FUNCIONES RACIONALES. Sec. 3.5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "FUNCIONES RACIONALES. Sec. 3.5"

Transcripción

1 FUNCIONES RACIONALES Sec..5

2 DOMINIO DE FUNCIONES RACIONALES

3 Una función racional es una función que se puede epresar de la forma ) ( ) ( ) ( g f p donde f() y g() son polinomios. Ejemplos: g f y 9 4 ) ( ) ( 1 5 ) ( 4 4 ) ( 4 4 ) ( h q p Funciones racionales

4 Ejemplos: 1 4 ) ( 1 1 ) ( g f Toda función polinómica es una función racional ya que se puede epresar con un denominador igual a ) ( 1 4 ) ( 4 q p Funciones racionales

5 Dominio de funciones racionales Recuerde que el dominio de una función es el conjunto de todos los números reales para los cuales una función está definida. Una función, f(), está definida en un valor de si evaluar f() en ese valor produce un valor de y que es un número real. En el caso de las funciones racionales, debemos ecluir del conjunto de los números reales cualquier valor que hace que el denominador sea igual a cero.

6 Determinar el dominio de una función racional 1) f ( ) 4 1 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador) cuando Por lo tanto el dominio es, el conjunto de los reales eceptuando = ¼. 1 4, 1 ó -, 1 1, D :

7 Determinar el dominio de una función racional 5 ) f ( ) 4 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). ( 4 0 )( Para encontrar los ceros, ) 0 cuando 0 cuando 0 -. factorizamos. Por lo tanto el dominio de f() es, el conjunto de los reales eceptuando = y = -. D : -, ó,

8 Determinar el dominio de una función racional ) f Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador) ( 5 6) 0 ( )( ) D : , ó Por lo tanto el dominio es, el conjunto de los reales eceptuando =- y = -.,

9 Determinar el dominio de una función racional 5 4) f ( ) 1 Debemos determinar los valores de que hacen el denominador igual a 0 (los ceros del denominador). 1es unasuma decuadrados. No eiste un valor que se le puede asignar a tal que + 1 sea igual a cero. Por lo tanto, el dominio es, el conjunto todos los reales. D : ó (-, )

10 Práctica Encontrar el dominio de todas las funciones racionales que aparecen en la diapositiva #1 ( slide ).

11 INTERCEPTOS DE FUNCIONES RACIONALES

12 Interceptos Un intercepto en de f() coincide con los ceros reales de f(). Ambos se define como el (los) valor(es) de para el cual f() es igual a cero. Para una función racional, los ceros reales (o los interceptos en ) ocurren en el valor de que hace que el numerador de la función sea igual a cero. El intercepto en y ocurre cuando el valor de cero. Se puede encontrar evaluando la función para igual a cero.

13 Interceptos 1 Hallar los interceptos de la función f ( ). (a) intercepto y: b) intercepto - f (0) - El numerador de f() es 1. El intercepto en y es (0, - ½ ) Por lo tanto, f() NO tiene interceptos en.

14 Interceptos Hallar los interceptos de la función (a) intercepto y: f (0) El intercepto en y es (0, 0). ( ) b) intercepto - f El numerador de f() es. = 0 cuando = 0. Por lo tanto, f() tiene intercepto en en el punto (0,0) Coincide con el int-y.

15 Interceptos 4 Hallar los interceptos de la función g( ). 9 (a) intercepto y: 0 g( 0) (0) 4 9(0) 4 0 g(0) NO está definido. NO eiste int-y. b) intercepto - El numerador de g() es = 0 (hay que factorizar) ( + )( )=0 =, = - g() tiene dos int- en los puntos (,0) y (-, 0).

