1. Información básica
|
|
|
- María Rosario Aguilera Ortiz de Zárate
- hace 9 años
- Vistas:
Transcripción
1 Información básica PRÁCTICA : RESOLUCIÓN DE ECUACIONES POLIO INÓMICAS Comenzamos recordando de forma resumida las ideas y propiedades básicas de las ecuaciones polinómicas y sus soluciones En esta sección el símbolo p( ) designa un polinomio cuyos coeficientes son números complejos Ahora bien, el caso que más nos interesa es el de los polinomios reales, es decir, polinomios cuyos coeficientes son números reales Qué es la raíz de un polinomio? Una raíz o cero de un polinomio p( ) es una solución de la ecuación número, real o complejo, c es una raíz del polinomio p( ) si pc ( ) 0 p ( ) 0 Es decir, un Teorema del Factor: Un número c es una raíz de un polinomio p( ) si y sólo si c es un factor de p( ), es decir, p( ) ( c) q( ) Definición: Si ( c) k es factor de un polinomio p( ), pero ( c ) k+ no es factor ( k es un número natural), entonces se dice que c es una raíz de multiplicidad k de p( ) Cuántas raíces tiene un polinomio? De qué tipo son? El matemático alemán Carl Friedrich Gauss probó en 799 que todos los polinomios de grado n tienen eactamente n ceros o raíces, que pueden ser números reales o complejos Este importante resultado se conoce como el Teorema fundamental del Álgebra y dice: Teorema fundamental del Álgebra: Un polinomio p( ) de grado n tiene eactamente n raíces, reales o complejas, donde una raíz de multiplicidad k se cuenta k veces En el caso de que p( ) sea un polinomio real, algunas raíces tienen ciertas propiedades que conviene conocer: las raíces complejas aparecen en pares conjugados y las raíces racionales están determinadas por el término independiente y por el coeficiente director El enunciado preciso es: Teorema de los pares conjugados: Cuando el polinomio p( ) es un polinomio real, si z compleja de p( ), entonces su conjugado z es también una raíz de p( ) es una raíz n Teorema de los ceros racionales: En caso de que los coeficientes de p ( ) a0 + a + a + + a n sean números enteros y que el primer y último sumando no sean nulos, se verifica: p Si es la representación irreducible de un número racional que es raíz del polinomio ( ) q p, entonces el numerador p es divisor de a0 ; el denominador q es divisor de a n
2 Qué métodos hay para calcular las raíces de un polinomio? El siguiente problema mantuvo perplejos a los matemáticos durante siglos: «Dado un polinomio n general p( ) a0 + a+ a + + an de grado n, obtén una fórmula o un procedimiento, que incluya sólo un números finito de operaciones aritméticas y etracción de raíces, que eprese las raíces del polinomio en términos de sus coeficientes» No hace falta que recordemos la muy utilizada fórmula de las raíces de un polinomio cuadrático en función de sus coeficientes Menos conocidas, por menos usadas, son las fórmulas de las raíces de un polinomio de tercer grado, debida a Nicolo Fontana (99-557) apodado Tartaglia (el tartamudo), y las de un polinomio de cuarto grado, descubiertas por Lodovico Farrari (5-55) Sin embargo, hubo que esperar muchos años hasta que el matemático noruego Neils Henrik Abel (80-89) probó que es imposible hallar tales fórmulas para los ceros de todos los polinomios generales cuyo grado fuera igual o superior a cinco A pesar de que no eista una fórmula general para calcular las raíces de las ecuaciones polinómicas de grado n 5, esto no ecluye la posibilidad de que una ecuación polinómica particular de grado n 5 sea fácilmente resoluble como, por ejemplo, la ecuación + 0, cuyas soluciones son las seis raíces setas de : { ii,, i, i, i, i} + + Cuando no es posible calcular el valor eacto de las raíces de un polinomio se acude a los métodos de resolución aproimada de ecuaciones, tanto los genéricos como los específicos de las ecuaciones polinómicas Ejercicios La orden Solve@ + 7 0, D devuelve las dos raíces eactas del polinomio : è!!!, 9 + è!!! Solve[ ] calcula de forma eacta todas las raíces reales o complejas de cualquier