Funciones racionales
|
|
|
- Miguel García Miranda
- hace 9 años
- Vistas:
Transcripción
1 Funciones racionales
2 Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son funciones polinómicas. g f y 9 4 ) ( 3 ) ( ) ( ) ( ) ( 3 h q p La función racional Ejemplos:
3 Dominio de una función racional El dominio de una función es el conjunto de todos los números para los cuales una función está definida. Una función, f(), está definida en un valor de si al evaluar f() produce un número real. En el caso de las funciones racionales, debemos ecluir del conjunto de los números reales cualquier valor que hace que el denominador sea igual a cero.
4 1) Dominio de una función racional Determinar Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). 4 1 = 0 4 = 1 = 1 4 el dominio de f ( ) Por lo tanto el dominio es, el conjunto de los reales ecepto = ¼. El dominio se describe en notación:, 1 1, D: R 1 4
5 Dominio de una función racional 5 ) Determinar el dominio de f ( ). 4 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). 4 0 = 4 = ± 4 = ± Usando el método de la raiz cuadrada, El dominio de f() consiste de todos los reales ecepto = y = -. Dom: R y Dom : -,, (, )
6 Dominio de una función racional 5 4) f ( ) 1 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). + 1 = 0 = 1 Dom : No eiste un valor que se le puede asignar a tal que sea igual a -1. Por lo tanto, el dominio es el conjunto todos los reales. R Dom : (-, )
7 Interceptos Interceptos en o punto donde la gráfica interseca el eje de. o para una función racional, el intercepto en ocurre en el valor de que hace que el numerador de la función sea igual a cero. o la cantidad de interceptos en depende del grado del numerador. o 0 # interceptos en grado del numerador
8 Interceptos Intercepto en y o punto donde la gráfica interseca el eje de y. o Es el valor de la función cuando = 0. [f(0)] o Si = 0 está en el dominio de f(), entonces eiste un sólo intercepto en y. o Si = 0 NO está en el dominio de f(), NO eiste el intercepto en y.
9 Interceptos f =
10 Interceptos Hallar los interceptos de cada función. (1) f ( ) (a) intercepto y: 1 b) intercepto - f 0 = 1 0 = 1 El intercepto en y es (0, - ½ ). El numerador de f() es Por lo tanto, f() NO tiene interceptos en.
11 Interceptos Hallar los interceptos de cada función. (a) intercepto y: f ) 0 0 ( 0) El intercepto en y es (0, 0). f ( ) 3 b) intercepto - El numerador de f() es. = 0 cuando = 0. Por lo tanto, f() tiene intercepto en en el punto (0,0) o sea que coincide con el intercepto en y.
12 Interceptos Hallar los interceptos de cada función. (a) intercepto y: g(0) g(0) 0 (0) 3 NO está 9(0) 3) g() 3 0 definido. NO eiste intercepto en y. 9 b) intercepto - El numerador de g() es -. Si despejamos - = 0 = =, = g() tiene interceptos en en (,0) y (, 0)
13 Soluciones de funciones racionales Un par ordenado (a,b) es una solución de una función f() si f(a)=b. Dicho de otra forma, si al evaluar f en =a el resultado es b. Ej. Determinar si (6, 1) es una solución de (6) f ( 6) 1 (6) f ( ) 1 5 (6, 1) SI es una solución de la función.
14 Soluciones de funciones racionales Ej. Determinar el valor de a tal que (a, 4) es una solución de 5 f ( ) 3 5a 3 a 4 5a 4 3 a 5a 1 4a 5a 4a 1 a 14 (14,4) es una solución de la función.