16 Interceptos Hallar los interceptos de la función h( ) 5. (a) intercepto y: h(0) 0 (0) h( 0) (0) 5 5 El intercepto en y es (0, - ). 5 b) intercepto - El numerador de h() es = 0 que factoriza ( + 5)( 1)=0 5, 1 h() tiene intercepto en en los puntos 5,0) y (1,0 ) (

17 Práctica Hallar el dominio y los interceptos de cada una de las siguientes funciones. 8 8 ) ( 1 ) ( 48 4 ) ( h g f

18 SOLUCIONES DE FUNCIONES RACIONALES

19 Soluciones de funciones racionales Un par ordenado (a,b) es solución para una función f() si f(a)=b. Dicho de otra forma, (a,b) es solución si al evaluar f para =a el resultado es y=b. Ej. Determinar si (6, 1) es una solución de (6) f (6) (6) f ( 6) 1 y 1 (6, 1) SI es una solución de la función. f ( ) Conclusión: Si =6, entonces y=1. Por lo tanto 1 5

20 Soluciones de funciones racionales Ej. Determinar si (-, -16) es una solución de f ( ) f f y ( ) ( ) 16 ( ) ( ) ( ) 1 4 (-, - 16) NO es una solución de la función Conclusión: Si =-, entonces y=16. Por lo tanto

21 Soluciones de funciones racionales Ej. Determinar el valor de tal que y = 4 si (determinar tal que (, 4) es una solución de) f ( ) 5 Multiplicar en ambos lados por el denominador. Conclusión: Si y =4, entonces =14. Por lo tanto (14,4) es una solución de f ().

22 Soluciones de funciones racionales Ej. Determinar el valor de tal que y = - si (determinar tal que (, -) es una solución de) f 7 ( ) Multiplicar en ambos lados por el denominador Conclusión: Si y =-, entonces =0.1. Por lo tanto (0.1, -) es una solución de f ().

23 Práctica Para las siguientes funciones, hallar el valor de, si eiste, tal que (,1) es una solución de f(). (Hallar el valor de si y =1.) 4 ) ( 9 4 ) ( g f

24 Soluciones 1 0 1) )( ( ) ( f f 9 4 ) ( (9,1) es una solución de f() (-,1) y (1,1) son soluciones de f()

25 GRAFICAS DE FUNCIONES RACIONALES

26 Gráficas de funciones racionales Consideremos la función racional: 1 f ( ) Hasta ahora sabemos que: El dominio de f() es D: Intercepto en : Intercepto en y: NO tiene y = - ½. No podemos trazar la gráfica correctamente con un sólo punto.

27 f ( ) 1 Aunque = NO pertenece al dominio podemos observar lo que ocurre con valores que están muy cerca de = (un poco mayor o un poco menor).

28 Grafiquemos algunos puntos Si se eligen valores para la un poco mayores que (.01,.001, etc), los valores de la función se hacen muy grandes. Si se eligen valores para la un poco menores que (1.9, 1.99, etc), los valores de la función se hacen muy pequeños.

29 Grafiquemos algunos puntos Estos puntos los podemos unir con una curva, separada, suave que se etiende en direcciones opuestas.

30 Los puntos se acercan a esta línea vertical entrecortada, =, por ambos lados, pero etendiéndose en direcciones opuestas. La línea vertical, =, separa la gráfica en dos partes disyuntas. = se llama una asíntota vertical

31 f ( ) 1 Veamos que ocurre con los valores de la gráfica a medida que se hace muy grande o muy pequeño. (Comportamiento en los etremos) Cuando, y 0 Cuando, y 0

32 f ( ) 1 A medida que los valores de se hacen más negativos, los valores de la función (y) se acercan más y más a cero. Cuando, y 0 A medida que los valores de se hacen más positivos, los valores de la función (y) se acercan más y más a cero. Cuando, y 0

33 f ( ) 1 En este caso, la línea y=0 se llama una asíntota horizontal, porque los valores de la función se quedan bien cerca de esta línea a medida que aumenta o disminuye grandemente.

34 Hallar las asíntotas de funciones racionales Asíntotas Verticales Una función racional tiene una asíntota vertical cuando el denominador de la función simplificada es igual a 0. Una función racional está simplificada si NO eisten factores comunes, distintos de uno, entre el numerador y denominador.