polinomio de grado menor o igual que cuatro Para polinomios de grado superior sólo nos da las soluciones eactas de los casos sencillos Recuérdese que una de las formas de conseguir aproimaciones decimales de las soluciones consiste en indicar en la orden que uno de los números es decimal, así por ejemplo, Solve@ + 7 0, D ` <, ` << La orden Factor@ + 7D Factor@ + 7 D Factor[polinomio] devuelve la factorización en factores simples del polinomio que se haya escrito entre corchetes Pídele al programa Mathematica que ejecute las siguientes órdenes: Hay alguna diferencia en los resultados? Ejercicio : Calcula las raíces de los polinomios reales 5 y 5 Dibuja ambas funciones polinómicas y señala en la gráfica las raíces calculadas
3 Ejercicio : Obtener la descomposición en factores simples complejos de los siguientes polinomios y, en los que sea posible, indica su descomposición en factores simples reales: 5 a) + ( ) i + ( ) i (+ ) i (+ ) i ; b) Ejercicio : Considera el polinomio + a) Comprueba que Solve[ ] no calcula las raíces del polinomio + b) Cuando no hay métodos analíticos para calcular el valor eacto de las soluciones de una ecuación, se emplean métodos numéricos que dan valores aproimados de dichas soluciones Dado un polinomio p() la orden NSolve[p[] 0, ] da precisamente valores aproimados de las soluciones de la ecuación p() 0 Obtén valores aproimados de las raíces del polinomio c) Dibuja la función polinómica Ejercicio : Considera el polinomio y + + y busca en la gráfica las raíces obtenidas en b) a) Calcula, usando papel y lápiz, el valor eacto de cada una de las raíces del polinomio b) Pídele a Mathematica que te dé valores aproimados de esas raíces c) Dibuja la función polinómica Ejercicio 5: Dado el polinomio y y busca en la gráfica las raíces obtenidas en b) + + : 5 a) calcula valores aproimados de sus raíces (NSolve[ ]); b) calcula sus puntos críticos (Solve[ ]); c) calcula sus puntos de infleión (Solve[ ]); d) representa la función en un intervalo donde se observen las características detectadas en los apartados anteriores 5 Ejercicio : Se considera el polinomio Halla su factorización y responde a las siguientes preguntas sin realizar ningún cálculo adicional: a) Cuáles son los factores que aparecen asociados a las raíces complejas? b) Cuáles son sus raíces reales y sus raíces complejas? 5 c) Dibuja la función polinómica y y decide qué raíces del polinomio se observan en la gráfica Ejercicio 7: La orden Solve[ ] también permite calcular las soluciones de un sistema de ecuaciones Para ello, basta escribir como primer argumento entre llaves, y separadas por comas, las ecuaciones del sistema y como segundo argumento, y también separadas por comas, las variables del sistema u v a) Por ejemplo, para calcular las soluciones del sistema u 5v+ w 7, escribe y ejecuta la u v w 5 siguiente orden: u v, u 5 v + w 7, u v w 5 <, 8 u, v, w <D b) Calcula las soluciones del sistema { u+ v+ w u+ v+ 5w c) Determina si los cinco planos definidos por las siguientes ecuaciones pasan por el mismo punto: + z, y+ z, + y z, y+ z y 5+ y+ z
4 P PRÁCTI Información básica ICA (contiinuaciión): LAS FUNCI N IONES RACIONALES p( ) Una función racional es el cociente de dos polinomios: f( ), donde p( ) y q ( ) q ( ) designan polinomios reales Vamos a estudiar dos aspectos: sus polos (o asíntotas verticales) y su descomposición en suma de fracciones simples Polos o asíntotas verticales de una función racional Comenzamos con un ejemplo La función racional figura de al lado, tiene las siguientes características: El único cero del numerador es Por tanto, la única raíz de la función y f( ) es La única raíz del denominador es Por tanto, el único polo es el valor, que es precisamente la asíntota vertical de la gráfica de la función f( ) + f( ), cuya gráfica se muestra en la + - p( ) Definición: Sea f( ) una función racional tal que los polinomios reales p( ) y q ( ) no q ( ) tengan factores comunes Si el número real a es una raíz del denominador, qa ( ) 0, entonces