Matemáticas Universitarias
|
|
|
- Nicolás Benítez Segura
- hace 9 años
- Vistas:
Transcripción
1 Matemáticas Universitarias
2 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones polinomiales para realizar las gráficas correspondientes de las funciones e identificar las raíces reales que dan solución a dichas ecuaciones. Contextualización Las funciones polinomiales son las más básicas en matemáticas porque se definen solo en términos de suma, resta y multiplicación. En la práctica, a menudo es necesario dibujar sus gráficas y encontrar (o calcular) sus raíces. En esta sesión estudiaremos resultados que sirven para obtener esta información y luego dirigiremos nuestra atención a los cocientes de funciones polinomiales; esto es, funciones racionales. /wikipedia/commons/thumb /0/09/RationalDegree2byX edi.gif/250px-
3 2 Introducción al Tema Cómo reconozco la forma de una función? Una función es racional porque representa el cociente de dos polinomios? Las gráficas de las funciones polinomiales y racionales son iguales? Estas y más preguntas tenemos por responder a través del estudio de las funciones polinomiales y racionales. Saber obtener y reconocer a través de su forma los dominios de estas funciones es otro trabajo que realizaremos.
4 3 Explicación Función Polinomial. Si f es una función polinomial con coeficientes reales de grado n, entonces n n 1 f(x) = an x + an 1 x a1x + a0 con a 0 0 Todas las funciones polinomiales son continuas, es decir, sus graficas se pueden dibujar sin cortes o interrupciones. El dominio de una función polinomial son todos los valores que x puede tomar, para este caso son todos los números reales. Representado este intervalo por (, ) Trazo de gráficas. A continuación se describe una forma rápida de trazar una función polinomial sin necesidad de realizar alguna tabulación. Ejemplo 1: Trazo de grafica para f(x) = x 3 +x 2-4x -4. Grado 3. Solución: Primeramente se hallaran los valores de las raíces o ceros de la función, se debe de factorizar la función f(x) = x 3 +x 2-4x -4 = (x 3 +x 2 )+ (-4x -4) = x 2 (x+1) -4(x+1) = (x 2-4)(x+1) (x+2)(x-2)(x+1) A partir de estos factores e igualando a cero cada uno, x toma los valores de -2, 2, -1 los cuales representan las raíces o ceros de la función.
5 4 Gráficamente significa que la función se interseca en x= -2, -1 y 2 y estos puntos dividen al eje x en cuatro partes, considerando estas partes en intervalos abiertos, tenemos: (, 2),( 2, 1),( 1,2),(2, ) Estos intervalos ayudan a crear una tabla de signos: Intervalos (, 2) ( 2, 1) ( 1,2) ( 2, ) Signo de x Signo de x Signo de x Signo f(x) Posición en la grafica Abajo del eje x Arriba del eje x Abajo del eje x Arriba del eje x Con base en el signo de f(x) de la tabla, concluimos que F(x) > 0 si x está en ( 2, 1) U ( 2, ) F(x) < 0 si x está en (, 2) U ( 1,2). Su aspecto grafico es:
6 5 Función Racional Una función es racional si g( x) f ( x) =, donde g(x) y h(x) son polinomios. h( x) El dominio de f está definido por todos los números reales, excepto los números que hacen cero el denominador. Ejemplo 2: Encuentra el dominio de las siguientes funciones racionales. a) b) c) 1 ( x) = x 2 f ; dominio: todos los reales excepto -2. (, 2) U ( 2, ) 5x ( x) = x 2 9 f ; dominio: todos los reales excepto ±3. (, 3),( 3,3),(3, ) 3 x ( x) = x f ; dominio: todos los números reales. (, ) Ejemplo 3: Traza la gráfica de x + 1 f ( x) = x 1 Solución: 1. Encontrar las intersecciones en x, esto es, los ceros reales del numerador g(x) y trazar los punto correspondientes en el eje x. x+1 = 0 x= -1 y trazamos el punto (0, 1) en el eje x. 2. Hallar las raíces reales del denominador h(x). Para cada cero real a trazar la asíntota vertical x=a con línea punteada. x -1 = 0 x = 1, por lo que tenemos la asíntota vertical x = 1. Esta recta deberá de dibujarse como una línea punteada. 3. Determinar la intersección en y considerando f (0) si existe, y trazar el punto (0, f (0)) en el eje y f ( 0) = = 1 y trazamos el punto (0, 1) 0 1
7 6 4. Si hay una asíntota horizontal y = c, trazarla con línea punteada. Como el numerador y el denominador tienen el mismo grado 1, los coeficientes principales son 1 y 1 de modo que la asíntota horizontal es y = 1. Se dibuja con línea punteada. 5. Graficar f en cada una de las regiones del plano xy definido por las asíntotas verticales. Si es necesario, usar el signo de valores de función específicos a fin de señalar si la gráfica está arriba o abajo del eje x o de la asíntota horizontal. La línea verde es la asíntota vertical. La línea roja es la asíntota horizontal. Las líneas azules representan la forma de la función.