35 Determinar la(s) asíntotas verticales f ( ) 15 Igualar el denominador a = 0 Resolver para : = 5 (es la ecuación de la asíntota vertical) 1 g( ) 16 Igualar el denominador a = 0 Resolver para : = -4 y = 4 (son las ecuaciones de las asíntotas verticales)

36 Asíntotas horizontales Las asíntotas horizontales aparecen cuando ocurre una de las siguientes condiciones: Caso 1. El grado del numerador es menor que el grado del denominador. En este caso, la asíntota es la recta horizontal y = 0. Ej. f ( ) g( ) El eje de (y=0) es la asíntota horizontal de las gráficas de f() y g()

37 Asíntotas horizontales Ej. Caso. El grado del numerador es igual al grado del denominador. En este caso, la asíntota es la recta horizontal y = a, donde a es el coeficiente b principal del numerador y b es el del denominador. f ( ) g( ) La asíntota horizontal de la gráfica de f() es g() es 9 y 4 y 1 4

38 Asíntotas horizontales Caso : Cuando el grado del numerador es mayor que el grado del denominador la función NO tiene asíntota horizontal. Ej. f ( ) g( ) Las gráficas de f() y g() NO tienen asíntota horizontal

39 Gráficas de funciones racionales Para trazar gráficas de funciones racionales podemos seguir los siguientes pasos: Determinar asíntotas verticales. Determinar asíntotas horizontales. Determinar interceptos. Determinar comportamiento alrededor de las asíntotas. Tal vez necesites determinar algunos puntos adicionales. Unir puntos con curvas suaves que se acercan a las asíntotas y se etienden hacia el infinito.

40 Hallar la(s) ecuación(es) de la(s) asíntota(s) vertical(es) si eiste(n). 1. f 5 Calculamos el valor de que hace el denominador igual a cero: + = 0 = -1 La recta = -1 es la única asíntota vertical de la función.

41 Hallar la(s) ecuación(es) de la(s) asíntota(s) horizontal(es) si eiste(n). 1. f 5 El grado del numerador y del denominador es 1, así que estamos en el caso. an 5 bn La asíntota horizontal de la f() es la recta y 5

42 Trazar la gráfica de funciones racionales f 5

43 f Gráficas de funciones racionales 5 Los interceptos quedan en un mismo pedazo de la gráfica. Podemos unir esto dos puntos con una curva suave que se acerca a las asíntotas.

44 Gráficas de funciones racionales Debemos evaluar la función en algunos otros puntos para localizar la otra parte de la gráfica. 5 f 5 f 1 6

45 Gráficas de funciones racionales Debemos evaluar la función en algunos otros puntos para localizar la otra parte de la gráfica. f 5 (, 6)

46 Trazar la gráfica de: f ( ) Intercepto - y: 0 0 f ( 0) 0 Intercepto - (0,0) Asíntota vertical: Calculamos los valores de que hacen el denominador igual a cero: = 0 = (ecuación de la asíntota) Asíntota horizontal(caso ) a y n b 1 y n (ecuación de la asíntota)

47 Puntos adicionales y -10/8 = /.5 = 10 No está definido 7/-.5 = /- = -5 0/-7 = /-47= -.1

48 Trazar la gráfica de: f( ) Intercepto - y: 0 f (0) 0 ( 0, 1.5) Intercepto - 0 (,0) 1.5 Asíntota vertical: Calculamos el valor de que hace el denominador igual a cero: = 0 = (ecuación de la asíntota) Asíntota horizontal: y y 1 a b n n (ecuación de la asíntota)

49 Trazar la gráfica de f( ) 1. Vertical Asymptote =. Horizontal Asymptote y = 1. -intercept (, 0) 4. y-intercept (0, /) 5. f(-4)= 7 =.5

50 Trazar la gráfica de: g( ) 4 1) Identificar asíntotas verticales: De primera intención nos parecerá que hay dos asíntotas - =0 factoriza (-)=0 Esto tiene dos ceros: =0 y = OJO : Las asíntotas verticales son los valores que hacen cero el denominador en una epresión racional simplificada.

51 Antes de identificar las asíntotas verticales hay que simplificar la epresión racional. y 4 Las funciones y 4 y y son equivalentes ecepto en =. Para trazar la gráfica de, trazamos la gráfica de. g 4 ) ( y

52 Trazar la gráfica de Asíntota vertical: Asíntota horizontal: f ( ) El denominador es cero si =0 Coef. principal del numerador entre coef. principal del denominador y=1 intercepto-y: Como f(0) no está definido, no eiste. intercepto-: + = 0 = -. puntos adicionales: f(1)= f(-1)= -1 f(-½)= - 4 g( ) NO tiene una asíntota en =. La gráfica tiene un hueco. Qué ocurre en = para?