se dice que el número a es un polo de f o que la recta vertical a es una asíntota de la gráfica de y f( ) Descomposición de una función racional en fracciones simples Las funciones racionales de la forma: K M+ N y ( a+ b) n ( a + b+ c) n, siendo n,,, donde el polinomio real del denominador de la segunda fracción no tiene raíces reales (por tanto, tiene dos raíces complejas conjugadas) se llaman fracciones simples p( ) Supongamos que f( ) es una función racional tal que el grado de p( ) es menor que el q ( ) grado de q ( ) La factorización del polinomio del denominador q ( ) en factores simples reales de la forma r s ( a+ b), para las raíces reales, y ( a + b+ c), para las raíces complejas, conduce a que la
5 p( ) función f( ) q ( ) pueda descomponerse en una suma de fracciones simples del tipo K, ( a+ b ) n M+ N n,, r, y, n,, s ( a + b+ c) n La descomposición de una función racional en suma de fracciones simples se utiliza, entre otras cosas, para la obtención de las primitivas de una función racional Ejercicios Ejercicio : Consideremos la siguiente función racional realicemos el siguiente estudio: g ( ) ( 5+ ) a) Cuáles son los ceros del numerador? y cuáles las raíces del denominador? Para responder a esta pregunta puede venir bien que uses la orden Factor[epresión], que descompone en producto de factores la epresión colocada entre corchetes, tanto si es un polinomio como si es un cociente de polinomios La orden en nuestro caso es FactorA E 0 H 5 + L b) Cuáles son los polos de la función racional? y sus asíntotas verticales? c) Dibuja la función racional en el dominio que permita ver las características anteriores PlotA , 8, 7, 7<E; 0 H 5 + L d) Escribe los tipos de sumandos que deberían aparecer en su descomposición en fracciones simples Calcúlalos mediante el comando Apart[función racional], que devuelve la descomposición en suma de fracciones simples de la función racional escrita entre corchetes En este ejemplo se escribe: ApartA E 0 H 5 + L e) Calcula las primitivas d 0( 5+ ) Ejercicio : Sobre la función racional f( ), se pregunta: + + a) Cuáles son los ceros de f?, cuáles son sus asíntotas verticales? y cuáles son sus asíntotas horizontales? Dibuja la función en un dominio adecuado para que se puedan observar las respuestas dadas b) Qué tipo de polinomio y de fracciones simples son las que al sumarlos dan c) Calcula las primitivas ? y
6 Ejercicio : Pide a Mathematica que calcule una primitiva de la función + e intenta buscar una eplicación a la respuesta del programa Responde además a las siguientes cuestiones: a) Razona, sin hacer ningún cálculo, por qué f( ) tiene asíntotas verticales Una vez + razonado, trata de calcularlas b) Dibuja la función f( ) + en el dominio [, ] c) Completa la frase: la integral y + d mide el área del recinto plano limitado superiormente por la curva e inferiormente por, desde hasta + Calcula el valor de esa área Ejercicio : De cada una de las funciones polinómicas f( ) y g( ), se pide: + + a) Las asíntotas verticales y las horizontales (puedes responder sin utilizar el programa Mathematica) b) La descomposición en fracciones simples Calcula únicamente las primitivas de c) Su gráfica de modo que se vean sus asíntotas d) Observa sobre la gráfica qué miden las siguientes integrales: trata de describir los recintos con tus propias palabras e) Pide a Mathematica que calcule el valor de esas integrales, y Ejercicio 5: Considera la función racional f () p() a) Busca un polinomio p() tal que f () tenga una asíntota horizontal en y ; b) Busca otro polinomio p() tal que f () tenga una asíntota horizontal y 0 y una asíntota vertical Compruébalo dibujando cada una de las funciones f ( )
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
LÍMITE DE UNA FUNCIÓN EN UN PUNTO
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos
Unidad 2: Ecuaciones, inecuaciones y sistemas.
Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.
1. dejar a una lado de la igualdad la expresión que contenga una raíz.
