Ejercicios de representación de funciones
|
|
|
- María Josefa Revuelta Mendoza
- hace 9 años
- Vistas:
Transcripción
1 Ejercicios de representación de funciones Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento. Máximos y mínimos. Concavidad y convexidad. Puntos de inflexión
2 Soluciones ejercicios de representación de funciones 1 Representar la siguiente función: Dominio Simetría Simetría respecto al origen. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas No tiene asíntotas. Ramas parabólicas Crecimiento y decrecimiento Creciente: 2
3 Decreciente: Mínimos Máximos Concavidad y convexidad Cóncava: Convexa Puntos de inflexión (0, 0) Representación gráfica 3
4 2 Representar la siguiente función: Dominio Simetría Simetría respecto al eje OY. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas No tiene asíntotas. Ramas parabólicas Crecimiento y decrecimiento Mínimos Máximos 4
5 Concavidad y convexidad Puntos de inflexión Representación gráfica 3 Representar la siguiente función: Dominio Simetría 5
6 Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal: Asíntotas verticales. Asíntota oblicua. Crecimiento y decrecimiento Creciente: 6
7 Mínimos Concavidad y convexidad Puntos de inflexión Representación gráfica 7
8 4 Representar la siguiente función: Dominio Simetría Simetría respecto al eje OY. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal Asíntotas verticales. Asíntota oblicua. 8
9 Ramas parabólicas Crecimiento y decrecimiento Mínimos Concavidad y convexidad Puntos de inflexión No hay punto de inflexión. 9
10 Representación gráfica 5 Representar la siguiente función: Dominio Simetría Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal 10
11 Asíntotas verticales. Asíntota oblicua. Crecimiento y decrecimiento Mínimos Máximos Concavidad y convexidad Puntos de inflexión No hay punto de inflexión. 11
12 Representación gráfica 6 Representar la siguiente función: Dominio Simetría Simetría respecto al origen. Puntos de corte con los ejes Punto de corte con OY: Asíntotas Asíntota horizontal 12
13 No tiene asíntotas verticales ni oblicuas. Crecimiento y decrecimiento Mínimos Máximos Concavidad y convexidad Puntos de inflexión 13
14 Representación gráfica 7 Representar la siguiente función: Dominio Simetría Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal No hay asíntotas verticales ni oblicuas. Crecimiento y decrecimiento 14
15 Creciente: Máximos Mínimos Con los datos obtenidos representamos: 8 Representar la siguiente función: Dominio Simetría No presenta simetría. 15
16 Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas No tiene asíntotas. Crecimiento y decrecimiento Máximo y mínimos No exixten extremos locales. Concavidad y convexidad Puntos de inflexión No hay punto de inflexión. 16
17 Representación gráfica 9 Representar la siguiente función: Dominio Simetría No presenta simetría. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal Asíntotas verticales. 17
18 Crecimiento y decrecimiento Máximo y mínimos No exixten extremos locales. Concavidad y convexidad Puntos de inflexión 18
19 Representación gráfica 10 Representar la siguiente función: Dominio Simetría No presenta simetría. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal No hay asíntotas verticales ni oblicuas. Crecimiento y decrecimiento 19
20 Máximos Concavidad y convexidad Puntos de inflexión Representación gráfica 20
21 11 Representar la siguiente función: Dominio Simetría No presenta simetría. Puntos de corte con los ejes Puntos de corte con OX: Punto de corte con OY: Asíntotas Asíntota horizontal Asíntotas verticales. Crecimiento y decrecimiento 21
22 Máximos Concavidad y convexidad Puntos de inflexión Representación gráfica 22
REPRESENTACIÓN GRÁFICA DE FUNCIONES
Página 1 de 5 REPRESENTACIÓN GRÁFICA DE FUNCIONES 1 Determinar en cuál de los siguientes intervalos la función f(x) = ln (x+1) es estrictamente cóncava. A (-, 0) B [-1, 1] C (-1, ) D Nunca es estrictamente
Ejercicios de representación de funciones
Ejercicios de representación de funciones 1.- Representar las siguientes funciones, estudiando su: Dominio. Simetría. Puntos de corte con los ejes. Asíntotas y ramas parabólicas. Crecimiento y decrecimiento.