53 Trazar la gráfica de g( ) 4 Hueco en la gráfica. y Asíntota horizontal en y = 1. Asíntota vertical en = 0.

54 Trazar la gráfica de: Primero simplicamos la función. f La recta vertical = es la única asíntota vertical de esta función. La recta horizontal y = es la asíntota horizontal de esta función.

55 Trazar la gráfica de: f Determinemos los interceptos. f f (0) 1 9 (0) (0) 1 (0) 0 ( ) 10( ) ( ) ( ) ,,0 1

56 Trazar la gráfica de: f Busquemos un punto adicional: f 8 (8) 0 f ( 8) 55 (8,4) 10(8) (8) NOTE el hueco en el punto,

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

EXPRESIONES RACIONALES

EXPRESIONES RACIONALES EXPRESIONES RACIONALES a El conjunto de las fracciones b, donde a b son enteros (0, ±1, ±, ±, ) b 0, se le conoce como los números racionales. En matemática, la palabra racional se asocia a epresiones

Más detalles

Inecuaciones con valor absoluto

Inecuaciones con valor absoluto Inecuaciones con valor absoluto El valor absoluto de un número real a se denota por a y está definido por: Propiedades a a si a si a 0 a < 0 i a y b son números reales y n es un número entero, entonces:

Más detalles

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.

Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico. Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática.

Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. Ejemplos de Ecuaciones Cuadráticas e Inecuaciones Cuadráticas Ecuaciones Cuadráticas Las ecuaciones cuadráticas se pueden resolver por el método de factorización o utilizando la fórmula cuadrática. El

Más detalles

UNIDAD DIDÁCTICA 9: Límites y continuidad

UNIDAD DIDÁCTICA 9: Límites y continuidad accés a la universitat dels majors de anys acceso a la universidad de los mayores de años UNIDAD DIDÁCTICA 9: Límites y continuidad ÍNDICE Concepto de límite de una función en un punto. Indeterminaciones.

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio.

1. Determinar el conjunto de valores que pueden darse a la variable independiente x. Es decir, el dominio. GRÁFICA Y RANGO DE UNA FUNCIÓN RACIONAL Sugerencia para quien imparte el curso. Antes de abordar esta parte del curso, se sugiere comentar con los estudiantes algunos aspectos como los siguientes: Se esperan

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Más sobre Funciones

Escuela Nacional Adolfo Pérez Esquivel U.N.C.P.B.A. 3º año. Más sobre Funciones FUNCIÓN DEFINIDAS POR PARTES Los valores que toma una función pueden estar definidos por medio de una fórmula pero también por varias fórmulas. En este último caso se dice que está definida por partes

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad LÍMITES El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el

Más detalles

Matemáticas 1º Bachillerato ASÍNTOTAS Colegio La Presentación

Matemáticas 1º Bachillerato ASÍNTOTAS Colegio La Presentación ASÍNTOTA Es una recta imaginaria que nosotros calculamos y representamos con una línea discontinua. Esta recta tiene la propiedad de que en el infinito no puede ser traspasada por la gráfica de la función,

Más detalles

CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES

CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES 9. Funciones polinomiales. Algunas funciones básicas que ye hemos encontrado son : función constante : función lineal : función cuadrática : f ()

Más detalles

EXPRESIONES ALGEBRAICAS RACIONALES

EXPRESIONES ALGEBRAICAS RACIONALES Epresiones Algebraicas Racionales EXPRESIONES ALGEBRAICAS RACIONALES Llamaremos epresiones algebraicas racionales a las de la forma A() donde A() y B() son B() polinomios de variable, y B() 0. Por ejemplo,

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas y Asíntotas Carlos A. Rivera-Morales Precálculo 2 y Asíntotas Tabla de Contenido 1 Asíntotas de :Asíntotas Asíntotas Verticales y Asíntotas Horizontales y Asíntotas Asíntotas de :Asíntotas Definición:

Más detalles

Funciones Racionales y Asíntotas

Funciones Racionales y Asíntotas Funciones Racionales y Carlos A. Rivera-Morales Precálculo II Funciones Racionales y Tabla de Contenido 1 2 3 Verticales y Horizontales Funciones Racionales y : Contenido Discutiremos: qué es una función