8 7 Conclusión En esta sesión aprendimos a graficar las funciones polinomiales y racionales sin necesidad de tabular, siguiendo una serie de pasos pudimos concretar la gráfica de estas funciones. También aprendimos a encontrar los dominios de las funciones y los ceros o raíces de la función. En la siguiente sesión trabajaremos con las Funciones exponenciales y logarítmicas.
9 8 Para aprender más En este apartado encontrarás más información acerca del tema para enriquecer tu aprendizaje. Puedes ampliar tu conocimiento visitando los siguientes sitios de Internet. Ditutor. (s.f). Función racional. Consultado el 25 de abril de 2013: Funciones polinomiales. (s/f). Consultado el 25 de abril de 2013: Es de gran utilidad visitar el apoyo correspondiente al tema, pues te permitirá desarrollar los ejercicios con más éxito.
10 9 Actividad de Aprendizaje Con los conocimientos adquiridos en esta sesión acerca de las funciones polinomiales, racionales y sus gráficas, los aplicarás para dar solución a cada uno de los planteamientos siguientes: I.- Encuentra las raíces reales de las siguientes funciones polinomiales: 1 a) f ( x) = x b) f 4 2 ( x) = x 4x II.- Traza la gráfica de las siguientes funciones: c) d) f ( x) = x + 3x 4x 4x 1 f ( x) = 2 x + 3 III.- Encuentra el dominio de las siguientes funciones: e) f) 3 f ( x) = x 4 x 2 f ( x) = 2 x x 6 Sube tu trabajo a la plataforma.
11 10 Bibliografía Swokowski, E., Cole, J. (2002). Algebra y trigonometría con geometría analítica. México. Thomson Learning.
Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales.
Matemáticas Universitaria. Sesión 10. Funciones polinomiales de grado superior y racionales. Contextualización Las funciones polinomiales son las más básicas en matemáticas porque se definen solo en términos
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 11 Nombre: Funciones exponenciales y logarítmicas. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos relacionados con las funciones
Funciones polinomiales
1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos
Matemáticas. Sesión #5. Función lineal y cuadrática.
Matemáticas Sesión #5. Función lineal y cuadrática. Contextualización En esta sesión aprenderás a interpretar el concepto de función, para que sirve trabajar con funciones, que datos maneja y como se le
Además se definirá la función lineal en forma de expresión matemática y se aprenderá a usar su gráfica.