Ecuación de la recta tangente
Ecuación de la recta tangente Pendiente de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. Recta tangente a una curva en un punto
< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8
Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES GRÁFICA DE UNA FUNCIÓN: Conjunto de puntos del plano (,y), en los que y = f(), es decir, conjunto de puntos del plano en los que la segunda coordenada es la imagen de la primera.
Tema 8: Estudio y representación de funciones
Tema 8: Estudio y representación de funciones 1. Introducción El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 16 - Problemas 3, 4, 5, 7
página /9 Problemas Tema Solución a problemas de Repaso de Matemáticas I - Hoja 6 - Problemas 3, 4, 5, 7 Hoja 6. Problema 3 Resuelto por Gloria Corpas (octubre 204) 3. Representa y=x 3 4 x. Dominio de
Tema 9: Estudio y representación de funciones
1. Introducción Tema 9: Estudio y representación de funciones El objetivo de esta unidad es representar gráficamente funciones polinómicas, racionales, irracionales, exponenciales y logarítmicas sencillas,
Ejercicios de representación de funciones: Primer ejemplo:
www.juliweb.es tlf. 69886 Ejercicios de representación de funciones: Primer ejemplo: f ( ) º) Dominio. Dom f ( ) R {} º) Simetrías. f ( ) No es par f ( ) f ( ) No es impar No hay simetría. º) Puntos de
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9
Asignatura: Matemáticas II ºBachillerato página 1/8 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 01 - Problemas 8, 9 Hoja 1. Problema 9 Resuelto por José Antonio Álvarez
= y. [Estudio y representación de funciones] Matemáticas 1º y 2º BACHILLERATO. Pasos a seguir para estudiar una función:
Pasos a seguir para estudiar una función: 1. Dominio de la función. 2. Puntos de corte. 3. Simetrías. 4. Asíntotas. 5. Crecimiento y decrecimiento. 6. Máximos y mínimos. 7. Concavidad y Convexidad. 8.
CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS.
pág.1 CRECIMIENTO Y DECRECIMIENTO. MÁXIMOS Y MÍNIMOS. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES I ) DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN: Es el conjunto de puntos donde tiene sentido realizar las operaciones indicadas en el criterio de definición de la
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. En las siguientes funciones estudia las características: dominio, los puntos de corte con los ejes, las simetrías, la periodicidad, las asíntotas, la monotonía,
REPRESENTACIÓN DE CURVAS - CCSS
REPRESENTACIÓN DE CURVAS - CCSS Esquema Para representar gráficamente una función se debe estudiar: 1. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
el blog de mate de aida CS II: Representación de funciones y optimización.
Pág.1 CRECIMIENTO Y DECRECIMIENTO. En la figura se observa la recta tangente a una función creciente. La recta tangente es siempre creciente también para cualquier punto, por lo que su pendiente será positiva
Teorema de los extremos absolutos (del supremo y el ínfimo), de Weiestrass.
CALCULO DIFERENCIAL TEMA 1 : PROPIEDADES DE LAS FUNCIONES CONTINUAS Teorema del signo. Sea f:[a,b] >R una función continua en (a,b) entonces si f(x0)"0, existe un entorno E(x0,) en que f tiene el mismo
1) La función no está definida para x = 0 ya que anula el denominador de su exponente, por tanto, D = R- {0}.
6. Estudiar y representar gráficamente las siguientes funciones: a) ( ) f e b) Solución f( ) + 3 + c) f( ) ln + a) Para estudiar la función e se realizan los siguientes pasos: f( ) ) La función no está
Unidad 13 Representación gráfica de funciones
1 Unidad 13 Representación gráfica de funciones PÁGINA 315 SOLUCIONES 1. Las funciones son: a) f 8 ) ( = Dominio: = f Dom Puntos de corte con el eje OX: = = (4,0) (0,0) 0 8 Q P y y Puntos de corte con
10 Representación de funciones
0 Representación de funciones Página 99 Límites y derivadas para representar una función 5 lm í x f (x) = lm í x + f (x) = lm í f (x) = + lm í f (x) = + x x + f ( 9) = 0; f ' (0) = 0; f () = 0 f ' (0)
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
Examen de Matemáticas 2 o de Bachillerato Mayo 2003
Examen de Matemáticas o de Bachillerato Mayo 1. (a) Dibuja el recinto limitado por las curvas y = e x+, y = e x y x =. (b) Halla el área del recinto considerado en el apartado anterior. (a) El dominio
GRÁFICA DE FUNCIONES
GRÁFICA DE FUNCIONES. Función cuadrática. Potencia. Eponencial 4. Logarítmica 5. Potencia de eponente negativo 6. Seno 7. Coseno 8. Tangente 9. Valor absoluto. Dominio. Puntos de corte con los ejes. Simetrías.