Más detalles

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio

Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio

Más detalles

Taller de Matemáticas IV

Taller de Matemáticas IV Taller de Matemáticas IV Universidad CNCI de Méico Temario. Funciones polinomiales factorizables.. Teorema del residuo.. Teorema del factor... Raíces (ceros) racionales de funciones polinomiales.. Teorema

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

1. GENERALIDADES SOBRE LOS POLINOMIOS.

1. GENERALIDADES SOBRE LOS POLINOMIOS. GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS

LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS LECTURA N 6: TIPOS DE EXPRESIONES ALGEBRAICAS Tomado con fines instruccionales de: Gómez, B., Gómez, T., González, N., Moreno, E., Rojas M., (6). Epresiones Algebraicas, Caracas: UNEFA. Las epresiones

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

Ecuaciones Lineales en Dos Variables

Ecuaciones Lineales en Dos Variables Ecuaciones Lineales en Dos Variables Una ecuación lineal en dos variables tiene la forma general a + b + c = 0; donde a, b, c representan números reales las tres no pueden ser iguales a cero a la misma

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de

Más detalles

Límites y continuidad de funciones

Límites y continuidad de funciones Límites y continuidad de funciones 1 Definiciónde límite Llamamos LÍMITE de una función f en un punto x=a al valor al que se aproximan los valores de la función cuando x se aproxima al valor de a. lím

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional.

1. Encontrar el dominio de la función racional. 2. Encontrar los interceptos con x y y de la función racional. 1. Encontrar el dominio de la función racional. h(x) x 2 3x 1 (x 2 4)(x 2 + 11x + 24) Para encontrar el dominio de una función racional debemos encontrar los valores de la variable que hacen cero el denominador.

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES

UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.

Más detalles

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS

V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS V. DISCUSIÓN DE ECUACIONES ALGEBRAICAS 134 5.1. DISCUSIÓN DE UNA ECUACIÓN Discutir una ecuación algebraica representada por una epresión en dos variables de la forma f (, y) = 0, significa analizar algunos

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

Preparación para Álgebra universitaria con trigonometría

Preparación para Álgebra universitaria con trigonometría Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.

Más detalles

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA

Profesorado de Nivel Medio y Superior en Biología Matemática - 1º Cuatrimestre Año 2013 FUNCIÓN CUADRÁTICA Matemática - º Cuatrimestre Año 0 FUNCIÓN CUADRÁTICA Hemos definido anteriormente la función lineal como una función f: R R de la forma f()a+b con a R y b R, que se representa en el plano mediante una

Más detalles

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos

Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,

CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3, RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan

Más detalles

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es...

Semana 6. Factorización. Parte I. Semana Productos 7 notables. Parte II. Empecemos! Qué sabes de...? El reto es... Semana Productos 7 notables. Parte II Semana 6 Empecemos! El tema que estudiarás en esta sesión está muy relacionado con el de productos notables, la relación entre estos y la factorización, dado que son

Más detalles

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos

Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos Bloque 4. Cálculo Tema 1 Valor absoluto Ejercicios resueltos 4.1-1 Resolver las siguientes desigualdades: a) 57; b) 41; c) 10; d) 431; e) 5; 3 f) 434 a) 5 7 1 S / 1 1, b) 1 1 1 4 1 S /, 1 1 1 c) 10 S /,

Más detalles

1 er Problema. 2 Problema

1 er Problema. 2 Problema Facultad de Contaduría Administración. UNAM Lugares geométricos Autor: Dr. José Manuel Becerra Espinosa MATEMÁTICAS BÁSICAS LUGARES GEOMÉTRICOS Eisten dos problemas fundamentales en la Geometría Analítica:.

Más detalles

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)

UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro) UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por

Más detalles

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría.

5x + 4y 20 = 0! 5 ( x) + 4 ( y) 20 = 0! 5x 4y 20 = 0. al origen O. En resumen, la ecuación 5x + 4y 20 = 0 no tiene ninguna simetría. Geometría Analítica; C. H. Lehmann. Ejercicio, grupo, capítulo II, página 0.. Discute la ecuación + 0 = 0, estudiando las intersecciones, las simetrías la etensión. Después traza la grá ca correspondiente.