15 Gráficas de funciones racionales Observemos la gráfica de 1 f ( ) Comportamiento en los etremos A medida que los valores de se hacen más negativos, los valores de la función (y) se acercan más y más a cero., y 0, y 0 A medida que los valores de se hacen más positivos, los valores de la función (y) se acercan más y más a cero. y = 0 es una asíntota horizontal
16 Gráficas de funciones racionales Observemos la gráfica de, y 0 1 f ( ) Comportamiento en los etremos y = 0 es una asíntota horizontal La línea y = k es una asíntota horizontal de la gráfica de una función f si f () k cuando o., y 0
17 Gráficas de funciones racionales (cont.) Observemos la gráfica de 1 f ( ) y, Comportamiento alrededor de = A medida que los valores de se acercan a por valores mayores que, la función (y) se hace más positivo. A medida que los valores de se acercan a por valores menores que, los valores de la función (y) se hace más negativos. = es una asíntota vertical y,
18 Gráficas de funciones racionales (cont.) Observemos la gráfica de 1 f ( ) = es una asíntota vertical y, y, La línea = c es una asíntota vertical de la gráfica de una función f si f () o f () -?? cuando asume valores cercanos c por la izquierda o la derecha.
19 Hallar las asíntotas de funciones racionales Asíntotas Verticales Una función racional tiene una asíntota vertical cuando el denominador de la función simplificada es igual a 0. Una función racional está simplificada si NO eisten factores comunes, distintos de uno, entre el numerador y denominador.
20 Hallar la ecuación de cada asíntota vertical si eiste. 1. f 5 Calculamos los valores de que hacen el denominador igual a cero: + = 0 = -1 La recta = -1 es la única asíntota vertical de la función.
21 Asíntotas horizontales Caso 1 Las asíntotas horizontales aparecen cuando ocurre una de las siguientes condiciones: 1. El grado del numerador es menor que el grado del denominador. En este caso, la asíntota es la recta horizontal y = 0. 3 Ej. f ( ) El eje de (y=0) es la 3 15 asíntota horizontal de 1 g( ) las gráficas de f() y 16 g()
22 Asíntotas horizontales Caso. El grado del numerador es igual al grado del denominador. En este caso, la asíntota es la recta horizontal y = a, donde a es el coeficiente principal b del numerador y b es el coeficiente principal del denominador. Ej. f ( ) g( ) La asíntota horizontal de la gráfica de f() es g() es y y o o y 3 y 4
23 Asíntotas horizontales Caso 3 3. Cuando el grado del numerador es mayor que el grado del denominador la función NO tiene asíntota horizontal. Ej. f ( ) g( ) Las gráficas de f() y g() NO tienen asíntota horizontal
24 1. f 5 El grado del numerador y del denominador es 1. a b n n 5 La asíntota horizontal de la f() es la recta y Hallar la ecuación de cada asíntota horizontal si eiste. 5
25 Gráficas de funciones racionales f 5 Vimos que la asíntota vertical es = -1 y la horizontal es y 5
26 f Gráficas de funciones racionales 5 Intercepto : 5 = 0 = (, 0 ) 5 5 Intercepto y: f( 0) f( 0) 1 (0, 1) 5( 0) ( 0) Podemos unir los dos puntos con una curva suave que se acerca a las asíntotas.
27 Gráficas de funciones racionales Debemos evaluar la función en algunos otros puntos para localizar la otra parte de la gráfica. f ( 5) ( ) 5 f 1 (, 6) 6
28 Gráficas de funciones racionales Para trazar gráficas de funciones racionales podemos seguir los siguientes pasos: Determinar si eisten asíntotas verticales. Determinar si eiste el asíntota horizontal. Determinar si eisten interceptos. Determinar comportamiento alrededor de las asíntotas. Tal vez se necesiten unos puntos adicionales. Unir puntos con curvas suaves que se quedan alrededor de las asíntotas.
29 Trazar la gráfica de: Primero simplicamos la función. f La recta vertical = 3 es la única asíntota vertical de esta función. La recta horizontal y = es la asíntota horizontal de esta función.
