendo a las variables típicas, es decir, cambiando u por x y v por y, se tiene: f(x, y) = x2 xy U de Talca 1. Hallar f(x, y) si f(x + y, x y) = xy + y. Sean u = x + y y v = x y. Resolviendo este sistema se obtiene Luego, x = u + v f(u, v) = u + v u v e y = u v. ( ) u v + = u uv. Finalmente, volviendo a las

Más detalles

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC

EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC EXAMEN DEPARTAMENTAL DE CÁLCULO DIFERENCIAL MUESTRA FIN TECATE UABC 1. REACTIVO MUESTRA Sea el número A qué conjunto pertenece? a) trascendente b) irracionales c) Naturales d) Enteros 2. REACTIVO MUESTRA

Más detalles

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos

Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos Ecuaciones diferenciales ordinarias de primer orden: problemas resueltos BENITO J. GONZÁLEZ RODRÍGUEZ (bjglez@ull.es) DOMINGO HERNÁNDEZ ABREU (dhabreu@ull.es) MATEO M. JIMÉNEZ PAIZ (mjimenez@ull.es) M.

Más detalles

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA

APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Introducción APUNTES ACERCA DE LA ECUACIÓN DE LA RECTA Se denomina solución de una ecuación al valor o conjunto de valores de la(s) incógnita(s) que verifican la igualdad. Así por ejemplo decimos que x

Más detalles

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV

8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV 8.4. CRITERIO DE ESTAB.: METODO DE LIAPUNOV 309 8.4. CRITERIO DE ESTABILIDAD POR EL METODO DIRECTO DE LIAPUNOV Consideremos el sistema autónomo dx = F (x, y) dt (8.32) dt = G(x, y), y supongamos que tiene

Más detalles

5 Continuidad y derivabilidad de funciones reales de varias variables reales.

5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5 Continuidad y derivabilidad de funciones reales de varias variables reales. 5.1 Funciones reales de varias variables reales. Curvas de nivel. Continuidad. 5.1.1 Introducción al Análisis Matemático. El

Más detalles

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES

GIMNASIO VIRTUAL SAN FRANCISCO JAVIER Valores y Tecnología para la Formación Integral del Ser Humano UNIDAD I FUNCIONES UNIDAD I FUNCIONES Una función es una correspondencia entre dos conjuntos, que asocia a cada elemento del primer conjunto exactamente un elemento del otro conjunto. Una función f definida entre dos conjuntos

Más detalles

Ejercicios para el Examen departamental

Ejercicios para el Examen departamental Departamento de Física Y Matemáticas Ejercicios para el Examen departamental 1ª Parte M. en I.C. J. Cristóbal Cárdenas O. 15/08/2011 Ejercicios para el examen departamental de Cálculo 1 primera parte A

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

Complementos de Análisis. Año 2016

Complementos de Análisis. Año 2016 Complementos de Análisis. Año 2016 Práctica 8. Ecuaciones diferenciales ordinarias. 1 Modelando con ecuaciones diferenciales Modelar con ecuaciones diferenciales las siguientes situaciones. Intentar resolver

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Introducción a las Funciones Logarítmicas MATE 3171

Introducción a las Funciones Logarítmicas MATE 3171 Introducción a las Funciones Logarítmicas MATE 3171 Logaritmos de base a Anteriormente repasamos que para 0 < a < 1 o a > 1, la función exponencial f(x) = a x es uno-a-uno, y por lo tanto tiene una función

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Problemas resueltos de planos de fases.

Problemas resueltos de planos de fases. Problemas resueltos de AMPLIACIÓN DE MATEMÁTICAS Ingeniería Industrial. Departamento de Matemática Aplicada II. Universidad de Sevilla. Problemas resueltos de planos de fases. P 4.9 Esbozar el plano de

Más detalles

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia

Sistemas lineales de ecuaciones diferenciales. Juan-Miguel Gracia Sistemas lineales de ecuaciones diferenciales Juan-Miguel Gracia Índice Sistemas lineales 2 Búsqueda de una solución especial 3 Aplicación a sistemas 4 Problema de condiciones iniciales 2 / 2 Sistemas

Más detalles

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas.

Control Moderno. Ene.-Jun UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN. Facultad de Ingeniería Mecánica y Eléctrica. Dr. Rodolfo Salinas. UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN Facultad de Ingeniería Mecánica y Eléctrica Control Moderno Ene.-Jun. 27 Dr. Rodolfo Salinas abril 27 Control Moderno N abril 27 Dr. Rodolfo Salinas Respuesta en el tiempo

Más detalles

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos.