REPRESENTACIÓN GRÁFICA DE CURVAS - II
REPRESENTACIÓN GRÁFICA DE CURVAS - II 1.- Representa gráficamente la función a) Dominio: f(x) es el cociente del valor absoluto de una función polinómica de 2º grado entre la variable x. Ambas son continuas
REPRESENTACION GRÁFICA DE FUNCIONES
REPRESENTACION GRÁFICA DE FUNCIONES 1 REPRESENTACION GRÁFICA DE FUNCIONES UNIDADES Pag. 1. DEFINICIÓN DE DOMINIO UNA FUNCIÓN.3 2. CORTES CON LOS EJES...5 3. SIMETRÍA..7 4. PERIODICIDAD 9 5. FUNCIONES INVERSAS....10
TEMA 11 REPRESENTACIÓN DE FUNCIONES
Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. ( (
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE FUNCIONES Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: ( ( ( ( ( ( 2. Calcula la imagen de las siguientes
ESTUDIO LOCAL DE UNA FUNCIÓN
ESTUDIO LOCAL DE UNA FUNCIÓN CRECIMIENTO. DECRECIMIENTO. MÁXIMOS Y MINIMOS. Sea Sea DEF.- f es creciente en a E(a) / { ( ) ( ) ( ) ( ) E(a) De la misma forma se define función decreciente. ***TEOREMA.
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1
Tema Derivadas. Aplicaciones Matemáticas CCSSI 1º Bachillerato 1 EJERCICIO : A partir de la gráica de (): a b c Cuáles son los puntos de corte con los ejes? Di cuáles son sus asíntotas. Indica la posición
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS
ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS NAVALES / NAUTIKAKO ETA ITSASONTZI MAKINETAKO GOI ESKOLA TEKNIKOA NOCIONES PRELIMINARES DE MATEMÁTICAS E. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN. E.1 Campo
SOLUCIÓN. BLOQUE DE FUNCIONES.
SOLUCIÓN. BLOQUE DE FUNCIONES. Análisis de funciones 1. a) y c) son funciones, porque para cada valor de hay un único valor de y. b) no es una función, porque para cada valor de hay dos valores de y. 2.
TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN
TEMA 11: ESTUDIO LOCAL Y GLOBAL DE FUNCIONES. OPTIMIZACIÓN ESTUDIO DE LA MONOTONÍA DEF.- Una función es CRECIENTE en un intervalo I del dominio de la función si: x1 < x2 I f ( x1 ) f ( x2). Si se cumple
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES
TEMA: ESTUDIO LOCAL DE FUNCIONES DERIVABLES 1 DOMINIO DE DEFINICIÓN DE UNA FUNCIÓN El dominio de una función está formado por aquellos valores de (números reales) para los que se puede calcular f(). PUNTOS
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
Apuntes Matemáticas 2º de bachillerato. Tema 5. Estudio de funciones
Apuntes Tema 5 Estudio de funciones 5.1 Dominio Hay que determinar para qué intervalos de números reales, o puntos aislados, la función existe o está definida. Para ello tenemos que prestar atención a
REPRESENTACIÓN DE CURVAS
ºBachillerato REPRESENTACIÓN DE CURVAS Esquema Para representar gráficamente una función se debe estudiar:. Dominio. Puntos de corte con los ejes coordenados. Paridad y periodicidad 4. Asíntotas 5. Monotonía
Estudio local de una función.
Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina
= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)
1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el
Tema 4: Representación de Funciones
Tema 4: Representación de Funciones.- Dominio y recorrido: Dominio: Valores de para los que está definida (eiste) f () Recorrido: Valores que toma f () Funciones Polinómicas, son de la forma f ( ) ao a...
Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: f (x) = 1 Punto de corte con el eje O Y
Tema 4: APLICACIÓN DE LAS DERIVADAS 4.1 Puntos de Corte con el eje de las Y Si Hallaremos el punto de corte con el eje OY en cualquier función sustituyendo el 0 en la función: = 1 Punto de corte con el
FUNCIONES REALES DE VARIABLE REAL
FUNCIONES REALES DE VARIABLE REAL Función: Es toda aplicación definida entre conjuntos numéricos. Cuando el conjunto inicial y final son los números Reales, se llaman funciones reales de variable real.
