TEMA 11 REPRESENTACIÓN DE FUNCIONES
|
|
|
- José María Morales Molina
- hace 9 años
- Vistas:
Transcripción
1 Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni Ramas ininitas: ; Puntos singulares: ' 8 ' Puntos singulares:, ;, 9 Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) - Con el eje X y , 7 0,8 Puntos: (0, 0); (5,; 0) y (,8; 0) 7 '' ; '' 0 Punto, 7 Gráica: Puntos de inleión: EJERCICIO : Dibuja la gráica de la siguiente unción: Dominio R {0} Simetrías: () (). Es impar: simétrica respecto al origen. 0 Asíntotas verticales: 0 Asíntota horizontal: 0 0 si, 0 y 0 es asíntota horizontal. 0 si, 0
2 Tema Representación de unciones Matemáticas II º Bachillerato Puntos singulares. Crecimiento y decrecimiento: ' ' 0 0 Signo de '(): es decreciente en (, Tiene un mínimoen ( ; 0,8) ) (, ); es crecienteen ( y un máimoen Cortes con los ejes: - No corta al eje Y, pues en 0 no está deinida. ( ; 0,8)., 0) (0, - Con el eje X y 0 0 Puntos (, 0) y (, 0). Gráica: ). EJERCICIO : Estudia la siguiente unción y dibuja su gráica: Dominio R {, } Simetrías: () (). Es impar: simétrica respecto al origen. Asíntotas verticales: Asíntota oblícua: y Posición de la curva respecto a la asíntota: () < 0 si (curva por debajo). () > 0 si (curva por encima). Puntos singulares. Crecimiento y decrecimiento: ' ( ) ( ) y es asíntota oblícua. ( ) 0 0 0,, ' Signo de '(): es creciente en (, Tiene un máimoen ) ( Solo corta a los ejes en el punto (0, 0). Gráica:, ); es decreciente en (, ) (, 0) (0, ) (, ( ;,); un punto de inleión en (0, 0) y un mínimoen ( ;,). )
3 Tema Representación de unciones Matemáticas II º Bachillerato EJERCICIO : Representa la unción: Dominio R 8 8 Simetrías:. No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Ramas ininitas: ; Puntos singulares: ' 0 ' 0 0 Puntos singulares: (0, 0) y (, ) Cortes con los ejes: - Con el eje Y 0 y 0 Punto (0, 0) Con el eje X y Puntos de inleión: ''() 9 ( ) ' ' 0 0, 8 0 Puntos 0, 0 y, 7 Puntos 0, 0 y, Gráica: EJERCICIO 5 : Halla los puntos de corte con los ejes y los máimos y mínimos de la unción: () cos, [0, ] Dominio [0, ] Puntos de corte con los ejes: - Con el eje Y 0 y Punto (0, ) - Con el eje X y 0 cos 0 cos cos No tiene solución No corta al eje X. Utilizando la inormación obtenida, represéntala gráicamente. Máimos y mínimos: '() cos (sen ) cos sen cos 0, ' 0 cos sen 0 sen 0 0,, Estudiamos el signo de ''() [cos sen ] en esos puntos: y '' < 0 en 0, y Máimos: (0, ), (, ), (, ) y'' 0 en y Mínimos :, ;, Gráica:
4 Tema Representación de unciones Matemáticas II º Bachillerato EJERCICIO : Estudia y representa esta unción: ln Dominio (, ) (, ) Asíntotas: Asíntotas verticales: es asíntota vertical. ln ln 0 0 Asíntotas horizontales ln ln 0 0 y 0 es asíntota horizontal. Puntos singulares. Crecimiento y decrecimiento: ' ( ) ( ) ( ) ( ) ( ) '() 0 para todo. Signo de '(): () es creciente en su dominio. No corta a los ejes. Gráica: EJERCICIO 7 : Representa la siguiente unción: Dominio R Asíntotas: No tiene asíntotas verticales. Asíntotas horizontales 0 y 0 ; e es asíntota horizontalcuando y 0. Puntos singulares. Crecimiento y decrecimiento: Rama parabólica.