1. Resuelve las siguientes ecuaciones reales: Solución x 1 + x = 0 ; 3 x = 3 ; ln(x 1) + 4 = ln 3 Ecuaciones con raíces: No todas las ecuaciones de este tipo son sencillas de resolver, pero podemos intentar
El Teorema Fundamental del Álgebra
El Teorema Fundamental del Álgebra 1. Repaso de polinomios Definiciones básicas Un monomio en una indeterminada x es una expresión de la forma ax n que representa el producto de un número, a, por una potencia
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:
LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función
1. GENERALIDADES SOBRE LOS POLINOMIOS.
GENERALIDADES SOBRE LOS POLINOMIOS Funciones polinómicas LAS DEFINICIONES Sea p la función definida por: p ( ) = 2( 2 ) + 2 ( 2 ) + 2 2, p es una función de R en R Y para todo real, se tiene p ( ) = 2
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
4.1. Polinomios y teoría de ecuaciones
CAPÍTULO 4 Polinomios y teoría de ecuaciones 4.1. Polinomios y teoría de ecuaciones Un polinomio real en x, o simplemente polinomio en x es una expresión algebraica de la forma a n x n + a n 1 x n 1 +
TEMA 2. POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA. POLINOMIOS Y FRACCIONES ALGEBRAICAS.. Repaso de polinomios - Epresión algebraica. Valor numérico - Polinomios. Operaciones con polinomios.. Identidades notables - Cuadrado de una suma de una diferencia
Límite de una Función
Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática ( )
Universidad de Oriente Núcleo de Bolívar Departamento de Ciencias Área de Matemática Asignatura: Matemática (00874) UNIDAD N 2 (LIMITES) Profesora: Yuar Matute Diciembre 20 0 Definición Intuitiva de Límites
Tema 3. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Monomios.. Definiciones.. Operaciones con monomios. Polinomios.. Definiciones.. Operaciones con polinomios. Factorización de un polinomio.. Teorema del resto.
INTERVALOS Y SEMIRRECTAS.
el blog de mate de aida CSI: Inecuaciones pág 1 INTERVALOS Y SEMIRRECTAS La ordenación de números permite definir algunos conjuntos de números que tienen una representación geométrica en la recta real
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA , Segundo Semestre CAPITULO 6: POLINOMIOS.
ALGEBRA I, ALGEBRA Y TRIGONOMETRIA 520135, 522115 Segundo Semestre CAPITULO 6: POLINOMIOS. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
Tema Contenido Contenidos Mínimos
1 Estadística unidimensional - Variable estadística. - Tipos de variables estadísticas: cualitativas, cuantitativas discretas y cuantitativas continuas. - Variable cualitativa. Distribución de frecuencias.
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
LÍMITES DE FUNCIONES GBG
LÍMITES DE FUNCIONES GBG - 010 1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Sea f una función real de variable real y a un punto de acumulación del dominio de f. de elementos del Decimos que f = L si y sólo si
el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)
pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.
Factorización de polinomios
Factorización de polinomios Entre las funciones importantes de la Matemática está la familia de las funciones polinómicas. Una función polinómica puede definirse de manera que su dominio sea el conjunto
CURSO 2013/2014 RESUMEN LÍMITES Y CONTINUIDAD 2, ,61 2,01 4,0401 1,99 3,9601 2,001 4, ,999 3,
RESUMEN LÍMITES Y CONTINUIDAD Límite de una función en un punto El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan
tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x
UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos
Tema 2. Polinomios y fracciones algebraicas
Tema. Polinomios y fracciones algebraicas. Polinomios.... Definiciones.... Operaciones con polinomios.... Factorización de un polinomio.... Teorema del resto. Criterio de divisibilidad por -a.... Propiedades
ECUACIONES.