Más detalles

Ejercicios de inecuaciones y sistemas de inecuaciones

Ejercicios de inecuaciones y sistemas de inecuaciones Ejercicios de inecuaciones y sistemas de inecuaciones 1) Resuelve la siguiente inecuación (pag 67, ejercicio 4a)): 3(x 5) 5 > 7(x + 1) (2x + 3) Si nos fijamos se trata de una inecuación de primer grado

Más detalles

Las desigualdades involucran los símbolos: < menor que, >,

Las desigualdades involucran los símbolos: < menor que, >, . Noción de intervalo en la recta real Un intervalo es un conjunto de números reales que satisfacen una desigualdad, por lo que un intervalo puede ser cerrado, abierto o semiabierto, lo podemos representar

Más detalles

Mapa Curricular: Funciones y Modelos

Mapa Curricular: Funciones y Modelos A.PR.11.2.1 Determina el dominio y el alcance de las funciones a partir de sus diferentes representaciones. A.PR.11.2.2 Identifica y aplica las relaciones entre los puntos importantes de una función (ceros,

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21

Límites infinitos. MATE 3031 Cálculo 1. 01/21/2016 Prof. José G. Rodríguez Ahumada 1 de 21 Límites ininitos MATE 303 Cálculo 0//06 Pro. José G. Rodríguez Ahumada de Cálculo - MATE 303 Actividades.4 Reerencia: Reerencia: Sección.5 Límites ininitos. Ver ejemplos al 5 Ejercicios de Práctica: Páginas

Más detalles

1. Información básica

1. Información básica Información básica PRÁCTICA : RESOLUCIÓN DE ECUACIONES POLIO INÓMICAS Comenzamos recordando de forma resumida las ideas y propiedades básicas de las ecuaciones polinómicas y sus soluciones En esta sección

Más detalles

Tema 7: Aplicaciones de la derivada, Representación de Funciones

Tema 7: Aplicaciones de la derivada, Representación de Funciones Tema 7: Aplicaciones de la derivada, Representación de Funciones 0.- Introducción 1.- Crecimiento y Decrecimiento de una función. Monotonía..- Máimos y mínimos de una función.1.- Etremos relativos...-

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

Límite de una función en una variable

Límite de una función en una variable MATERIA : MATEMÁTICA I CURSO: Ier AÑO EJE ESTRUCTURA : III - ÍMITE Y CONTINUIDAD GRUPOS CONCEPTUAES: ro ímite funcional do Continuidad TEMARIO: - TEMA : ímite - TEMA : Asíntotas - TEMA : Continuidad. Introducción

Más detalles

Polinomios. 1.- Funciones cuadráticas

Polinomios. 1.- Funciones cuadráticas Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial

Más detalles

Teoría Tema 9 Representación gráfica de funciones

Teoría Tema 9 Representación gráfica de funciones página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de

Más detalles

UNIDAD DOS FUNCIONES, TRIGONOMETRÍA E HIPERNOMETRÍA

UNIDAD DOS FUNCIONES, TRIGONOMETRÍA E HIPERNOMETRÍA UNIDAD DOS FUNCIONES, TRIGONOMETRÍA E HIPERNOMETRÍA UNIDAD DOS: FUNCIONES, TRIGONOMETRÍA E HIPERNOMETRÍA CAPITULO UNO: Las Funciones Introducción... 4 Objetivo General y Objetivos Específicos... 4 Sistema

Más detalles

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida

Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En

Más detalles

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 10: División de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 10: División de Polinomios Dra. Noemí L. Ruiz Limardo 009 Objetivos de la lección Al finalizar esta lección los estudiantes: Dividirán polinomios de dos o más términos por polinomios de uno y dos

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel

TIPOS DE FUNCIONES. Ing. Caribay Godoy Rangel TIPOS DE FUNCIONES Repasar los conceptos de dominio, rango, gráfica, elementos esenciales y transformaciones de las funciones: lineal, cuadrática, racional, trigonométrica, exponencial y logarítmica. FUNCIONES

Más detalles

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES

FUNDAMENTOS DEL ÁLGEBRA. Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES FUNDAMENTOS DEL ÁLGEBRA Folleto De Trabajo Para La Clase ECUACIONES LINEALES EN DOS VARIABLES NOMBRE ID SECCIÓN SALÓN Prof. Eveln Dávila Contenido TEMA: Ecuaciones Lineales En Dos Variables... Solución

Más detalles

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA

DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA De la gráfica a la expresión algebraica DE LA GRÁFICA A LA EXPRESIÓN ALGEBRAICA Rectas, Parábolas, Hipérbolas, Exponenciales Logarítmicas LA RECTA Comencemos localizando el punto donde la recta corta al

Más detalles

Si se pueden obtener las imágenes de x por simple sustitución.

