CARACTERÍSTICAS DE UNA FUNCIÓN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CARACTERÍSTICAS DE UNA FUNCIÓN"

Transcripción

1 . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente. Se denota por. { R / y R con y } OBTENCIÓN DEL DOMINIO DE DEFINICIÓN A PARTIR DE LA GRÁFICA Cuando una unción se presenta a través de su gráica, con proyectar sobre el eje de abscisas eje OX dicha gráica conseguimos su dominio de deinición. Esto es así porque cualquier valor del dominio tiene una imagen y, y, por lo tanto, le corresponde un punto, y de la gráica. Este punto es el que, al proyectar dicha imagen sobre el eje OX, nos incluye ese valor dentro del dominio. En el ejemplo vemos coloreado de azul el dominio está dibujado un poco más abajo para que sea bien visible la escala del eje de abscisas. En este caso tenemos que,4 4,8]. De una manera no ormal, podríamos decir que si aplastamos la gráica sobre el eje OX y ésta estuviese manchada de tinta, quedaría manchado sobre el eje justo el dominio de deinición de la unción. OBTENCIÓN DEL DOMINIO A PARTIR DE LA EXPRESIÓN ANALÍTICA I FUNCIÓN POLINÓMICA: P R Ejemplos a 5 5 unción polinómica R 4 b unción polinómica R P II FUNCIÓN RACIONAL: R { / Q } Q Ejemplos a unción racional R { R / 4 5 } R {,5} 4 5

2 4 ± ± b unción racional R { R / 4 } R no tiene solución real III FUNCIÓN RADICAL: n n g n par { g / g } impar g Ejemplos a 4 unción radical con índice par { R / 4 } [, 4 4 b unción radical con índice par { R / }, ] [, Tenemosque resolver la inecuación: Ceros ± ò c unción radicalcon índice par { R/ > }, Tenemosque resolver la inecuación:4 Ceros > 4 4 ± 4 ò

3 d R 5 con índice impar radical unción 5 y e } { con índice impar radical unción 5 R y IV FUNCIÓN EXPONENCIAL R >, a a con a, g a a con a g > Ejemplos a [, } / { R y b {,} } / { R R R y e c R R R } / { y real solución tiene No

4 V COCIENTE DE FUNCIONES NO POLINÓMICAS: g h [ g h] { h / h } Valores de en los que g y h están deinidas a la vez ecepto aquellos en los que h se anula Ejemplos a y inio R y inio { R/ > } { R/ > }, la desigualdad es estricta porque como el radical está en el denominador no puede anularse Por tanto, R,, b e y inio { R / } [ 5, 5 [ 5, y e inio R e e e e Por tanto, [ 5,, VI FUNCIONES DEL TIPO: y g inio { / > } g Valores de en los que > y y g están deinidas a la vez Ejemplos a 5 5 >, 5 5 Ceros Polos 5 5

5 y inio R {} Por tanto,, R {},, VII FUNCIONES DEFINIDAS A TROZOS Se estudian las unciones parciales en cada uno de los subintervalos en los que están deinidas. Ejemplo si < si < < si 5 Primero estudiamos el dominio de cada una de las unciones parciales y inio R, ] y inio R {},, y inio R [5, Por tanto,,, [5,

6 . RECORRIDO Recorrido de es el conjunto de valores que toma la variable dependiente y, es decir, el conjunto de números reales que son imagen de algún elemento del dominio de. Se denota por Rec. Re c { y R / con y} OBTENCIÓN DEL RECORRIDO DE DEFINICIÓN A PARTIR DE LA GRÁFICA Para calcular el recorrido de una unción, se representa gráicamente y luego se estudia sobre el eje de ordenadas. Procedemos igual que en el dominio, pero ahora proyectamos sobre el eje de ordenadas. En la gráica de la derecha Rec R {}.. CONTINUIDAD. DISCONTINUIDADES. De orma intuitiva, una unción continua en todo su dominio sería aquella que se puede dibujar de un sólo trazo sin levantar el lápiz del papel. Por ejemplo la dibujada a continuación: Sin embargo, la mayoría de las unciones van a presentar discontinuidades, o sea, van a ser continuas sólo en algunos "trozos" intervalos de su dominio y en los límites de éstos presentarán discontinuidades. Una unción que no es continua presenta alguna discontinuidad. Por ejemplo para la unción de la derecha tenemos: R {} inio de continuidad,,,, R {,,} En hay una discontinuidad de salto inito En hay una discontinuidad evitable En hay una discontinuidad de salto ininito