Matemáticas 1 Sesión No. 5 Nombre: Función lineal y cuadrática. Contextualización En esta sesión aprenderás a interpretar el concepto de función, para que sirve trabajar con funciones, que datos maneja
Módulo 2 - Diapositiva 6 Funciones y sus gráficas. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales
Módulo 2 - Diapositiva 6 Funciones y sus gráficas Facultad de Ciencias Exactas y Naturales Temas Funciones Funciones Polinomiales Gráficas de Funciones Función Definición de Función Sean A y B dos conjuntos
Funciones Racionales y Asíntotas
y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:
Funciones Racionales y Asíntotas
Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función
Algebra y Trigonometría Grupo: 1
Guía No 4 Algebra y Trigonometría Grupo: 1 UNAD Escuela de Ciencias Básicas Tecnología e Ingeniería Algebra Trigonometría y Geometría Analítica Definición: FUNCIONES POLINOMIALES Una función polinomial
INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO ASIGNATURA: ÁLGEBRA GRADO: NOVENO ESP. HENRY CARRASCAL C. TIPOS DE FUNCIONES
INSTITUCIÓN EDUCATIVA COLEGIO ARTÍSTICO RAFAEL CONTRERAS NAVARRO ASIGNATURA: ÁLGEBRA GRADO: NOVENO ESP. HENRY CARRASCAL C. Recapitulemos sobre el tema Funciones: TIPOS DE FUNCIONES Intuitivamente, la palabra
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 8 Nombre: Concepto de función, función lineal y su gráfica. Objetivo de la asignatura: En esta sesión el estudiante aplicará los métodos para la obtención de la
Módulo 2 - Diapositiva 6 Funciones y sus gráficas. Universidad de Antioquia
Módulo 2 - Diapositiva 6 Funciones y sus gráficas Facultad de Ciencias Exactas y Naturales Temas Funciones Funciones Funciones Lineales Función Funciones Dominio y rango de una función Gráfica de funciones
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 1 Nombre: Introducción al algebra Objetivo de la asignatura: El estudiante aplicará los conceptos fundamentales del álgebra como números reales, exponentes, radicales
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 2 Nombre: Expresiones algebraicas y sus operaciones Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas como suma, resta, multiplicación
Sesión No. 2. Contextualización. Nombre: Polinomios y expresiones racionales MATEMÁTICAS.
Matemáticas 1 Sesión No. 2 Nombre: Polinomios y expresiones racionales Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 4 Nombre: Ecuaciones Cuadráticas Objetivo de la asignatura: En esta sesión el estudiante aplicará los principales métodos de solución de raíces de polinomios de
Módulo 3 - Diapositiva 19 Factorización de Polinomios. Universidad de Antioquia
Módulo 3 - Diapositiva 19 Factorización de Facultad de Ciencias Exactas y Naturales Temas Teorema del Factor Teorema del Factor Teorema Fundamental del Álgebra Teorema del Factor Teorema Un polinomio f(x)
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 7 Nombre: Operaciones básicas con matrices, producto e inversa. Objetivo de la asignatura: En esta sesión el estudiante aplicará las operaciones básicas de suma,
FUNCIÓN POLINOMIAL. Ing. Caribay Godoy
FUNCIÓN POLINOMIAL OBJETIVOS Definir una función polinomial. Reconocer la función constante, lineal y cuadrática como casos particulares de una función polinomial Identificar el coeficiente principal de
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
Matemáticas. Sesión #6. Funciones exponenciales y logarítmicas y el uso de las progresiones aritméticas y geométricas.
Matemáticas Sesión #6. Funciones exponenciales y logarítmicas y el uso de las progresiones aritméticas y geométricas. Contextualización Las funciones exponenciales y logarítmicas se les conoce como trascendentes,
Módulo 3 - Diapositiva 18 Polinomios. Universidad de Antioquia
Módulo 3 - Diapositiva 18 Polinomios Facultad de Ciencias Exactas y Naturales Temas Polinomios División sintética Polinomios Polinomio en la variable x Es una expresión de la forma P (x) = a nx n + a n
Matemáticas. Sesión #2. Polinomios y expresiones racionales.