PAU Madrid. Matemáticas II. Año Examen de septiembre. Opción A. Ejercicio 1. Valor: 2 puntos. Opción A. Ejercicio. Valor: 2 puntos. Se considera la función real de variable real definida por: f(x) = a) ( punto) Determinar sus máximos y mínimos relativos x x 2 + b) ( punto) Calcular el valor de

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales 1. Estudiar el sistema de ecuaciones según los valores del parámetro a. ax + y + z = a x y + z = a 1 x + (a 1)y + az = a + 3 Resolverlo (si es posible) para a = 1. (Junio

Más detalles

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal.

SISTEMA DE ECUACIONES LINEALES. Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Liceo A 10 Manuel Barros Borgoño Departamento de Matemática SISTEMA DE ECUACIONES LINEALES Ecuación lineal con dos incógnitas Una ecuación de primer grado se denomina ecuación lineal. Una ecuación lineal

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

unicoos Funciones lineales Objetivos 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta lección aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

VALORES EXTREMOS Y PUNTOS DE SILLA.

VALORES EXTREMOS Y PUNTOS DE SILLA. 1 VALORES EXTREMOS Y PUNTOS DE SILLA. DEFINICION: Sea ( x, y ) una unción deinida sobre una región R que contiene el punto ( a, b ),entonces: a) (a, b ) es un máximo local de si ( a, b ) (x, y ) para todos

Más detalles

FUNCIONES Y SUPERFICIES

FUNCIONES Y SUPERFICIES FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com FUNCIONES Y SUPERFICIES Sergio Stive Solano Sabié 1 Abril de 2013 1 Visita http://sergiosolanosabie.wikispaces.com

Más detalles

3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL Descripción del Problema: La identificación de un sistema consiste en

3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL Descripción del Problema: La identificación de un sistema consiste en 301 3.7 IDENTIFICACION DE UN SISTEMA DINÁMICO NO LINEAL 3.7.1 Descripción del Problema: La identificación de un sistema consiste en determinar una función que relacione las variables de entrada con las

Más detalles

Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Unidad 1: SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS 1.1.- SISTEMAS DE ECUACIONES LINEALES Ecuación lineal Las ecuaciones siguientes son lineales: 2x 3 = 0; 5x + 4y = 20; 3x + 2y + 6z = 6; 5x 3y + z 5t =

Más detalles

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )

Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( ) Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA

Más detalles

Primer Parcial Física 1 (FI01) 7 de mayo de 2016

Primer Parcial Física 1 (FI01) 7 de mayo de 2016 Ejercicio 1 Usted decide empezar a bucear, y necesita comprar un tanque de aire apropiado. En la tienda ofrecen tanques de aire puro comprimido ( =255kg/m 3, 78% N 2, 21% O 2, 1% otros) de 8L, 12L, 17L

Más detalles

Tema 6: Ecuaciones diferenciales lineales.

Tema 6: Ecuaciones diferenciales lineales. Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)

Más detalles

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos.

Expliquemos con exactitud qué queremos decir con valores máximos y mínimos. Introducción: Ahora que conocemos las reglas de derivación nos encontramos en mejor posición para continuar con las aplicaciones de la derivada. Veremos cómo afectan las derivadas la forma de la gráfica

Más detalles

Áreas entre curvas. Ejercicios resueltos

Áreas entre curvas. Ejercicios resueltos Áreas entre curvas Ejercicios resueltos Recordemos que el área encerrada por las gráficas de dos funciones f y g entre las rectas x = a y x = b es dada por Ejercicios resueltos b a f x g x dx Ejercicio

Más detalles

Teoría cualitativa de ecuaciones diferenciales

Teoría cualitativa de ecuaciones diferenciales 775 Análisis matemático para Ingeniería. M. MOLERO; A. SALVADOR; T. MENARGUEZ; L. GARMENDIA CAPÍTULO 1 Teoría cualitativa de ecuaciones diferenciales En este capítulo se inicia el estudio de lo que se

Más detalles

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS

EJERCICIOS ADICIONALES: ONDAS MECÁNICAS EJERCICIOS ADICIONALES: ONDAS MECÁNICAS Primer Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Dr. Alejandro Gronoskis Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2000 MATEMÁTICAS II TEMA 2: SISTEMAS DE ECUACIONES LINEALES Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción B Reserva 2, Ejercicio 4, Opción A Reserva

Más detalles

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009

2. Cálculo diferencial de funciones de varias variables. Mayo, 2009 Cálculo 2. Cálculo diferencial de funciones de varias variables Mayo, 2009 Definición IR 2 = {(x 1,x 2 )/x 1 IR,x 2 IR} Sean dos puntos a y b, de coordenadas respectivas (a 1,a 2 ) y (b 1,b 2 ). Definición