7 TIPOS DE DISCONTINUIDADES Discontinuidad de salto inito Una unción tiene una discontinuidad de salto inito en a si observamos en dicho punto una separación o salto entre dos trozos de su gráica que puede medirse. Esto es debido a que la tendencia de la unción a la izquierda del punto a es dierente de la que tiene a la derecha. En la gráica representada a la derecha observamos lo indicado. Discontinuidad asintótica o de salto ininito Cuando en un punto a de la curva observamos que la tendencia a la izquierda, a la derecha o ambos lados es a alejarse al ininito más ininito o menos ininito, entonces nos encontramos con una discontinuidad de salto ininito en el punto a. En la gráica de la derecha: lim a lim a Discontinuidad evitable Si nos encontramos que la continuidad de la gráica se interrumpe en un punto a donde no hay imagen, o la imagen está desplazada del resto de la gráica, tendremos una discontinuidad evitable en el punto a. Aquí la tendencia de la unción a la izquierda de a y a la derecha de a sí coincide, sin embargo es a el valor que no coincide con dicha tendencia o que ni siquiera eiste. 4. PUNTOS DE CORTE CON LOS EJES Podemos calcular los puntos de corte de una unción con los ejes cartesianos a partir de su gráica o a partir de su epresión analítica. GRÁFICAMENTE Etraemos la inormación directamente de la gráica. Si un punto pertenece al eje de abscisas eje OX su ordenada es cero y. Es decir, los puntos del eje OX son de la orma,. Si un punto pertenece al eje de ordenadas eje OY su abscisa es cero. Es decir, los puntos del eje OY son de la orma,y. Una unción puede cortar al eje OX en varios puntos. Al eje OY como máimo puede cortarlo en un punto.

8 Puntos de corte con el eje OX 5 6,,, 5, Puntos de corte con el eje OY, 5 ANALÍTICAMENTE Para hallar el punto donde la unción corta al eje de ordenadas eje OY se resuelve el sistema: Para hallar los puntos donde la unción corta al eje de abscisas eje OX se resuelve el sistema: Ejemplos 4 Calcula los puntos de corte con los ejes de la unción y Puntos de corte con el eje OX 4 y 4 Utilizamos el método de igualación 4 y y Luego, los puntos de corte con el eje OX son, y, y y y Puntos de corte con el eje OY y 4 No hay puntos de corte con el eje OY. Calcula los puntos de corte con los ejes de la unción y 4 Puntos de corte con el eje OX y 4 Utilizamos el método de igualación 4 y y Luego, los puntos de corte con el eje OX son, y, Puntos de corte Eje OY y 4 Utilizamos el método de sustitución y 4 y y Luego, el punto de corte con el eje OY es,.

9 5. SIGNO DE UNA FUNCIÓN. Dada una unción, determinar su signo es hallar para qué valores de su dominio es < y >. A PARTIR DE SU REPRESENTACIÓN GRÁFICA, > para el conjunto de puntos situados por encima del eje de abscisas eje OX, y < para aquellos puntos que están situados por debajo. < si [ 4,, < si,, > si [,, > si,, A PARTIR DE SU EXPRESIÓN ANALÍTICA es preciso encontrar los posibles cambios de signo, determinando los ceros de la unción y los puntos en los que la unción no está deinida. Con estos datos se pueden determinar los intervalos en los que el signo es constante. Ejemplo: Estudiar el signo de la unción R {} 4 4 ò 4 SIGNO DE < si,, > si,,