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
5 GUÍA PARA REALIZAR ESTUDIO DE FUNCIÓN
5 GUÍA PARA REALIZAR ESTUDIO DE UNCIÓN ) Determinar el Dominio de la función. ) Hallar, si eisten, las Intersecciones con los Ejes de Coordenadas Signo. ( Int. con eje y, hacer = Int. con eje, hacer y
Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. La función es continua en { 3} La función es continua en (, 1) ( 1, )
Problemas resueltos funciones de una variable. Continuidad. Matemáticas I. 1.-Estudiar la continuidad de las siguientes funciones: + f( ) = f( ) = f( ) = 1 + + 1 1 + 1 f( ) = log 1 f( ) = + 1 f ( ) 6 La
1Tema 11 Representación de funciones
1Tema 11 Representación de funciones 1. Del estudio a la gráfica. a) Representa una función y f () sabiendo que: Dominio: 0 Corta a OX en = 1. Asín. horizontal y = 0: Asín. vertical = 0: Si Si Si Si, y
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 014 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
UNIDAD 12. ESTUDIO Y REPRESENTACIÓN DE FUNCIONES CARACTERÍSTICAS DE UNA FUNCIÓN I SOLUCIONES ACTIVIDADES COMPLEMENTARIAS C-09-01
UNIDAD 12. ESTUDIO Y REPRESENTACIÓN DE FUNCIONES CARACTERÍSTICAS DE UNA FUNCIÓN I C-09-01 1. a) Dom f = - { 3, 1}. Asíntotas: x = 3; x = 1; y = 0 ( 5, 0), ( 1, 0), (3, 0), (7, 0), (0, 3) c) Discontinuidad
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos. mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2015) Selectividad-Opción A Tiempo: 90 minutos Problema 1 (3 puntos)dado el sistema mx+ 2y+ mz = 4 mx y+ 2z = m 3x+ 5z = 6 1. (2 puntos). Discutir
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE
5. ANÁLISIS MATEMÁTICO // 5.2. DERIVADA DE UNA FUNCIÓN EN UN PUNTO Y APLICACIONES. COMPLEMENTOS PARA LA FORMACIÓN DISCIPLINAR EN MATEMÁTICAS Curso 2010-2011 5.2.1. El problema de la tangente. Derivada.
I.- Representación gráfica de una función polinómica
Los campos a considerar en el estudio de una representación gráfica son; Dominio de la función Continuidad y derivabilidad Simetrías Periodicidad Asíntotas Verticales Horizontales Oblicuas Posición de
= +1. A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos.
Ejemplo 1 Dibujar la función: = +1 A la hora de representar funciones tenemos que tener en cuenta los siguientes puntos. Dominio Puntos de corte con los ejes Simetría Asíntotas Crecimiento decrecimiento/máximos
Derivación. Aproximaciones por polinomios.