30 Trazar la gráfica de: Determinemos los interceptos. f (0) 10(0) f (0) 3 (0) , 3 1 ( ) 10( ) f ( ) ( ) ,0
31 Trazar la gráfica de: Busquemos un punto adicional: f (8) 10(8) f (8) (8) 9 f (8) (8,4) NOTE el hueco en el punto 1 3, 3
32 f Trazar la gráfica de: Intercepto - y: 0 0 ( 0) Intercepto (0,0) f ( ) 3 Asíntota vertical: Calculamos los valores de que hacen el denominador igual a cero: 3 = 0 = 3 (ecuación de la asíntota) Asíntota horizontal: y y a b n n 1 (ecuación de la asíntota)
33 Puntos adicionales Busquemos un punto adicional: f (4) (4) , 8
34 Trazar la gráfica de f 1, si f ( ) 3 Solución: Como f y f 1 intercambian dominio y campo de valores, tenemos que: El punto (0,0) f 1. El punto (-8,4) f 1. f 1 tiene una asíntota vertical en = - f 1 tiene una asíntota horizontal en y = 3
35 Puntos adicionales Busquemos un punto adicional: 4 3 4(3 ) , 4 f() 1 4, 6 f ()
36 Determinar f 1, si Solución: f = 3 = y 3 y ( 3 y ) y 3 y y 3 3 y y( y 3 + = y ) f ( ) f 1 = 3 + 3
37 Use la gráfica para completar cada enunciado. 0
38 Las asíntotas, los interceptos, y los agujeros de una función racional, f, se muestran en la figura. Dibuje una gráfica y encuentre una ecuación para f. Aplicación
39 La relación entre la densidad poblacional (en personas /mi ) de una ciudad grande y la distancia (en millas) desde el centro de la ciudad está dado por d = a) Qué ocurre con la densidad cuando la distancia desde el centro de la ciudad cambia de 0 millas a 5 millas? (b) Qué ocurre eventualmente con la densidad? (c) En qué áreas de la ciudad es la densidad de población mayor que 400 personas/mi?
Funciones racionales. Profa. Caroline Rodríguez UPRA MECU 3031
Funciones racionales Profa. Caroline Rodríguez UPRA MECU 01 Una función racional es una función que se puede epresar de la forma ( ( ( g f p donde f( y g( son funciones polinómicas. Ejemplos: g f y 9 (
FUNCIONES RACIONALES. Sec. 3.5
FUNCIONES RACIONALES Sec..5 DOMINIO DE FUNCIONES RACIONALES Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son polinomios. Ejemplos: g f y 9 4 )
DEFINICION DE RELACIÓN
DEFINICION DE RELACIÓN Se Define como relación o correspondencia R entre los conjuntos B C, a un subconjunto del producto cartesiano B C, compuesto por pares de elementos que cumplen cierta regla definida.
Sec FUNCIONES POLINOMICAS
Sec..1-. FUNCIONES POLINOMICAS Función Polinómica Un polinomio o una función polinómica es una epresión algebraica de la forma n n1 n P( ) a a a... a a, n n1 n 1 0 donde los coeficientes a n, a n - 1,,
FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0
FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones
Componentes polinomiales de una función racional
Funciones racionales Componentes polinomiales de una función racional Son las funciones que están formadas por el cociente de dos funciones polinomiales, son de la forma: f x = P(x) donde P(x) y Q(x) son
REPRESENTACIÓN DE CURVAS - CCSS
REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
LÍMITES DE FUNCIONES GBG
LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si
Tema 10: Funciones racionales y potenciales. Asíntotas.