10 6. SIMETRÍA es PAR si En tal caso, la gráica de es simétrica respecto al eje OY. es IMPAR si En tal caso, la gráica de coordenadas. es simétrica respecto al origen de Ejemplo: Estudiar la simetría de las siguientes unciones: 4 a c b 4 5 d 4 Solución 4 4 a es PAR b es IMPAR c no es par ni impar d es PAR 4 4

11 7. PERIODICIDAD es una unción PERIÓDICA DE PERIODO T si T, siendo T el menor número real que veriica esta propiedad. 8. ASÍNTOTAS La palabra asíntota, antiguamente, "asímptota", proviene del griego asumptotos, compuesto de "a" "sin" y de "sumpipto" "encontrarse"; por tanto, nuestro término viene a signiicar "sin encontrarse, sin tocarse". En el estudio de unciones llamamos así a una línea recta hacia la que se aproima ininitamente la gráica de la unción, pero sin llegar a encontrarse ambas durante dicha aproimación ininita. Las asíntotas surgen de manera natural al estudiar el comportamiento de una unción "en el ininito" de las variables. ASÍNTOTAS VERTICALES Cuando una unción no está deinida en un punto "a", pero para valores cercanos a dicho punto por la derecha, por la izquierda o por ambos lados, las imágenes correspondientes se hacen cada vez más grandes en valor absoluto, entonces diremos que la recta punto la unción "tiende a ininito". a es una asíntota vertical de. Se dice que en dicho La recta "a" es una ASÍNTOTA VERTICAL de la unción si el límite la tendencia de la unción en el punto "a" es ininito.

12 lim a ± a es asíntota vertical por la izquierda lim a ± a es asíntota vertical por la derecha lim a ± a es asíntota vertical lim lim es lim asíntota vertical lim es asíntota vertical por la derecha de

13 lim lim lim es asíntota vertical Notas Una unción puede tener varias asíntotas verticales, incluso ininitas La gráica de una unción nunca corta a una asíntota vertical. La tendencia hacia ininito a ambos lados del punto de discontinuidad puede ser idéntica u opuesta. ASÍNTOTAS HORIZONTALES Si estudiamos lo que ocurre con la gráica de una unción cuando los valores de la variable independiente "" se hacen muy grandes hablando en valor absoluto, puede ocurrir que ésta se vaya acercando cada vez más a un valor determinado y k, sin llegar nunca a tomarlo. En tal caso, la recta y k es una asíntota horizontal de, dado que la unción tiende a "pegarse" a dicha recta "en el ininito". La recta "yk" es una ASÍNTOTA HORIZONTAL de la unción si el límite la tendencia de la unción en el ininito es el número "k". lim ± k y k es asíntota horizontal de lim ± lim lim y es asíntota horizontal de

14 lim ± lim lim y es asíntota horizontal de yk es una ASÍNTOTA HORIZONTAL POR LA DERECHA de la unción si el límite de la unción en es el número "k". lim k y k es asíntota horizontal por la derecha yk es una ASÍNTOTA HORIZONTAL POR LA IZQUIERDA de la unción si el límite de la unción en es el número "k". lim k y k es asíntota horizontal por la izquierda lim y es asíntota horizontal por la derecha lim y es asíntota horizontal por la derecha lim y es asíntota horizontal por la izquierda

15 Notas Una unción real de variable real puede tener como máimo asíntotas horizontales en este último caso, una de ellas es asíntota por la derecha y la otra lo es por la izquierda. Hay unciones que sólo tienen asíntota horizontal por la derecha o por la izquierda. La gráica de una unción puede cortar a una asíntota horizontal. Una unción no tiene por qué tener los dos tipos de asíntotas que hemos visto verticales y horizontales. Puede no tener ninguna cualquier unción polinómica, tener sólo asíntotas verticales una o más o sólo asíntotas horizontales una o dos como mucho. ASÍNTOTAS OBLICUAS Una recta de ecuación y m n m distinto de es asíntota oblicua de una unción si para valores de cada vez más grandes en valor absoluto, los puntos de la recta y los de la gráica de la unción están cada vez más próimos. Es decir, la recta y la gráica de tienden a pegarse para valores grandes de en valor absoluto. Es decir una unción tiene una asíntota oblicua del tipo y m n cuando la unción se va acercando cada vez más a la recta asíntota en el ininito. y es asíntota oblicua de

