TEMA 11 REPRESENTACIÓN DE FUNCIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 11 REPRESENTACIÓN DE FUNCIONES"

Transcripción

1 Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni Ramas ininitas: ; Puntos singulares: ' 8 ' Puntos singulares:, ;, 9 Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) - Con el eje X y , 7 0,8 Puntos: (0, 0); (5,; 0) y (,8; 0) 7 '' ; '' 0 Punto, 7 Gráica: Puntos de inleión: EJERCICIO : Dibuja la gráica de la siguiente unción: Dominio R {0} Simetrías: () (). Es impar: simétrica respecto al origen. 0 Asíntotas verticales: 0 Asíntota horizontal: 0 0 si, 0 y 0 es asíntota horizontal. 0 si, 0

2 Tema Representación de unciones Matemáticas II º Bachillerato Puntos singulares. Crecimiento y decrecimiento: ' ' 0 0 Signo de '(): es decreciente en (, Tiene un mínimoen ( ; 0,8) ) (, ); es crecienteen ( y un máimoen Cortes con los ejes: - No corta al eje Y, pues en 0 no está deinida. ( ; 0,8)., 0) (0, - Con el eje X y 0 0 Puntos (, 0) y (, 0). Gráica: ). EJERCICIO : Estudia la siguiente unción y dibuja su gráica: Dominio R {, } Simetrías: () (). Es impar: simétrica respecto al origen. Asíntotas verticales: Asíntota oblícua: y Posición de la curva respecto a la asíntota: () < 0 si (curva por debajo). () > 0 si (curva por encima). Puntos singulares. Crecimiento y decrecimiento: ' ( ) ( ) y es asíntota oblícua. ( ) 0 0 0,, ' Signo de '(): es creciente en (, Tiene un máimoen ) ( Solo corta a los ejes en el punto (0, 0). Gráica:, ); es decreciente en (, ) (, 0) (0, ) (, ( ;,); un punto de inleión en (0, 0) y un mínimoen ( ;,). )

3 Tema Representación de unciones Matemáticas II º Bachillerato EJERCICIO : Representa la unción: Dominio R 8 8 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Ramas ininitas: ; Puntos singulares: ' 0 ' 0 0 Puntos singulares: (0, 0) y (, ) Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) Con el eje X y Puntos de inleión: ''() 9 ( ) ' ' 0 0, 8 0 Puntos 0, 0 y, 7 Puntos 0, 0 y, Gráica: EJERCICIO 5 : Halla los puntos de corte con los ejes y los máimos y mínimos de la unción: () cos, [0, ] Dominio [0, ] Puntos de corte con los ejes: - Con el eje Y 0 y Punto (0, ) - Con el eje X y 0 cos 0 cos cos No tiene solución No corta al eje X. Utilizando la inormación obtenida, represéntala gráicamente. Máimos y mínimos: '() cos (sen ) cos sen cos 0, ' 0 cos sen 0 sen 0 0,, Estudiamos el signo de ''() [cos sen ] en esos puntos: y '' < 0 en 0, y Máimos: (0, ), (, ), (, ) y'' 0 en y Mínimos :, ;, Gráica:

4 Tema Representación de unciones Matemáticas II º Bachillerato EJERCICIO : Estudia y representa esta unción: ln Dominio (, ) (, ) Asíntotas: Asíntotas verticales: es asíntota vertical. ln ln 0 0 Asíntotas horizontales ln ln 0 0 y 0 es asíntota horizontal. Puntos singulares. Crecimiento y decrecimiento: ' ( ) ( ) ( ) ( ) ( ) '() 0 para todo. Signo de '(): () es creciente en su dominio. No corta a los ejes. Gráica: EJERCICIO 7 : Representa la siguiente unción: Dominio R Asíntotas: No tiene asíntotas verticales. Asíntotas horizontales 0 y 0 ; e es asíntota horizontalcuando y 0. Puntos singulares. Crecimiento y decrecimiento: Rama parabólica.

5 Tema Representación de unciones Matemáticas II º Bachillerato 5 e e e e ' ( ) ( ) '() 0 '() > 0 para todo () es creciente. e Hay un punto de inleión en,. Corta al eje Y en (0, ). No corta al eje X. Gráica: ( ) EJERCICIO 8 : Estudia y representa la unción: Dominio (, ) (0, ) Simetrías: No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Asíntotas: Asíntotas verticales: Asíntotas horizontales: 0 y 0 es asíntota horizontal ( () > 0 para todo ). Puntos singulares. Crecimiento y decrecimiento: ' '() 0 (no vale; pues () no está deinida en ). () no tiene puntos singulares. Signo de ' (): 0 0 es asíntota vertical. () es creciente en (, ) y es decreciente en (0, ). () no corta a los ejes. Gráica: EJERCICIO : Representa gráicamente la siguiente unción: () ( ) e Dominio R Asíntotas: No tiene asíntotas verticales.