Más detalles

Universidad de San Carlos de Guatemala

Universidad de San Carlos de Guatemala Clave: 03-2-M-2-00-203 Universidad de San Carlos de Guatemala Facultad de Ingeniería Departamento de matemática Curso: Matemática Básica 2 Código del curso: 03 Semestre: Segundo semestre 203 Tipo de eamen:

Más detalles

3. Funciones de varias variables

3. Funciones de varias variables Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 17 3. Funciones de varias variables Función real de varias variables reales Sea f una función cuyo dominio es un subconjunto D de R n

Más detalles

Funciones cuadráticas: valor mínimo, valor máximo y el vértice

Funciones cuadráticas: valor mínimo, valor máximo y el vértice Funciones cuadráticas: valor mínimo, valor máximo y el vértice Definiciones Si la gráfica de una función sube en el plano de izquierda a derecha, se dice que es creciente en ese intervalo. Definiciones

Más detalles

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO

EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO EJERCICIOS VOLUNTARIOS DE GEOMETRIA CON SOLUCIÓN. 2º BACHILLERATO ESPACIO AFIN 1.Hallar la ecuación del plano que contenga al punto P(1, 1, 1) y sea paralelo a las rectas: r x 2y = 0 ; y 2z + 4 = 0; s

Más detalles

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales.

Unidad V. 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Unidad V Aplicaciones de la derivada 5.1 Recta tangente y recta normal a una curva en un punto. Curvas ortogonales. Una tangente a una curva es una recta que toca la curva en un solo punto y tiene la misma

Más detalles

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos:

DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: DERIVADAS 1.- TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN. Antes de dar la definición veamos unos ejemplos: Definición: 2.- TASA DE VARIACIÓN INSTANTÁNEA. DEFINICIÓN DE DERIVADA DE UNA FUNCIÓN EN UN PUNTO.

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Método de cuadrados mínimos

Método de cuadrados mínimos REGRESIÓN LINEAL Gran parte del pronóstico estadístico del tiempo está basado en el procedimiento conocido como regresión lineal. Regresión lineal simple (RLS) Describe la relación lineal entre dos variables,

Más detalles

La ecuación diferencial logística (o de Verhulst)

La ecuación diferencial logística (o de Verhulst) La ecuación diferencial logística o de Verhulst) José Luis López Fernández 2 de noviembre de 2011 Resolver un problema del que tenemos garantía de que existe solución, es como ir de excursión por el monte,

Más detalles

4. Mapas de fases sistemas autónomos en el plano 0 = 0 = órbitas mapa de fases propiedades básicas ecuación diferencial de las órbitas

4. Mapas de fases sistemas autónomos en el plano 0 = 0 = órbitas mapa de fases propiedades básicas ecuación diferencial de las órbitas 4 Mapas de fases Los sistemas de ecuaciones no lineales casi nunca se pueden resolver Pero para los sistemas autónomos en el plano, es decir, para los sistemas de la forma = ƒ (, y) [S] y = g(, y) es posible

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa

Derivada de una función en un punto. Función derivada. Diferencial de una función en un punto. dy = f (x) dx. Derivada de la función inversa Derivada de una función en un punto Las tres expresiones son equivalentes. En definitiva, la derivada de una función en un punto se obtiene como el límite del cociente incremental: el incremento del valor

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

ALGEBRA. Escuela Politécnica Superior de Málaga

ALGEBRA. Escuela Politécnica Superior de Málaga ALGEBRA. Escuela Politécnica Superior de Málaga Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Espacio vectorial. Espacios vectoriales R n. Dependencia e independencia lineal. Base. Matrices y determinantes.

Más detalles

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes

Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación lineal homogénea. Soluciones linealmente independientes Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 4 Ecuaciones diferenciales de orden n. Ecuación

Más detalles

MATE 3013 DERIVADAS Y GRAFICAS

MATE 3013 DERIVADAS Y GRAFICAS MATE 3013 DERIVADAS Y GRAFICAS Extremos relativos La función f tiene un máximo relativo en el valor c si hay un intervalo (r, s), que contiene a c, en el cual f(c) f(x) para toda x entre r y s. Si además,

Más detalles

CASOS DE LA FUNCIÓN AFÍN

CASOS DE LA FUNCIÓN AFÍN CASOS DE LA FUNCIÓN AFÍN Considera que el precio de un artículo es de Bs 80. Conocido el precio unitario (precio por unidad) es posible calcular fácilmente el precio de varios artículos con solo multiplicar

Más detalles

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables.