. ECUACIONES... Introducción. Recordemos que el valor numérico de un polinomio (y, en general, de cualquier epresión algebraica) se calcula sustituyendo la/s variable/s por números (que, en principio,
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
LÍMITES Y CONTINUIDAD
LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites
Identificación de inecuaciones lineales en los números reales
Grado Matematicas - Unidad Operando en el conjunto de Tema Identificación de inecuaciones lineales en los números reales Nombre: Curso: A través de la historia han surgido diversos problemas que han implicado
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19
TEMARIO PRESENTACIÓN 7 MÓDULO I 17 EXPRESIONES ALGEBRAICAS 19 Introducción 19 Lenguaje común y lenguaje algebraico 22 Actividad 1 (Lenguaje común y lenguaje algebraico) 23 Actividad 2 (Lenguaje común y
Capítulo 4: Polinomios
Capítulo 4: Polinomios Miguel Ángel Olalla Acosta [email protected] Departamento de Álgebra Universidad de Sevilla Diciembre de 2015 Olalla (Universidad de Sevilla) Capítulo 4: Polinomios Diciembre de
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS
TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las
Límites y continuidad
Límites y continuidad LÍMITES El concepto de límite es la base fundamental con la que se construye el cálculo infinitesimal (diferencial e integral). Informalmente hablando se dice que el límite es el
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
DERIVABILIDAD. 1+x 2. para x [1, 3]
1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Monomio: Monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. 2x
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN
FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico
= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x
Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas
Límites y continuidad de funciones reales de variable real
Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. [email protected], [email protected], [email protected] Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones
GUÍAS DE ESTUDIO PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS
GUÍAS DE ESTUDIO Código PGA-0-R0 1 INSTITUCIÓN EDUCATIVA CASD PROGRAMA DE ALFABETIZACIÓN, EDUCACIÓN BÁSICA Y MEDIA PARA JÓVENES Y ADULTOS UNIDAD DE TRABAJO Nº PERIODO 1 ÁREA INTEGRADA: MATEMÁTICAS. ASIGNATURA:
Tema 7.0. Repaso de números reales y de funciones
Matemáticas II (Bachillerato de Ciencias) Análisis: Repaso de números reales y de funciones 47 Tema 70 Repaso de números reales y de funciones El conjunto de los números reales El conjunto de los números
GUÍA DE LA UNIDAD FUNCIONES : DERIVADAS
Funciones Límites Derivadas Aplicaciones Gráficas C ontenidos Idea de Función. Elementos notables de la gráfica de una función. Funciones lineales. Función definida por intervalos. Función Valor Absoluto.
7.FUNCIÓN REAL DE VARIABLE REAL
7.FUNCIÓN REAL DE VARIABLE REAL 7.1 CONCEPTOS PREVIOS Dados dos conjuntos A={ 1,, 3,...} y B={y 1, y, y 3,...}, el par ordenado ( m, y n ) indica que el elemento m del conjunto A está relacionado con el
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores
CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES
CAPÍTULO IX FUNCIONES POLINOMIALES. FUNCIONES RACIONALES 9. Funciones polinomiales. Algunas funciones básicas que ye hemos encontrado son : función constante : función lineal : función cuadrática : f ()
PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO )
PENDIENTES DE MATEMÁTICAS DE 3º ESO (CURSO 2015-2016) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. Criterio 1: Identificar
CONTENIDOS MÍNIMOS 1ºESO. -Realización de las cuatro operaciones (suma, resta, multiplicación y división) mediante los algoritmos tradicionales.
DEPARTAMENTO DE: MATERIA: CONTENIDOS MÍNIMOS Matemáticas Matemáticas 1ºESO Números naturales y enteros: -Comparar y ordenar números. -Representar en la recta. -Realización de las cuatro operaciones (suma,
Una ecuación puede tener ninguna, una o varias soluciones. Por ejemplo: 5x 9 = 1 es una ecuación con una incógnita con una solución, x = 2
Podemos definir a las ecuaciones como una igualdad entre expresiones algebraicas (encadenamiento de números y letras ligados por operaciones matemáticas diversas),en la que intervienen una o más letras,
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 75 PRACTICA Operaciones con polinomios Efectúa las operaciones y simplifica las siguientes epresiones: ( ) ( ) ( ) ( ) ( ) 6( ) 4( 4) ( ) ( 5) ( ) ( ) ( ) 9 ( 4 ) 9 4 4 4 5 8 ( ) ( ) 6( ) 6
Coordinación de Matemática I (MAT021) 1 er Semestre de 2013 Semana 7: Lunes 22 - Viernes 27 de Abril. Contenidos
Coordinación de Matemática I (MAT01) 1 er Semestre de 013 Semana 7: Lunes - Viernes 7 de Abril Cálculo Contenidos Clase 1: Álgebra de límites. Teorema del Sandwich. Cálculo de límites. Límites trigonométricos.