5 Tema Representación de unciones Matemáticas II º Bachillerato 5 e e e e ' ( ) ( ) '() 0 '() > 0 para todo () es creciente. e Hay un punto de inleión en,. Corta al eje Y en (0, ). No corta al eje X. Gráica: ( ) EJERCICIO 8 : Estudia y representa la unción: Dominio (, ) (0, ) Simetrías: No es par ni impar: no es simétrica respecto al eje Y ni respecto al origen. Asíntotas: Asíntotas verticales: Asíntotas horizontales: 0 y 0 es asíntota horizontal ( () > 0 para todo ). Puntos singulares. Crecimiento y decrecimiento: ' '() 0 (no vale; pues () no está deinida en ). () no tiene puntos singulares. Signo de ' (): 0 0 es asíntota vertical. () es creciente en (, ) y es decreciente en (0, ). () no corta a los ejes. Gráica: EJERCICIO : Representa gráicamente la siguiente unción: () ( ) e Dominio R Asíntotas: No tiene asíntotas verticales.
6 Tema Representación de unciones Matemáticas II º Bachillerato e Asíntotas horizontales: e 0 y 0 es asíntota horizontal cuando (y > 0). Ramas ininitas: ; Puntos singulares. Crecimiento y decrecimiento: '() e ( ) e ( ) e e '() 0 0 Signo de '(): Rama parabólica. () es creciente en (, 0); es decreciente en (0, ). Tiene un máimo en (0, ). Puntos de corte con los ejes: - Con el eje Y 0 y Punto (0, ) - Con el eje X y 0 Punto (, 0) Gráica: EJERCICIO : Estudia y representa la siguiente unción: Dominio R {, } Simetrías: () (). Es par: simétrica respecto al eje Y. Asíntotas verticales: Asíntota horizontal: y es asíntota horizontal. Si y si, () < La curva está por debajo de la asíntota. Puntos singulares. Crecimiento y decrecimiento: 8 ' ( ) '() Signo de ' (): () es decreciente en (, ) (, 0); es creciente en (0, ) (, ). Tiene un mínimoen 0,. Cortes con los ejes: - Con el eje Y 0 y Punto 0, - Con el eje X y 0 0 ; Puntos (, 0) y (, 0) Gráica:
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Ejercicio nº.- Estudia y representa la siguiente unción: ( ) + 6 Ejercicio nº.- Dibuja la gráica de la unción: ( + ) ( ) Ejercicio nº.- Dada la unción: y sen sen, [0, ] a) Halla
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Cálculo de derivadas. Aplicaciones. 1ºBHCS
Pág. de 5 Cálculo de derivadas. Aplicaciones. ºBHCS Ejercicio nº.- Consideramos la unción: Halla la tasa de variación media en el intervalo [0, ] e indica si () crece o decrece en ese intervalo. TVM Ejercicio
Ejercicios de representación de funciones
Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
REPRESENTACIÓN GRÁFICA DE FUNCIONES
Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente
1Tema 11 Representación de funciones
1Tema 11 Representación de funciones 1. Del estudio a la gráfica. a) Representa una función y f () sabiendo que: Dominio: 0 Corta a OX en = 1. Asín. horizontal y = 0: Asín. vertical = 0: Si Si Si Si, y
10 Representación de funciones
0 Representación de funciones Página 99 Límites y derivadas para representar una función 5 lm í x f (x) = lm í x + f (x) = lm í f (x) = + lm í f (x) = + x x + f ( 9) = 0; f ' (0) = 0; f () = 0 f ' (0)
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
Ejercicios de representación de funciones: Primer ejemplo:
www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de
1.- Sea la función f definida por f( x)
Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función
< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8
Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción A Reserva,
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
Bloque II. Análisis. Autoevaluación. BACHILLERATO Matemáticas aplicadas a las Ciencias Sociales I. Página 210
Matemáticas aplicadas a las Ciencias Sociales I Autoevaluación Página 0 Observa la gráfica de la función y f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.
Apuntes de A. Cabañó. Matemáticas II REPRESENTACIÓN GRÁFICA DE FUNCIONES.