Matemáticas Sesión #2. Polinomios y expresiones racionales. Contextualización Los polinomios son expresiones algebraicas que son las de mayor uso y aplicación en cualquiera de las áreas de las matemáticas,
PLAN DE EVALUACIÓN ACREDITACIÓN
PLAN DE EVALUACIÓN ACREDITACIÓN ASIGNATURA: MATEMÁTICAS IV SEDE: ESTATAL SEMESTRE: CUARTO CORTE: I BLOQUES: I, II, III PERIODO: 2018-1 DESEMPEÑO A DEMOSTRAR COMPETENCIAS A DESARROLLAR EVIDENCIA A EVALUAR
1.- DOMINIO DE LA FUNCIÓN
En este resumen vamos a tratar los puntos que necesitamos para poder representar gráficamente una función. Empezamos viendo la información que podemos obtener de la expresión matemática de la función.
Regla o correspondencia
Regla o correspondencia Una función es una regla, o una correspondencia, que relaciona dos conjuntos de tal manera que a cada elemento del primer conjunto corresponde uno y solo un elemento del segundo
Estudio de las funciones RACIONALES
Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante
Unidad 2. FUNCIONES Conceptos
Unidad 2. FUNCIONES Competencia específica a desarrollar Comprender el concepto de función real y tipos de funciones, así como estudiar sus propiedades y operaciones. Función 2.1. Conceptos Se puede considerar
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul
Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Unidad I (Capítulos 3 y 5 del texto) Funciones y Gráficas 1.1 Definición y notación de función. 1.2 Dominio y rango
Módulo 2 - Diapositiva 16 Función Exponencial y Logarítmica. Universidad de Antioquia. Facultad de Ciencias Exactas y Naturales
Módulo 2 - Diapositiva 16 Función Exponencial y Logarítmica Facultad de Ciencias Exactas y Naturales Temas Función Exponencial Propiedades de la Función Exponencial Función Logarítmica Propiedades de la
3 Polinomios y funciones racionales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL
REPASO DE FUNCIONES FUNCIONES REALES DE VARIABLE REAL CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se
FUNCIONES: DOMINIO, RANGO Y GRAFICA
FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,
I. Determinar los siguientes límites, aplicando las propiedades. lim =
Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término
TALLER DE PREPARACIÓN PARA EL PRIMER PARCIAL
TALLER DE PREPARACIÓN PARA EL PRIMER PARCIAL 1. Si 2. Si 3. 4. e. f. g. h. 5. Determine si la gráfica de la figura es la gráfica de una función 6. Use la gráfica de la función dada en la figura para encontrar
Funciones. 1. Funciones. Ecuaciones. Curvas. 2. Función lineal. La recta
Funciones 1 Funciones Ecuaciones Curvas Una función es una correspondencia entre números Mediante la función f a cada número x se le hace corresponder un solo número que se representa por f(x) Puesto que
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA 1) La recta r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo cuadrante, un triángulo de área 16. Determinar la distancia del punto
Matemáticas. Sesión #4. La ecuación de la recta y su grafica.
Matemáticas Sesión #4. La ecuación de la recta y su grafica. Contextualización El sistema de coordenadas es uno de los conceptos que aprenderemos en esta sesión, aprenderemos a identificar los elementos
Universidad de Antioquia Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas
Facultad de Ciencias Exactas y Naturales Instituto de Matemáticas Algebra y Trigonometría Taller 6: Funciones Polinomiales y Racionales Teorema del residuo y del factor. Hallar los valores que se piden
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100. (1) Obtener la ecuación de la recta tangente a la curva x 3 + y 3 6xy =0
CÁLCULO DIFERENCIAL E INTEGRAL I TERCERA EVALUACIÓN PARCIAL E0100 (1) Obtener la ecuación de la recta tangente a la curva x + y 6xy =0 en el punto, 8 ). (2) A un depósito cilíndrico de base circular de
Funciones cuadráticas: valor mínimo, valor máximo y el vértice
Funciones cuadráticas: valor mínimo, valor máximo y el vértice Definiciones Si la gráfica de una función sube en el plano de izquierda a derecha, se dice que es creciente en ese intervalo. Definiciones
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (0081714) UNIDAD N 4 (APLICACIONES DE LA DERIVADA) Profesora: Yulimar Matute Febrero 2012 RECTA
2.4 Analizando gráficas de funciones cuadráticas
2.4 Analizando gráficas de funciones cuadráticas Definiciones Si la gráfica de una función sube de izquierda a derecha, se dice que es creciente en ese intervalo. Una función f se dice que es creciente
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos
Límites y continuidad de funciones
Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím
FUNCIONES REALES DE VARIABLE REAL
FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.