Conjuntos de nivel, diagramas de contorno, gráficas. Funciones vectoriales de una y dos variables. Empezaremos el curso introduciendo algunos conceptos básicos para el estudio de funciones de varias variables, que son el objetivo de la asignatura: Funciones escalares de dos y tres variables. Conjuntos

Más detalles

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES

UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES UNIDAD II. VARIACION DIRECTAMENTE PROPORCIONAL Y FUNCIONES LINEALES Al finalizar esta unidad: - Describirás verbalmente en que consiste el cambio y cuáles son los aspectos involucrados en él. - Identificarás

Más detalles

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo

ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo ECUACIONES DIFERENCIALES AUTÓNOMAS Y ESTABILIDAD DE LOS PUNTOS DE EQUILIBRIO Complemento sobre Ecuaciones Diferenciales para los cursos de Cálculo Eleonora Catsigeras * 17 de Noviembre 2013 Notas para

Más detalles

2 Estudio local de funciones de varias variables.

2 Estudio local de funciones de varias variables. a t e a PROBLEMAS DE CÁLCULO II t i c a s 1 o Ings. Industrial y de Telecomunicación CURSO 2009 2010 2 Estudio local de funciones de varias variables. 2.1 Derivadas de orden superior. Problema 2.1 Sea

Más detalles

Recordemos que la ecuación para un vector viene dada por

Recordemos que la ecuación para un vector viene dada por Materia: Matemáticas de 4to año Tema: Coordenadas de un vector en el plano Marco Teórico Recordemos que la ecuación para un vector viene dada por Donde P x, P y, y P z son las coordenadas x, y, y z las

Más detalles

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS

SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS (Apuntes en revisión para orientar el aprendizaje) SECUELA SUGERIDA PARA RESOLVER PROBLEMAS DE EXTREMOS - Leer cuidadosamente el enunciado para comprender la problemática presentada y ver qué se pretende

Más detalles

De grados tres y cuatro

De grados tres y cuatro De grados tres y cuatro Comportamiento general de las funciones polinomiales de grados tres y cuatro Funciones de grado tres. La forma general de las funciones de grado tres (cúbicas) esf x = ax 3 + bx

Más detalles

Estática. Equilibrio de un cuerpo rígido

Estática. Equilibrio de un cuerpo rígido Estática 5 Equilibrio de un cuerpo rígido Objectivos Escribir las ecuaciones de equilibrio de un cuerpo rígido. Concepto de diagrama de cuerpo libre para un cuerpo rígido. Resolver problemas de equilibrio

Más detalles

LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico

LABORATORIO No. 5. Cinemática en dos dimensiones Movimiento Parabólico LABORATORIO No. 5 Cinemática en dos dimensiones Movimiento Parabólico 5.1. Introducción Se denomina movimiento parabólico al realizado por un objeto cuya trayectoria describe una parábola. Este movimiento

Más detalles

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ

UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL PARANÁ UNIVERSIDAD TECNOLOGICA NACIONAL FACULTAD REGIONAL PARANA ANÁLISIS MATEMATICO I ALGEBRA Y GEOMETRIA ANALITICA TRABAJO PRACTICO INTEGRADOR Nº1 PARTE C UNIVERSIDAD TECNOLÓGICA NACIONAL FACULTAD REGIONAL

Más detalles

Ecuación de la recta tangente

Ecuación de la recta tangente Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto

Más detalles

Matemáticas Universitarias

Matemáticas Universitarias Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables 1. Conceptos elementales Funciones IR n IR m. Definición Una función f (también f o f): A IR n IR m es una aplicación que a cada x (también x o x) A IR n le hace corresponder

Más detalles

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A

INSTRUCCIONES GENERALES Y VALORACIÓN OPCIÓN A INSTRUCCIONES GENERALES Y VALORACIÓN Instrucciones: El examen presenta dos opciones A y B; el alumno deberá elegir una y sólo una de ellas, y resolver los cuatro ejercicios de que consta. No se permite

Más detalles

Ley de enfriamiento de Newton considerando reservorios finitos

Ley de enfriamiento de Newton considerando reservorios finitos Ley de enfriamiento de Newton considerando reservorios finitos María ecilia Molas, Florencia Rodriguez Riou y Débora Leibovich Facultad de Ingeniería, iencias Exactas y Naturales Universidad Favaloro,.

Más detalles

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3

2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera Boletín de problemas 3 2.004 MODELISMO, DINÁMICA Y CONTROL II Primavera 2003 Boletín de problemas 3 Problema 1 Las dos masas a la derecha del dibujo están ligeramente separadas e inicialmente en reposo. La masa de la izquierda

Más detalles

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica.

El análisis cartesiano (René Descartes ) descubrió que las ecuaciones pueden tener una representación gráfica. Capítulo 4. Estudio de la línea recta El análisis cartesiano (René Descartes 1596-1650) descubrió que las ecuaciones pueden tener una representación gráfica. Para lograr esa representación gráfica es necesario

Más detalles