1 Tema 10: Funciones racionales y potenciales. Asíntotas. 1. Funciones racionales. Una función racional es de la forma =p()/q(), donde p() y q() son polinomios, con q()0. El dominio de una función racional
Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2
Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Un i d a d 2. Co n t i n U i da d. Objetivos. Al inalizar la unidad, el alumno:
Un i d a d Co n t i n U i da d Objetivos Al inalizar la unidad, el alumno: Identificará cuándo una función es continua en un punto y en un intervalo. Aplicará las operaciones de las funciones continuas
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:
RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan
Expresiones racionales. MATE 0008 Departamento de Matemáticas UPRA
Epresiones racionales MATE 0008 Departamento de Matemáticas UPRA EXPRESIONES RACIONALES En las matemáticas, la palabra racional se asocia a epresiones con forma de fracción; o sea que tienen un numerador
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
SOLUCIONES DE LAS ACTIVIDADES Págs. 239 a 257
TEMA. LÍMITES Y CONTINUIDAD SOLUCIONES DE LAS ACTIVIDADES Págs. 9 a 7 Página 9 Página. a) f() 0. a) f() 0, 0,0 0,00 0,000 f(),,9,99,999,9,99,999,9999 f() 00 0.000 0 6 0 8 b) f() 0 0, 0,0 0,00 0,000 f(),,0,00,000
Apoyo. Dominio y rango de una recta horizontal, y recta vertical que no es una función. es una constante.
Línea Recta I. Línea recta. Apoo. Dominio rango de una recta horizontal, recta vertical que no es una función. Forma estándar de la ecuación de una recta m b Donde: Variable dependiente (eje de las ordenadas)
TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD
MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores
Unidad 4 Lección 4.2. Ceros Complejos y Funciones Racionales
Unidad 4 Lección 4. Ceros Complejos y Funciones Racionales 0//07 de 9 Actividades 4. Referencias: Sección 4. Ceros Complejos; Vea Ejemplo, y 4: Problemas impares 5 7, 5-; 5, 7, 49, 50, 55 y 57. Sección
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1
1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes
Unidad 4 Lección 4.2. Funciones Racionales
Unidad 4 Lección 4. Funciones Racionales 0/6/06 Prof. José G. Rodríguez Ahumada de 4 Actividades 4. Referencias: Sección 4. Ceros Complejos; Vea Ejemplo, y 4 Sección 4.4 Funciones Racionales; vea Ejemplos,
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
Funciones Racionales y Asíntotas
y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:
CONTINUIDAD DEFINICIÓN CONTINUIDAD LATERAL. es continua en un punto. Una función. si:
CONTINUIDAD DEFINICIÓN Una función 1) l a ) f (a) ) f ( a) a un punto a Si una función no cumple alguna de estas condiciones es discontinua en : a CONTINUIDAD LATERAL Ejemplo a por la izquierda f ( a)
Límite de una Función
Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS
Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I
Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que
Funciones Racionales y Asíntotas
Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función
1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla
Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01
para = 1. b) Calcúlese f(x)dx. x+a si x < 1 x 2-2 si 1 x 3. x+b si x > 3
. [4] [ET-A] Se considera la función real de variable real definida por f() = e +. a) Esbócese la gráfica de la función f. b) Calcúlese el área del recinto plano acotado limitado por la gráfica de la función,
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
Sec FUNCIONES POLINOMICAS
Sec. 3.1-3.2 FUNCIONES POLINOMICAS Función Polinómica Un polinomio o una función polinómica es una expresión algebraica de la forma n n 1 n 2 P( x) a x a x a x... a x a, n n 1 n 2 1 0 donde los coeficientes
TEMA 6 : LÍMITES DE FUNCIONES. CONTINUIDAD
TEMA 6 : DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN EN UN PUNTO. Ejercicio: Observa la gráfica siguiente: a) Estudia el dominio, el recorrido y la continuidad de f(). b) Indica si eisten los límites
1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio.