16 y es asíntota oblicua de Notas Si una unción tiene asíntotas horizontales, no tiene oblicuas. Esto es ácilmente esperable, puesto que una asíntota horizontal y n es realmente un caso particular de asíntota oblicua y m n, con m. Por tanto, la presunta asíntota oblicua que buscamos, es la horizontal ya eistente. La gráica de una asíntota oblicua puede cortar a una asíntota oblicua. 9. CRECIMIENTO Y DECRECIMIENTO. DEFINICIONES a Una unción es creciente en un intervalo a, b de su dominio si y a, b con > se cumple que. b Una unción es estrictamente creciente en un intervalo a, b de su dominio si y a, b con > se cumple que >. c Una unción es decreciente en un intervalo a, b de su dominio si y a, b con > se cumple que. d Una unción es estrictamente decreciente en un intervalo a, b de su dominio si y a, b con > se cumple que <. NOTA: Para deinir los intervalos de crecimiento y decrecimiento siempre abiertos utilizaremos la variable.

17 CRECE si 6, 4, CRECE si,, DECRECE si 4,,6 DECRECE si,,4 CRECE si,,6 DECRECE si,. EXTREMOS RELATIVOS Y ABSOLUTOS DEFINICIONES e Una unción tiene un máimo relativo o local en un punto si es posible determinar un entorno * reducido de E, r entorno de centro y radio r ecluyendo a en el que > * E, r. En caso de que sea continua en, la unción pasa de ser estrictamente creciente a estrictamente decreciente en dicho punto. Una unción tiene un mínimo relativo o local en un punto si es posible determinar un entorno * * reducido de, E, r en el que < E, r. En caso de que sea continua en, la unción pasa de ser estrictamente decreciente a estrictamente creciente en dicho punto. Máimo relativo Mínimo relativo

18 g Una unción tiene un máimo absoluto en un punto si. h Una unción tiene un mínimo absoluto en un punto si. Cuando se determinan los etremos de una unción continua en un intervalo cerrado [ a, b] hay que tener presente que un etremo relativo puede ser absoluto, pero un etremo absoluto no es relativo cuando está en a ò b a c d b En En En c hay un máimo absoluto y relativo de en [ a, b]. a hay un mínimo absoluto de en [ a, b] pero no relativo. d hay un mínimo relativo de en [ a, b]. Esta unción presenta dos máimos relativos en y y un máimo absoluto en Tiene un mínimo relativo en en y un mínimo absoluto Esta unción presenta un máimo relativo y absoluto en Tiene un mínimo relativo en No tiene mínimo absoluto

19 . ACOTACIÓN Una unción está acotada superiormente si eiste un número real k tal que se tiene k.a cualquier k que veriique esta condición lo llamamos cota superior de la unción. Si está acotada superiormente, la menor de sus cotas ineriores recibe el nombre de supremo y si además pertenece al recorrido de la unción es su máimo absoluto. Una unción está acotada ineriormente si eiste un número real k tal que se tiene k.a cualquier k que veriique esta condición lo llamamos cota inerior de la unción. Si está acotada ineriormente, la mayor de sus cotas ineriores recibe el nombre de ínimo y si además pertenece al recorrido de la unción es su mínimo absoluto. está acotada superiormente está acotada ineriormente Máimo absoluto 8 y lo alcanza en Mínimo absoluto y lo alcanza en 4 no está acotada ineriormente no está acotada superiormente no está acotada superiormente está acotada ineriormente. Ínimo ; no tiene mínimo absoluto

20 Una unción está acotada si lo está a la vez ineriormente y superiormente, es decir, está acotada si eiste un número real M tal que se tiene k M Mínimo absoluto y lo alcanza en Máimo absoluto y lo alcanza en Mínimo absoluto y máimo absoluto está acotada es decir está acotada superior e ineriormente Supremo ; no tiene máimo absoluto Ínimo ; no tiene mínimo absoluto