6 Tema Representación de unciones Matemáticas II º Bachillerato e Asíntotas horizontales: e 0 y 0 es asíntota horizontal cuando (y > 0). Ramas ininitas: ; Puntos singulares. Crecimiento y decrecimiento: '() e ( ) e ( ) e e '() 0 0 Signo de '(): Rama parabólica. () es creciente en (, 0); es decreciente en (0, ). Tiene un máimo en (0, ). Puntos de corte con los ejes: - Con el eje Y 0 y Punto (0, ) - Con el eje X y 0 Punto (, 0) Gráica: EJERCICIO : Estudia y representa la siguiente unción: Dominio R {, } Simetrías: () (). Es par: simétrica respecto al eje Y. Asíntotas verticales: Asíntota horizontal: y es asíntota horizontal. Si y si, () < La curva está por debajo de la asíntota. Puntos singulares. Crecimiento y decrecimiento: 8 ' ( ) '() Signo de ' (): () es decreciente en (, ) (, 0); es creciente en (0, ) (, ). Tiene un mínimoen 0,. Cortes con los ejes: - Con el eje Y 0 y Punto 0, - Con el eje X y 0 0 ; Puntos (, 0) y (, 0) Gráica:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:

SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será: Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua

Más detalles

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1

Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

Cálculo de derivadas. Aplicaciones. 1ºBHCS

Cálculo de derivadas. Aplicaciones. 1ºBHCS Pág. de 5 Cálculo de derivadas. Aplicaciones. ºBHCS Ejercicio nº.- Consideramos la unción: Halla la tasa de variación media en el intervalo [0, ] e indica si () crece o decrece en ese intervalo. TVM Ejercicio

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

GRÁFICA DE FUNCIONES

GRÁFICA DE FUNCIONES GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.

Más detalles

REPRESENTACIÓN GRÁFICA DE FUNCIONES

REPRESENTACIÓN GRÁFICA DE FUNCIONES Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente

Más detalles

1Tema 11 Representación de funciones

1Tema 11 Representación de funciones 1Tema 11 Representación de funciones 1. Del estudio a la gráfica. a) Representa una función y f () sabiendo que: Dominio: 0 Corta a OX en = 1. Asín. horizontal y = 0: Asín. vertical = 0: Si Si Si Si, y

Más detalles

10 Representación de funciones

10 Representación de funciones 0 Representación de funciones Página 99 Límites y derivadas para representar una función 5 lm í x f (x) = lm í x + f (x) = lm í f (x) = + lm í f (x) = + x x + f ( 9) = 0; f ' (0) = 0; f () = 0 f ' (0)

Más detalles

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO

Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)

Más detalles

Ejercicios de representación de funciones: Primer ejemplo:

Ejercicios de representación de funciones: Primer ejemplo: www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de

Más detalles

1.- Sea la función f definida por f( x)

1.- Sea la función f definida por f( x) Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función

Más detalles

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8

< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8 Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,

Más detalles

RESOLUCIÓN DE ACTIVIDADES

RESOLUCIÓN DE ACTIVIDADES RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa

FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre

Más detalles

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210

Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210 Matemáticas aplicadas a las Ciencias Sociales I Autoevaluación Página 0 Observa la gráfica de la función y f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.

Más detalles

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES.

Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES. REPRESENTACIÓN GRÁFICA DE FUNCIONES. TEORÍA - ESQUEMA A SEGUIR EN LA REPRESENTACIÓN DE FUNCIONES. Para dibujar la curva (C) de la unción :->y() se estudiará sucesivamente los siguientes puntos: * Dominio

Más detalles

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009

03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009 0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:

Más detalles

Tema 4: Representación de Funciones

Tema 4: Representación de Funciones Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...

Más detalles

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN

5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN 5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y

Más detalles

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4

Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4 Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1

y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1 Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote

Más detalles

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:

Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde: Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Unidad 13 Representación gráfica de funciones

Unidad 13 Representación gráfica de funciones 1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con

Más detalles

REPRESENTACIÓN DE CURVAS - CCSS

REPRESENTACIÓN DE CURVAS - CCSS REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2

, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2 Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A

Más detalles

MATEMÁTICAS EXAMEN CURSO COMPLETO 2º DE BACHILLER CC SS

MATEMÁTICAS EXAMEN CURSO COMPLETO 2º DE BACHILLER CC SS MATEMÁTICAS EXAMEN CURSO COMPLETO º DE BACHILLER CC SS ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las

Más detalles

Tema 4: FUNCIONES Y LÍMITES. 1º Bachillerato Sociales. Lomce

Tema 4: FUNCIONES Y LÍMITES. 1º Bachillerato Sociales. Lomce º Bachillerato Sociales. Lomce. DOMINIO. CONCEPTO DE LIMITES. LIMITES EN UN PUNTO 4. INDETERMINACIONES 5. LIMITES EN EL INFINITO 6. PROPIEDADES DE LIMITES.-Calcula el dominio: a f ( b f ( c f ( d f (.-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A

Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A Tema 8.Estudio Global de unciones. Aplicaciones a la representación graica de unciones 1 Tema 8. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRAFICA DE FUNCIONES 1. Introducción. Deinición

Más detalles

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO

CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces

Más detalles

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x

Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x http://matematicas-tic.wikispaces.com Lamberto Cortázar Vinuesa 07 LÍMITES EN EL INFINITO. ASÍNTOTAS EJERCICIOS WIKI Idea Se trata de estudiar lo que sucede con la unción () cuando damos a valores tan

Más detalles

UAH. FACULTAD DE CIENCIAS ECONÓMICAS ACTUALIZACIÓN DE CONOCIMIENTOS MATEMÁTICOS EXAMEN FINAL JULIO a) Halla los siguientes límites: 2 + 3x

UAH. FACULTAD DE CIENCIAS ECONÓMICAS ACTUALIZACIÓN DE CONOCIMIENTOS MATEMÁTICOS EXAMEN FINAL JULIO a) Halla los siguientes límites: 2 + 3x UAH FACULTAD DE CIENCIAS ECONÓMICAS ACTUALIZACIÓN DE CONOCIMIENTOS MATEMÁTICOS EXAMEN FINAL JULIO 0 Observación: Cada respuesta correcta vale punto a) Una serie de números se define como sigue: a ; a +

Más detalles

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD

Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD UNIDAD Página 9 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Tasa de variación media Calcula la tasa de variación media de esta función en los intervalos: a) [, 0] b) [0, ] c) [, 5] 0 5 f (0) f ( ) a)

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es:

PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es: PROBLEMAS DE REPASO 1. La hipotenusa de un triángulo rectángulo mide 1 dm. Hacemos girar el triángulo alrededor de uno de sus catetos. Determina la longitud de los catetos de forma que el cono engendrado

Más detalles

ASÍNTOTAS Y RAMAS. Ejercicio nº 1.- Halla las asíntotas verticales de: y sitúa la curva respecto a ellas. Ejercicio nº 2.-

ASÍNTOTAS Y RAMAS. Ejercicio nº 1.- Halla las asíntotas verticales de: y sitúa la curva respecto a ellas. Ejercicio nº 2.- ASÍNTOTAS Y RAMAS Ejercicio nº.- Halla las asíntotas verticales de: y sitúa la curva respecto a ellas. Ejercicio nº.- Halla las asíntotas verticales de la siguiente unción y sitúa la curva respecto a ellas:

Más detalles

Principios de graficación

Principios de graficación Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva

Más detalles

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)

Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x) TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable

Más detalles

REPRESENTACIÓN DE CURVAS

REPRESENTACIÓN DE CURVAS ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía

Más detalles

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x

EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS º ESO 1) Halla el dominio de las siguientes funciones: a) f ( ) = + 1 función polinómica Dom( f ) = R b) 1 f ( ) / = 0} = R {} c) f ( ) = ( 1) función polinómica

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.

1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}. 6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está

Más detalles

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía

a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía 1. Expresa las siguientes funciones mediante forma algebraica: a) Asignar a cada número real su mitad b) Asignar a cada número real su raíz cuadrada c) Asignar a cada número real la mitad de su cuadrado

Más detalles

Alonso Fernández Galián

Alonso Fernández Galián Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.

UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno. . CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan

Más detalles

REPRESENTACIÓN GRÁFICA DE CURVAS - II

REPRESENTACIÓN GRÁFICA DE CURVAS - II REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas

Más detalles

EXAMEN DE SELECTIVIDAD JUNIO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A. Problema 1. Resuelve las siguientes cuestiones:

EXAMEN DE SELECTIVIDAD JUNIO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A. Problema 1. Resuelve las siguientes cuestiones: EMEN DE SELECTIVIDD JUNIO. MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN Problema. Resuelve las siguientes cuestiones: a) Calcula las matrices e Y sabiendo que 7 5 y Y Y 5 Y 7 5 7 5 Y Y Y Solución 5 Y

Más detalles

Ejercicios de representación de funciones

Ejercicios de representación de funciones Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.

Más detalles

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones

Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS FUNDAMENTOS MATEMÁTICOS PARA ECONOMÍA Y NEGOCIOS TERCERA EVALUACIÓN 0/ABRIL/0 VERSION ALUMNO:

Más detalles

RESUMEN DE ANÁLISIS MATEMÁTICAS II

RESUMEN DE ANÁLISIS MATEMÁTICAS II RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)

Más detalles

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.

x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas. f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +

Más detalles

EJERCICIOS DE LÍMITES DE FUNCIONES

EJERCICIOS DE LÍMITES DE FUNCIONES EJERCICIOS DE LÍMITES DE FUNCIONES Ejercicio nº 1.- A partir de la gráica de (), calcula: c) d) e) 1 1 5 Ejercicio nº.- La guiente gráica corresponde a la unción (). Sobre ella, calcula los límites: c)

Más detalles