10) La correspondencia que se muestra en el siguiente diagrama es un ejemplo de una función.
Nombre UPRA - Depto. de Matemáticas Fecha: Mate 00- Examen II (Práctica) I. Cierto/Falso Indique si cada aseveraciones es Cierta (C) o Falsa (F). ( pts. c/u) ) El intercepto en de x (x )(x+) es (0,-6).
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
Álgebra y trigonometría: Gráficas de ecuaciones y funciones
Álgebra y trigonometría: Gráficas de ecuaciones y funciones CNM-108 Instituto de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Este documento es distribuido bajo una licencia
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 3 Nombre: Ecuaciones Lineales Objetivo de la asignatura: En esta sesión el estudiante aplicará las principales propiedades de ecuaciones lineales con la finalidad
Programa de preparación para exámenes de ubicación
GUÍA PARA EL EXAMEN DE UBICACIÓN DE MATEMÁTICAS TECNOLÓGICO DE MONTERREY INSTRUCCIONES Este examen debe ser presentado antes de las inscripciones, por los alumnos de primer ingreso que provengan de preparatorias
TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel
TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES
SEGUNDO TURNO TEMA 1
TEMA 1 Ejercicio 1 ( puntos) Dada la función polinómica f(x) = x + 2x 2 x 2, hallar los intervalos de positividad y negatividad de f sabiendo que el gráfico de dicha función corta al eje x en el punto
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
Desarrollaremos la noción de pendiente y las diferentes formas de ecuaciones de rectas.
Matemáticas 1 Sesión No. 4 Nombre: La ecuación de la recta y su gráfica. Contextualización El sistema de coordenadas es uno de los conceptos que aprenderemos en esta sesión, aprenderemos a identificar
RESPUESTAS A LAS AUTOEVALUACIONES. Unidad 1. Funciones polinomiales. 1) a y d 2)... 3) 4) 0, 3, -1 y 5/2 5) -2 y 2. 7) 3.85, 0.55 y 3.
RESPUESTAS A LAS AUTOEVALUACIONES Unidad 1. Funciones polinomiales 1) a y d 2)... 3) 4) 0, 3, -1 y 5/2 5) -2 y 2 6) 2, 2, 2 y 2 (dos reales y dos complejas) 7) 3.85, 0.55 y 3. 30 8) F(x) = 3 (x 3) (x +
SEMESTRE: CUARTO CORTE: I BLOQUES: I, II, Genéricas BLOQUE I. definen a una función paraa establecer si una relación. tabulares, (prueba de
PLAN DE EVALUACIÓN ACREDITACIÓN ASIGNATURA: MATEMÁTICAS IV SEMESTRE: CUARTO CORTE: I SEDE: : ESTATAL BLOQUES: I, II, III PERIODO: 2017-1 DESEMPEÑO A DEMOSTRARR Uno o más desempeños pueden asociarse con
Por qué expresar de manera algebraica?