Si se pueden obtener las imágenes de x por simple sustitución. TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Información importante

Información importante Coordinación de Matemática I (MAT01) 1 er Semestre de 010 Semana 7: Lunes 3 viernes 7 de Mayo Información importante El proceso de apelación del primer certamen comienza esta semana. Los cuadernillos los

Más detalles

Identificación de inecuaciones lineales en los números reales

Identificación de inecuaciones lineales en los números reales Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado

Más detalles

TEMA 1: LÍMITES DE FUNCIONES

TEMA 1: LÍMITES DE FUNCIONES TEMA 1: LÍMITES DE FUNCIONES 1.- LÍMITE DE UNA FUNCIÓN CUANDO X TIENDE A INFINITO: lim () a) lim () = Al aumentar x la función se aproxima a un cierto valor b: lim () = / > () < b) lim () = + Al aumentar

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico

Materia: Matemática de Octavo Tema: Raíces de un polinomio. Marco teórico Materia: Matemática de Octavo Tema: Raíces de un polinomio Y si tuvieras una ecuación polinómica como? Cómo podrías factorizar el polinomio para resolver la ecuación? Después de completar esta lección

Más detalles

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento . A partir de las funciones: y = sen, y = cos, y = e, y = Ln, e y = ² representar las siguientes funciones: i. y = cos 2 y = cos Función periódica. = 2π 2π T ; ω Coeficiente de la. T = = 2π ω (rad) 0 π/2

Más detalles

Titulo: COMO GRAFICAR UNA FUNCION RACIONAL Año escolar: 4to. año de bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela Correo electrónico:

Más detalles

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.

FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores. -PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

Fabio Prieto Ingreso 2003

Fabio Prieto Ingreso 2003 Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN DESIGUALDADES Al inicio del Capítulo, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones como a

Más detalles

APUNTES DE MATEMÁTICAS

APUNTES DE MATEMÁTICAS APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4

Más detalles

1 of 16 10/25/2011 6:36 AM

1 of 16 10/25/2011 6:36 AM Prof. Anneliesse SánchezDepartamento de MatemáticasUniversidad de Puerto Rico en AreciboEn este módulo se estudiarán las expresiones racionales. Estudiaremos cómo: simplificar evaluar sumar restar multiplicar

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 7 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Página 75 REFLEIONA RESUELVE Tomar un autobús en marca En la gráfica siguiente, la línea roja representa el movimiento de un autobús que arranca de la

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x)

2.1. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable x) Bloque : Cálculo Diferencial Tema : Límite y Continuidad de una función.. LÍMITE CUANDO X TIENDE A INFINITO (Valores grandes de la variable ) La forma de comportarse una función para valores muy grandes

Más detalles

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista

Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista Cap 9 Sec 9.1 9.3 Una sucesión infinita es una función cuyo dominio es el conjunto de los enteros positivos. Podemos denotar una sucesión como una lista a 1, a 2, a 3, a n, Donde cada a k es un término

Más detalles

Preparación para cálculo

Preparación para cálculo Preparación para cálculo Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares. Plan de estudios (406 temas)

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

1.5 Límites infinitos

1.5 Límites infinitos SECCIÓN.5 Límites infinitos 8.5 Límites infinitos Determinar ites infinitos por la izquierda por la derecha. Encontrar dibujar las asíntotas verticales de la gráfica de una función., cuando Límites infinitos

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN

ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN ASÍNTOTAS DE LA GRÁFICA DE UNA FUNCIÓN La gráfica de una función elemental puede presentar ninguna una o varias asíntotas verticales y además puede presentar a lo sumo una asíntota horizontal o una asíntota

Más detalles