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y

FUNCIONES. La variable x se denomina variable independiente y la variable y es la variable dependiente. x y . DEFINICIÓN FUNCIONES Una unción real de variable real es una relación entre dos variables numéricas e y de orma que a cada valor de la variable le corresponde un único valor del la variable y. La variable

Más detalles

IES Juan García Valdemora FUNCIONES

IES Juan García Valdemora FUNCIONES FUNCIONES Una función real de variable real es una relación de dependencia entre dos variables numéricas x e y, en la que a cada valor de la variable x le corresponde un único valor de la variable y. La

Más detalles

MATEMÁTICAS DOMINIO Y RECORRIDO DE UNA FUNCIÓN 1º DE BACHILLER

MATEMÁTICAS DOMINIO Y RECORRIDO DE UNA FUNCIÓN 1º DE BACHILLER MATEMÁTICAS DOMINIO Y RECORRIDO DE UNA FUNCIÓN º DE BACHILLER. DOMINIO Dominio de f() o campo de eistencia de f() es el conjunto de valores para los que está definida la función, es decir, el conjunto

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS

UNIDAD 5: FUNCIONES. CARACTERÍSTICAS I.E.S. Ramón Giraldo UNIDAD 5: FUNCIONES. CARACTERÍSTICAS. CONCEPTO DE FUNCIÓN Una unción real de variable real es una correspondencia de un conjunto D en el conjunto de los números reales, es decir, una

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

TEMA 3 FUNCIONES ELEMENTALES.

TEMA 3 FUNCIONES ELEMENTALES. TEMA 3 FUNCIONES ELEMENTALES. 1. Concepto de unción.. Propiedades. 3. Funciones elementales. (Polinómicas, racionales, irracionales, trozos, valor absoluto) 4. Transormaciones elementales. 5. Composición

Más detalles

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES

UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES UNIDAD 6: PROPIEDADES GLOBALES DE LAS FUNCIONES 1. EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,

Más detalles

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I

Soluciones a los ejercicios propuestos Unidad 5. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I Soluciones a los ejercicios propuestos Unidad. Funciones reales de variable real Matemáticas aplicadas a las Ciencias Sociales I CONCEPTO DE FUNCIÓN. EXPRESIÓN ANALÍTICA DE UNA FUNCIÓN. A partir de los

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

1. Definición y formas de de definir una función

1. Definición y formas de de definir una función Tema 7. Funciones 1. Definición y formas de definir una función 1.1. Definición de una función 1.. Formas de definir una función 1..1. A Partir de gráfica 1... Epresión algebraica 1..3. Tabla. Dominio

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( )

( ) ( ( ) ( ) ) ( ( ) ( x) ( 2) ( ) ( ) ( ) Modelo. Problema B.- Caliicación máima: puntos) La igura representa la gráica de una unción : [ 6; 5] R. Contéstese razonadamente a las preguntas planteadas.? a) Para qué valores de es > b) En qué puntos

Más detalles

Una función es una correspondencia única entre dos conjuntos numéricos.

Una función es una correspondencia única entre dos conjuntos numéricos. FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

REPRESENTACIÓN DE CURVAS - CCSS

REPRESENTACIÓN DE CURVAS - CCSS REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

Tema 8: Estudio y representación de funciones

Tema 8: Estudio y representación de funciones Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES

TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS

Más detalles

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla

1 Elabora una tabla de valores de la función f(x) = x 2-4x + 3 en puntos x próximos a x = 2. Sugiere la tabla Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 1 PROBLEMAS PROPUESTOS 1 Elabora una tabla de valores de la función f() - + en puntos próimos a. Sugiere la tabla que f() es continua en? 1 9 1 99 1 999 1 01

Más detalles

= x De este modo: Esto es un ejemplo de FUNCIÓN.

= x De este modo: Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 6 FUNCIONES REALES. PROPIEDADES GLOBALES.. CONCEPTO DE FUNCIÓN. DOMINIO Y RECORRIDO. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal:

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A Tema 8.Estudio Global de unciones. Aplicaciones a la representación graica de unciones 1 Tema 8. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRAFICA DE FUNCIONES 1. Introducción. Deinición

Más detalles

Tema 9: Estudio y representación de funciones

Tema 9: Estudio y representación de funciones 1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,

Más detalles

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones.