Álgebra 1 Sesión No. 2 Nombre: Fundamentos de álgebra. Parte II. Objetivo: al finalizar la sesión, el estudiante conocerá e identificará las expresiones racionales, las diferentes formas de representar
Cálculo I. Índice Límites Infinitos. Julio C. Carrillo E. * 1. Introducción Límites infinitos Límites en el infinito 9
2.3. Límites Infinitos Julio C. Carrillo E. * Índice. Introducción 2. Límites infinitos 3. Límites en el infinito 9 * Profesor Escuela de Matemáticas, UIS. . Introducción En esta sección se discuten dos
Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas
Lcdo. Eliezer Montoya Matemática I 1 Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Asignatura Matemática I código 114 Primera Versión 14-06-08 Facilitador: Licdo Eliezer
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS
TRABAJO PRACTICO Nº 9: FUNCIONES CUADRÁTICAS ASIGNATURA: RAZONAMIENTO Y RESOLUCION DE PROBLEMAS Ecuaciones Cuadráticas Toda función cuadrática se puede expresar de la siguiente forma: f(x) = ax ± bx ±
Universidad de Antioquia
1. Introducción Expresiones algebraicas Instituto de Matemáticas * Facultad de Ciencias Exactas y Naturales Unviersidad de Anquioquia Medellín, 24 de julio de 2011 El álgebra es la disciplina de la matemática
Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016
ESTIMADO DOCENTE: Ministerio de Educación Pública Distribución de ítems para la prueba nacional Matemática Modalidad Técnica Convocatorias 2016 En la modalidad de colegios técnicos, la Prueba de Bachillerato
4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:
U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento
TEMA 10 FUNCIONES NOMBRE Y APELLIDOS... HOJA 52- FECHA...
TEMA 10 FUNCIONES NOMBRE Y APELLIDOS... HOJA 52- FECHA... FUNCIONES DE PRIMER GRADO Una función de primer grado es una relación matemática que asigna a cada número otro distinto que depende de una expresión
Módulo 2 - Diapositiva 15 Función Exponencial y Logarítmica. Universidad de Antioquia
Módulo 2 - Diapositiva 15 Función Exponencial y Logarítmica Universidad de Antioquia Facultad de Ciencias Exactas y Naturales 1 Temas Función Exponencial Propiedades de la Función Exponencial Función Logarítmica
Preparación para cálculo
Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
DEFINICION DE RELACIÓN
DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.
FUNCIONES ( ) Racionales: ( ) Irracionales: ( ) Logarítmicas: ( )
FUNCIONES Definición. Función real de variable real es una aplicación del conjunto de los números reales en sí mismo, de tal forma que a cada número real le hace corresponder otro número real. CORRESPONDENCIA
Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta. Universidad de Antioquia
Módulo 2 - Diapositiva (Quiz 2) Ecuación de la recta Facultad de Ciencias Exactas y Naturales Temas Rectas Ecuación de la Recta Fórmulas de Rectas Línea recta La gráfica de una función lineal f(x) = mx
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Dada la función f(x) = a sen(x + π). Hallar el valor de la constante a R sabiendo que f ( π ) = a + Se sabe que
CLAVES DE CORRECCIÓN SEGUNDO PARCIAL MATEMÁTICA 2º
SEGUNDO PARCIAL MATEMÁTICA º Cuatrimestre 07 PRIMER TURNO (//07) TEMA Ejercicio ( puntos) Hallar él o los puntos del gráfico de la función para los cuales la recta tangente sea horizontal f(x) = e x 3x
3 Polinomios y funciones racionales
Programa Inmersión, Verano 06 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: jueves, 3 de junio de 06. 3 Polinomios y funciones racionales 3. Funciones
3 Polinomios y funciones racionales
Programa Inmersión, Verano 07 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 303 Clase #8: miércoles, 3 de agosto de 07. 3 Polinomios y funciones racionales 3.
Tema II: Análisis Límites
Tema II: Análisis Límites En matemáticas, se usa el concepto del límite para describir la tendencia de una sucesión o una función. La idea es que en una sucesión o una función, decimos que existe el límite
Ecuaciones Cuadráticas
MB0003 _MAAL_Cuadráticas Versión: Septiembre 0 Ecuaciones Cuadráticas por Oliverio Ramírez Juárez Una ecuación cuadrática es una ecuación de segundo grado, cuya forma general o canónica es a b c 0. La
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
Funciones racionales
Funciones racionales Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( 1 3 5 3 ) ( 4 3 4 ) ( 3 4 4 )
Tema 1 Límites 1.0.Definición de límite de una función
Tema 1 Límites 1.0.Definición de límite de una función L es el límite de de la función f(x) cuando la variable x tiende (se acerca) al valor x p. El límite de una función es el valor que toma la función
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