REPRESENTACIÓN GRÁFICA DE FUNCIONES. TEORÍA - ESQUEMA A SEGUIR EN LA REPRESENTACIÓN DE FUNCIONES. Para dibujar la curva (C) de la unción :->y() se estudiará sucesivamente los siguientes puntos: * Dominio
03 Ejercicios de Selectividad Continuidad y derivabilidad de funciones. Ejercicios propuestos en 2009
0 Ejercicios de Selectividad Continuidad y derivabilidad de unciones Ejercicios propuestos en 009 1- [009-1-A-] a) [1 5] Halle las unciones derivadas de las unciones deinidas por las siguientes ln epresiones:
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN
5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y
Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4
Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 008 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
y esboza su gráfica, apoyándote en la gráfica de f ( x ) que aparece debajo. 3 log + 1
Funciones Límites y continuidad Curso 06/7 Ejercicio puntos 0 Dadas las unciones = e, g = y h ( ) log ( ) =, se pide: Encuentra el dominio de la unción ( g h) Encuentra la unción y esboza su gráica, apoyándote
Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:
Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =
CARACTERÍSTICAS DE UNA FUNCIÓN
. DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.
Unidad 13 Representación gráfica de funciones
1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con
REPRESENTACIÓN DE CURVAS - CCSS
REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
, 0 ; Decrece: 0 2, 0 ; 0, 2. d f x x x x. a f x. b f x. Solucionario tema 9: Estudio de Funciones. Ejercicio 1. Ejercicio 2
Solucionario tema 9: Estudio de Funciones Ejercicio Estudia la gráica siguiente: Dominio Recorrido 0, 4 Puntos de corte con los Ejes Con el Eje Y: 0, 4 Puntos máimos y mínimos: Máimo absoluto: 0, No hay
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2002 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A
MATEMÁTICAS EXAMEN CURSO COMPLETO 2º DE BACHILLER CC SS
MATEMÁTICAS EXAMEN CURSO COMPLETO º DE BACHILLER CC SS ACTIVIDADES PARA ALUMNOS DE º DE BACHILLERATO QUE TIENEN PENDIENTE MATEMÁTICAS APLICADAS A LAS CCSS I SEGUNDA PARTE Determine los dominios de las
Tema 4: FUNCIONES Y LÍMITES. 1º Bachillerato Sociales. Lomce
º Bachillerato Sociales. Lomce. DOMINIO. CONCEPTO DE LIMITES. LIMITES EN UN PUNTO 4. INDETERMINACIONES 5. LIMITES EN EL INFINITO 6. PROPIEDADES DE LIMITES.-Calcula el dominio: a f ( b f ( c f ( d f (.-
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Tema 28. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A
Tema 8.Estudio Global de unciones. Aplicaciones a la representación graica de unciones 1 Tema 8. ESTUDIO GLOBAL DE FUNCIONES. APLICACIONES A LA REPRESENTACIÓN GRAFICA DE FUNCIONES 1. Introducción. Deinición
CUESTIONES RESUELTAS 2. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. 1º GRADO GESTIÓN AERONAÚTICA CURSO
CUESTIONES RESUELTAS. FUNCIONES REALES DE VARIABLE REAL FUNDAMENTOS DE MATEMÁTICAS. º GRADO GESTIÓN AERONAÚTICA CURSO 0-0. CONCEPTOS DE DOMINIO, RECORRIDO Y GRÁFICA e. Sea f() definida por: f ( ) Entonces
Lamberto Cortázar Vinuesa la función se va a - infinito x 2 2x
http://matematicas-tic.wikispaces.com Lamberto Cortázar Vinuesa 07 LÍMITES EN EL INFINITO. ASÍNTOTAS EJERCICIOS WIKI Idea Se trata de estudiar lo que sucede con la unción () cuando damos a valores tan
UAH. FACULTAD DE CIENCIAS ECONÓMICAS ACTUALIZACIÓN DE CONOCIMIENTOS MATEMÁTICOS EXAMEN FINAL JULIO a) Halla los siguientes límites: 2 + 3x
UAH FACULTAD DE CIENCIAS ECONÓMICAS ACTUALIZACIÓN DE CONOCIMIENTOS MATEMÁTICOS EXAMEN FINAL JULIO 0 Observación: Cada respuesta correcta vale punto a) Una serie de números se define como sigue: a ; a +
Página 194 EJERCICIOS Y PROBLEMAS PROPUESTOS. Tasa de variación media PARA PRACTICAR UNIDAD
UNIDAD Página 9 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Tasa de variación media Calcula la tasa de variación media de esta función en los intervalos: a) [, 0] b) [0, ] c) [, 5] 0 5 f (0) f ( ) a)
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