GRÁFICA Y RANGO DE UNA FUNCIÓN RACIONAL Sugerencia para quien imparte el curso. Antes de abordar esta parte del curso, se sugiere comentar con los estudiantes algunos aspectos como los siguientes: Se esperan
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos
página 1/10 Problemas Tema 9 Solución a problemas de derivadas - Hoja 8 - Todos resueltos Hoja 8. Problema 1 a) Deriva f ()=arcosen( 1 2 ) 1 f ' ( )= 2 1 ( 1 2 ) 2 2 1 = 1 2 1 2 b) Determina el punto (,
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
1. INTEGRALES DEFINIDAS E IMPROPIAS
. INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El
ln( = x, como x = f -1 (y), cambiamos y por x, entonces Ej 1. (2 puntos) Sea f ( x ) = 2e + 8, entonces: a) La función inversa de f es:
ANÁLIS. MAT. ING. - EXACTAS C 7 APELLIDO: NOMBRES: SOBRE Nº: Duración del eamen: hs DNI/CI/LC/LE/PAS. Nº: E-MAIL: CALIFICACIÓN: TEMA - --7 TELÉFONOS part: cel: Apellido del evaluador: + Ej. ( puntos) Sea
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
Procedimiento para determinar las asíntotas verticales de una función
DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición
1.1 Gráficas de Ecuaciones en dos variables. MATE 3002 Presentación 1
1.1 Gráficas de Ecuaciones en dos variables MATE 3002 Presentación 1 Sistema de coordenadas cartesianas Se basa en dos líneas perpendiculares llamadas eje de x y eje de y. Dividen el plano en cuatro cuadrantes
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,
TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.
TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2005 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 005 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Unidad 13 Representación gráfica de funciones
1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con
Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.
TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO
EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios
Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad
Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS
V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos
3 2x +1. 3) Prueba que la ecuación 5 x =8x-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25 donde esté dicha raíz.
21 de diciembre de 2000. 1 1) Calcula: 0 ln 2) Halla las asíntotas de la función: 5 3 f() 2-2 3 +7 3) Prueba que la ecuación 5 8-2 tiene alguna raíz real. Encuentra un intervalo de amplitud menor que 0,25
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
Funciones I. Par ordenado. Igualando los componentes: x + 9 = 11 y + 10 = 14 x= 2 y = 4
Funciones I Par ordenado Es un conjunto formado por dos objetos matemáticos cualesquiera "a" "b" denotado por (a; b) que se consideran ordenados con el criterio de uno antecede al otro. Notación: (a; b)
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS
TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN
FUNCIONES: DOMINIO, RANGO Y GRAFICA
FUNCIONES: DOMINIO, RANGO Y GRAFICA Dominio, Codominio y Rango de una función Dominio El dominio de una función son todos los valores reales que la variable X puede tomar y la gráfica queda bien definida,
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS
CORPORACION UNIFICADA NACIONAL DE EDUCACION SUPERIOR CUN DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA CALCULO DIFERENCIAL DOCENTE: LIC- ING: ROSMIRO FUENTES ROCHA UNIDAD Nº : FUNCIONES REALES. CONCEPTO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
ANÁLISIS DE FUNCIONES
ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))
Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente
Funciones polinomiales
1 Hacia finales del siglo XVIII, los matemáticos y científicos había llegado a la conclusión de que un gran número de fenómenos en la vida real podían representarse mediante modelos matemáticos, construidos
Funciones, límites y continuidad
8/0/016 Funciones, límites y continuidad C U R S O 0 1 5-0 1 6 Funciones, limites y continuidad Los puntos rojos son los que entran en el eamen de º evaluación 1) Concepto de función. Dominio y recorrido.
x 3 si 10 <x 6; x si x>6;
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f
Matemáticas Universitarias
Matemáticas Universitarias 1 Sesión No. 10 Nombre: Funciones polinomiales de grado superior y racionales. Objetivo de la asignatura: En esta sesión el estudiante aplicará los conceptos sobre funciones
EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A
Ejercicio 1. (2,5 puntos) EXAMEN I RESUELTO PRIMERA EVALUACIÓN MATEMÁTICAS II 08/11/2017 OPCIÓN A Dada la función f (x)= 3 x 2 +3 x a) (1,25 puntos) Indicar el dominio de definición de la función f y hallar
FUNCIONES 1. FUNCIONES Y SUS GRAFICAS.
FUNCIONES 1. FUNCIONES Y SUS GRAFICAS. Una de las grandes inquietudes de los seres humanos a través de la historia ha sido la de describir los fenómenos naturales, sus cambios las relaciones entre unos
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
Estudio de las funciones RACIONALES
Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los