TEMA 7 : FUNCIONES. Ejercicio: Justifica por qué los diagramas anteriores no representan funciones. . CONCEPTO DE FUNCIÓN TEMA 7 : Observa los siguientes ejemplos: El precio de una llamada telefónica depende de su duración. El espacio que recorre un móvil con movimiento uniforme depende del tiempo invertido.

Más detalles

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN.

= x. o bien: De este modo, 3 6. Esto es un ejemplo de FUNCIÓN. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. CONCEPTO DE FUNCIÓN. Recuerda que hay distintas ormas de epresar una unción. Enunciado o descripción verbal: A cada número se le hace corresponder su doble.

Más detalles

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN:

RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: RESUMEN PARA HACER EL ANÁLISIS COMPLETO DE UNA FUNCIÓN: Ejemplo: 1 Dominio Representación de en el intervalo [,] Los puntos que no pertenecen al dominio de una función racional, son aquellos que anulan

Más detalles

Matemáticas aplicadas a las CC.SS. II

Matemáticas aplicadas a las CC.SS. II Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana

Más detalles

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2

EJERCICIOS. + 1 en el punto en que la abscisa es x = 2 EJERCICIOS,.Calcular las ecuaciones de la tangente y de la normal a la parábola y en el punto en que la abscisa es Punto de tangencia,, ' Tangente... y y y y y Normal... y y y 8.- Calcular la ecuación

Más detalles

Funciones en explícitas

Funciones en explícitas Funciones en eplícitas.- Sea la función f() e, se pide:. Dominio.. Signo de f() en función de.. Asíntotas. 4. Crecimiento y decrecimiento. Máimos y mínimos relativos. 5. Concavidad y conveidad. Puntos

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la

Más detalles

TEMA 11 REPRESENTACIÓN DE FUNCIONES

TEMA 11 REPRESENTACIÓN DE FUNCIONES Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

Problemas de Matemáticas 4 o de ESO Funciones. 1 Funciones. 1.1 Concepto de función. 1. Halla el dominio y el recorrido de las siguientes funciones

Problemas de Matemáticas 4 o de ESO Funciones. 1 Funciones. 1.1 Concepto de función. 1. Halla el dominio y el recorrido de las siguientes funciones Problemas de Matemáticas 4 o de ESO Funciones 1 Funciones 1.1 Concepto de función 1. Halla el dominio y el recorrido de las siguientes funciones (a) f() = 3 + 1 dominio todo R recorrido todo R (b) f()

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Santiago Cobreros Rico Estudiaremos someramente, aunque paso a paso las propiedades de los distintos tipos de funciones encaminadas a la obtención de la representación gráfica

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

I.- Representación gráfica de una función polinómica

I.- Representación gráfica de una función polinómica Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de

Más detalles

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1 Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote

Más detalles

SOLUCIÓN. BLOQUE DE FUNCIONES.

SOLUCIÓN. BLOQUE DE FUNCIONES. SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

FUNCIONES REALES DE VARIABLE REAL

FUNCIONES REALES DE VARIABLE REAL Pag. 1 FUNCIONES REALES DE VARIABLE REAL 1.- Aplicaciones y Funciones. Definiciones. 2.- Tipos de funciones. 3.-Operaciones con funciones. 4.-Composición de funciones. 5.- Función identidad y funciones

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 18/19 Esther Madera Lastra 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (. A

Más detalles

Tema 7.0. Repaso de números reales y de funciones

Tema 7.0. Repaso de números reales y de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números

Más detalles

TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x).

TEMA 4 Y 5 FUNCIONES. (El valor de la y es función de lo que valga x, depende de x). TEMA 4 Y 5 FUNCIONES. FUNCIÓN Una función relaciona dos variables: x (variable independiente) e y (variable dependiente). (El valor de la y es función de lo que valga x, depende de x). y = 3x 5 Una función

Más detalles

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD.

TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. TEMA 8. FUNCIONES, LÍMITES Y CONTINIDAD. 1. Concepto de función.. Dominio e imagen de una función. 3. Tipos de funciones. 4. Operaciones con funciones. 5. Concepto de límite. 6. Cálculo de límites. 7.

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES REPRESENTACIÓN GRÁFICA DE FUNCIONES Para representar gráficamente funciones eplícitas (es decir del tipo y f()), deben seguirse los siguientes pasos, representando inmediatamente todos los datos que se

Más detalles

Unidad 13 Representación gráfica de funciones

Unidad 13 Representación gráfica de funciones 1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN

lím x 1 r x a, donde a es un nº que cumple que el ) es algún 1. ASÍNTOTAS DE UNA FUNCIÓN . ASÍNTOTAS DE UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición más formal

Más detalles

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN

TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN ESTUDIO DE LA MONOTONÍA DEF.- Una función es CRECIENTE en un intervalo I del dominio de la función si: x1 < x2 I f ( x1 ) f ( x2). Si se cumple

Más detalles

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0)

RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0) RESUMEN DE FUNCIONES REALES Y LIMITES (parte 0). DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL Una unción real de variable real es una aplicación de un subconjunto D de los números reales en un subconjunto

Más detalles

Soluciones de las actividades

Soluciones de las actividades Soluciones de las actividades Página 09. Se divide coste entre tiempo y resulta 0,8 para todos los planes, por tanto es una función tal que: c(t) 0,8t c(,), miles de euros. Página 0. Las soluciones son:

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD : LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos

Más detalles

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD MATEMÁTICAS I LÍMITES-CONTINUIDAD TEMA 9 : LÍMITES DE FUNCIONES. CONTINUIDAD 1. LÍMITES EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores

Más detalles

12 Representación de funciones

12 Representación de funciones Representación de funciones ACTIVIDADES INICIALES.I. Factorizando previamente las epresiones, resuelve las siguientes ecuaciones: 3 a) 6 7 4 + 5 = 0 6 4 c) 4 + 4 = 0 7 b) 6 d) + + + + 3 = 0.II. Resuelve

Más detalles

FUNCIONES: GENERALIDADES

FUNCIONES: GENERALIDADES FUNCIONES: GENERALIDADES DEFINICIÓN DE FUNCIÓN REAL DE VARIABLE REAL.- Una unción,, es una correspondencia entre dos conjuntos numéricos A y B, que asigna a cada número, x, del primer conjunto A, un único

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2

Examen de Análisis Matemático. a) (1 punto) Calcula las derivadas de las siguientes funciones: (1 + 3x) 1 2 Curso º Bachillerato 16/05/017 Ejercicio 1 a) (1 punto) Calcula las derivadas de las siguientes funciones: f() = 1+3 ; g() = ln(1 5) + e7 b) (1 punto) Estudia la derivabilidad de la función dada por: a)

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5

f cuando x toma valores cercanos a 2. Si x se aproxima a 2, la función toma valores cercanos a 5. Se escribe: ( ) 5 IES Padre Poveda (Guadi) UNIDAD LÍMITES Y CONTINUIDAD.. INTRODUCCIÓN. Fíjate en el comportamiento de la función ( ) f cuando toma valores cercanos a. Si se aproima a, la función toma valores cercanos a

Más detalles

Tema 5 Funciones(V). Representación de Funciones

Tema 5 Funciones(V). Representación de Funciones Tema 5 Funciones(V). Representación de Funciones 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con eje OX 1... Con eje OY 1.. Signo de la función 1.4. Simetría y periodicidad

Más detalles

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO

Universidad de Buenos Aires. Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA GUÍA DE TRABAJOS PRÁCTICOS QUINTO AÑO Se agradece el aporte de los proesores María Inés Sáinz y Daniel Dacunti TRABAJO PRÁCTICO

Más detalles

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2

1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN. Ejemplo: Estudiar la monotonía (intervalos de crecimiento y decrecimiento) de la función 2 UNIDAD 11.- APLICACIONES DE LAS DERIVADAS 1. MONOTONÍA: CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN Estudiando el signo de la derivada primera podemos saber cuándo una función es creciente o decreciente.