Derivación... 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Matemáticas (Grado en Químicas) Contenidos Derivada 1 Derivada 2 3 4 5 6 Outline Derivada 1 Derivada 2 3 4 5 6 Definición
Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10
página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)
REPRESENTACIÓN DE FUNCIONES
8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta
TEMA 8 CARACTERÍSTICAS GLOBALES Y LOCALES DE LAS FUNCIONES
A) IMÁGENES Y ANTI-IMÁGENES. DOMINIO E IMAGEN DE UNA FUNCIÓN. COMPOSICIÓN DE Y FUNCIÓN INVERSA. 1. Calcula el dominio de las siguientes funciones: a) f(x) = 2 b) g(x) = x + 3 c) h(x) = 1 x 6 a) f(x) =
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 2008) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Modelo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = y B = 1 1 2 1 1 n 1 1 1, X = a) Hallar los valores
Cálculo Diferencial de una Variable
Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición. Interpretación geométrica de
Tema 4. Representación de Funciones. Raúl González Medina. I.E. Juan Ramón Jiménez Tema 4
Tema 4 Representación de Funciones 0.- Introducción.- Estudio de una función...- Dominio...- Simetrías...- Periodicidad..4.- Continuidad..5.- Puntos de Corte con los ejes..6.- Asíntotas y ramas infinitas..7.-
DEPARTAMENTO DE MATEMÁTICAS
DOMINIO Y PUNTOS DE CORTE 1. Se considera la función que tiene la siguiente gráfica: a) Cuál es su dominio de definición? Cuáles son los puntos de corte con los ejes de coordenadas? c) Presenta algún tipo
REPRESENTACIÓN GRÁFICA DE FUNCIONES
REPRESENTACIÓN GRÁFICA DE FUNCIONES a. Dominio de definición: D = Dom f() = { R eiste f()} b. Puntos de corte con los ejes: Con el eje OX (abscisas): f() = 0 : (,0). Ninguno, uno o más puntos. Con el eje
Eje OY (Vertical) => Se hace la x = 0, y se despeja la y. Corte (0,y)
Estudio de funciones y su representación gráfica. TIPO I. Funciones Polinómicas. Ejemplo: y 4 1º. Dominio. El dominio de una función es el conjunto de valores para los que está definida la función. En
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
Estudio Gráfico de Funciones
Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,
Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017
Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES
Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación
P (t) = a + donde P (t) es el número de individuos de la población (medida en miles) y t el tiempo (medido en meses) y a es una constante positiva.
Matemáticas Aplicadas a la Biología. 013/14 Primer examen parcial, 31 octubre 013 (V1) Apellidos y nombre del alumno/a Grupo: 1. En una cierta colonia de focas, cuyas hembras se han clasificado en 3 grupos
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
REPRESENTACIÓN DE FUNCIONES
REPRESENTACIÓN DE FUNCIONES REFLEXIONA Y RESUELVE Descripción de una gráfica Traza unos ejes coordenados sobre papel cuadriculado y representa una curva, lo más sencilla posible, que cumpla las siguientes
Una función es una correspondencia única entre dos conjuntos numéricos.
FUNCIONES Qué es una función? Una función es una correspondencia entre dos conjuntos de números de modo que a cada valor del conjunto inicial, llamado dominio, se le hace corresponder un valor del conjunto
RESUMEN DE ANÁLISIS MATEMÁTICAS II
RESUMEN DE ANÁLISIS MATEMÁTICAS II 1. DOMINIO DE DEFINICIÓN Y CONTINUIDAD 1.1. FUNCIONES ELEMENTALES (No tienen puntos angulosos) Tipo de función f (x) Dom (f) Continuidad Polinómicas P(x) R Racional P(x)/Q(x)
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 2008) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Marzo 28) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (2 puntos)una familia dispone de 8 euros mensuales para realizar la compra de la carnicería.
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
1.- Sea la función f definida por f( x)
Solución Eamen Final de la 3ª Evaluación de º Bcto..- Sea la función f definida por f( ) a) El dominio de la función es Dom( f) estudiando las asíntotas verticales:, por tanto vamos a empezar La función
FUNCIONES FUNCIONES POLINÓMICAS DE GRADO UNO Y CERO. Funciones de proporcionalidad directa
Funciones de ecuación: ( ) FUNCIONES = m + n ; m y n son números reales Dom = R. Es continua en su dominio. Gráica: una recta m es la pendiente de la recta La pendiente de una recta es el cociente entre
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 2012) Selectividad-Opción A Tiempo: 90 minutos
Examen de Matemáticas Aplicadas a las CC. Sociales II (Coincidente-Junio 1) Selectividad-Opción A Tiempo: 9 minutos Problema 1 (3 puntos) Dadas las matrices A = x y z y B = 1, se pide: 1 1 3 1 k, X = 1.
Qué estudiaremos? Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A. Funciones lineales
Tema 11: Funciones cuadráticas y de proporcionalidad inversa. Tema 12: La función exponencial Grupo 4. Opción A Qué estudiaremos? Repasamos las funciones lineales. La función cuadrática. Estudio general
REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x
1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.
x - Verticales. No tiene asíntotas verticales porque f(x) está definida en R y no cambia de criterio en ningún punto. - Oblicuas.
f ( ) + +. Dominio D (f ) R 4. Recorrido Im( f ) [, ). Puntos de corte - Con el eje y, donde 0 y + + y P (0,) - Con el eje, donde y 0 No hay punto de corte con el eje 4. Asíntotas - Horizontales lim +