PROBLEMAS DE REPASO. Solución: Si llamamos x e y a las longitudes de cada uno de los catetos, sabemos que: x 2 y 2 1 y 2 1 x 2 El volumen del cono es:
PROBLEMAS DE REPASO 1. La hipotenusa de un triángulo rectángulo mide 1 dm. Hacemos girar el triángulo alrededor de uno de sus catetos. Determina la longitud de los catetos de forma que el cono engendrado
ASÍNTOTAS Y RAMAS. Ejercicio nº 1.- Halla las asíntotas verticales de: y sitúa la curva respecto a ellas. Ejercicio nº 2.-
ASÍNTOTAS Y RAMAS Ejercicio nº.- Halla las asíntotas verticales de: y sitúa la curva respecto a ellas. Ejercicio nº.- Halla las asíntotas verticales de la siguiente unción y sitúa la curva respecto a ellas:
Principios de graficación
Graicación Principios de graicación En algunas oportunidades tenemos que graicar una unción que es casi igual a las que a sabemos graicar, llamadas básicas, sólo que estas presentan elementos adicionales
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 011 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Función es una relación entre dos variables a las que, en general, se les llama x e y. Viene representado por: y f (x)
TEMA 9: :.- CONCEPTO DE FUNCIÓN: Función es una relación entre dos variables a las que, en general, se les llama e y. Viene representado por: y (, donde es la variable independiente e y es la variable
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS 4º ESO. 1) Halla el dominio de las siguientes funciones: = 2x
EJERCICIOS REPASO FUNCIONES. MATEMÁTICAS º ESO 1) Halla el dominio de las siguientes funciones: a) f ( ) = + 1 función polinómica Dom( f ) = R b) 1 f ( ) / = 0} = R {} c) f ( ) = ( 1) función polinómica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2003 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 003 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva 1, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva, Ejercicio 1, Opción A
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 00 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
a) Representa gráficamente la función b) Calcula asíntotas, dominio, corte con los ejes y monotonía
1. Expresa las siguientes funciones mediante forma algebraica: a) Asignar a cada número real su mitad b) Asignar a cada número real su raíz cuadrada c) Asignar a cada número real la mitad de su cuadrado
Alonso Fernández Galián
Alonso Fernández Galián TEMA 3: ESTUDIO Y REPRESENTACIÓN DE FUNCIONES Para representar gráficamente una función deben estudiarse los siguientes aspectos: i) Dominio. ii) Puntos de corte con los ejes de
Examen de Matemáticas 2 o de Bachillerato Mayo 2003
Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio
TEMA 4 FUNCIONES ELEMENTALES
TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene
UNIDAD 6: FUNCIONES. Intuitivamente, una función real de variable real asigna a cada elemento x de D un elemento y de, y solo uno.
. CONCEPTO DE FUNCIÓN UNIDAD 6: FUNCIONES Las unciones son las herramientas para la descripción matemática de una situación real. De hecho, todas las órmulas de la Física no son más que unciones, que epresan
REPRESENTACIÓN GRÁFICA DE CURVAS - II
REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas
EXAMEN DE SELECTIVIDAD JUNIO MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II OPCIÓN A. Problema 1. Resuelve las siguientes cuestiones:
EMEN DE SELECTIVIDD JUNIO. MTEMÁTICS PLICDS LS CIENCIS SOCILES II OPCIÓN Problema. Resuelve las siguientes cuestiones: a) Calcula las matrices e Y sabiendo que 7 5 y Y Y 5 Y 7 5 7 5 Y Y Y Solución 5 Y
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS FACULTAD DE ECONOMÍA Y NEGOCIOS FUNDAMENTOS MATEMÁTICOS PARA ECONOMÍA Y NEGOCIOS TERCERA EVALUACIÓN 0/ABRIL/0 VERSION ALUMNO:
RESUMEN DE ANÁLISIS MATEMÁTICAS II
RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
EJERCICIOS DE LÍMITES DE FUNCIONES
EJERCICIOS DE LÍMITES DE FUNCIONES Ejercicio nº 1.- A partir de la gráica de (), calcula: c) d) e) 1 1 5 Ejercicio nº.- La guiente gráica corresponde a la unción (). Sobre ella, calcula los límites: c)