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función.

2 = ( ) = con vértice en (0, 3) y cortes con el. Tomando la parte continua de cada una de ellas se obtiene la grafica de la función. Septiembre. Ejercicio B. Puntuación máima: puntos) Se considera la función real de variable real definida por: a si f ) Ln ) si > b) Represéntese gráficamente la función para el caso a. Nota: Ln denota

Más detalles

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES

3º ESO PMAR FUNCIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa FUNCIONES FUNCIONES.- CARACTERÍSTICAS DE LAS FUNCIONES Definición: Una función es una relación entre dos variables de tal forma que a cada valor de la primera (variable independiente, ) le corresponde un valor o

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES.

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES. REPRESENTACIÓN GRÁFICA DE FUNCIONES. TEORÍA - ESQUEMA A SEGUIR EN LA REPRESENTACIÓN DE FUNCIONES. Para dibujar la curva (C) de la unción :->y() se estudiará sucesivamente los siguientes puntos: * Dominio

Más detalles

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real

f : IR IR 1. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real, x, un único número real Apuntes de Análisis Curso 7/8 Esther Madera Lastra. FUNCIÓN REAL DE VARIABLE REAL Una función real f de variable real es una relación que asocia a cada número real,, un único número real y = f (). A la

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES El estudio de la derivada de una función, junto con otras consideraciones sobre las funciones tales como el estudio de su campo de eistencia (dominio), de sus puntos de corte

Más detalles

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS

TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 1 TEMA 9 LÍMITES DE FUNCIONES, CONTINUIDAD Y RAMAS INFINITAS TEMA 9- LÍMITES Y CONTINUIDAD MATEMÁTICAS I 1º BACHILLERATO 9.1. LÍMITE DE UNA FUNCIÓN

Más detalles

Asíntotas en una función

Asíntotas en una función Asíntotas en una unción Etimológicamente la palabra asíntota, antiguamente llamada asimptota, proviene del griego asumptotos, compuesto de a sun pipto : a= sin ; sun = Juntamente con y pipto: tocar lo

Más detalles

"""##$##""" !!!""#""!!!

##$## !!!#!!! Unidad nº 9 CARACTERÍSTICAS DE LAS GRÁFICAS! 11 AUTTOEEVALLUACI IÓN 1 Eplica qué significan los símbolos 0 y -. 0 ( tiende a 0) significa que tomamos valores ( 0) cuya distancia a 0, dada por, se hace

Más detalles

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES.

IES Padre Poveda (Guadix) Matemáticas I UNIDAD 8 FUNCIONES. IES Padre Poveda (Guadi) UNIDAD 8 FUNCIONES.. Concepto de unción.. Monotonía y etremos. Acotación... Monotonía... Etremos relativos y absolutos... Funciones acotadas.. Simetría y periodicidad... Funciones

Más detalles

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD

TEMA 10.-LÍMITES DE FUNCIONES Y CONTINUIDAD TEMA.-Límites de funciones y continuidad.- Matemáticas I. SUCESIONES DE NÚMEROS REALES TEMA.-LÍMITES DE FUNCIONES Y CONTINUIDAD Una sucesión de números reales es un conjunto de números (a, a, a 3,...,

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

REPRESENTACION GRÁFICA DE FUNCIONES

REPRESENTACION GRÁFICA DE FUNCIONES REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10

Más detalles

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + )

5.3 Dominios de funciones: Polinómicas: Dom f(x): R La X puede tomar cualquier valor entre (, + ) Tema 5: Funciones. Dominio, Límites, Asíntotas y Continuidad de Funciones 5.1 Concepto de Dominio de una función Función: es una regla que asigna a cada número real X un único número real Y. X Dom R Dom

Más detalles

EXAMEN DE JUNIO DE MAS I

EXAMEN DE JUNIO DE MAS I EXAMEN DE JUNIO DE MAS I Se recomienda: a) Antes de hacer algo, lee todo el eamen. b) Resuelve antes las preguntas que se te den mejor. c) Responde a cada parte del eamen en una hoja distinta. d) Es una

Más detalles