Ejercicios Resueltos del Tema 4
70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la
Colegio San Patricio A Incorporado a la Enseñanza Oficial Fundación Educativa San Patricio
A-09 - Incorporado a la Enseñanza Oficial COLEGIO SAN PATRICIO - 0 - Prof. Celia R. Sánchez MATEMÁTICA - TRABAJO PRÁCTICO Nº 8 AÑO FUNCIÓN EXPONENCIAL Y LOGARÍTMICA - ECUACIONES POTENCIACIÓN: Ejercicio
Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES
Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos
Derivadas e integrales
Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M [email protected], [email protected], [email protected] ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................
UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.
IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento
La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.
Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES
UNIDAD DIDÁCTICA V POLINOMIOS Y ECUACIONES ALGEBRAICAS RACIONALES Temario: Definición de epresiones algebraicas y clasificación. Polinomio, grado. Operaciones. Regla de Ruffini. Factorización de Polinomios.
Preparación para Álgebra universitaria con trigonometría
Preparación para Álgebra universitaria con trigonometría Este curso cubre los siguientes temas. Usted puede personalizar la gama y la secuencia de este curso para satisfacer sus necesidades curriculares.
13. Utilizar la fórmula del término general y de la suma de n términos consecutivos
Contenidos mínimos 3º ESO. 1. Contenidos. Bloque I: Aritmética y álgebra. 1. Utilizar las reglas de jerarquía de paréntesis y operaciones, para efectuar cálculos con números racionales, expresados en forma
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1
Tema 3 Álgebra Matemáticas I 1º Bachillerato. 1 TEMA 3 ÁLGEBRA 3.1 FACTORIZACIÓN DE POLINOMIOS LA DIVISIBILIDAD EN LOS POLINOMIOS Un polinomio P(x) es divisible por otro polinomio Q(x) cuando el cociente
ECUACIONES POLINÓMICAS CON UNA INCÓGNITA
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES POLINÓMICAS CON UNA INCÓGNITA Las ecuaciones polinómicas son aquellas equivalentes a una ecuación cuyo primer
TEMA: FACTORIZACIÓN MAXIMO COMÚN DIVISOR (MCD) DE EXPRESIONES ALGEBRAICAS
TEMA: FACTORIZACIÓN Aspectos históricos del algebra: Los árabes fueron los verdaderos sistematizadores del algebra. A finales del SVIII floreció la escuela de Bagdad (SIX al XII), a la que pertenecían
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
UNIVERSIDAD NACIONAL DE TRES DE FEBRERO. Análisis Matemático
Análisis Matemático Unidad 4 - Límite de una función en un punto Límite de una función en un punto El límite de una función para un valor de x es el valor al que la función tiende en los alrededores de
Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x
Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que
RESUMEN DE CONCEPTOS
RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo
Funciones polinómicas
Funciones polinómicas Footer Text 4/23/2015 1 Funciones Polinómicas La ecuación general de una función polinómica de grado n con coeficientes reales está dada por f(x) = a n x n + a n-1 x n-1 + + a 1 x
ALGEBRA y ALGEBRA LINEAL. Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE.
ALGEBRA y ALGEBRA LINEAL 520142 Primer Semestre CAPITULO 6. POLINOMIOS DE UNA VARIABLE. DEPARTAMENTO DE INGENIERIA MATEMATICA Facultad de Ciencias Físicas y Matemáticas 1 Definición: Polinomio Sea K (Q,
Límite de una función
Idea intuitiva de límite Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es
Tema 11: Integral definida. Aplicaciones al cálculo de áreas
Tema 11: Integral definida. Aplicaciones al cálculo de áreas 1. Introducción Las integrales nos van a permitir calcular áreas de figuras no geométricas. En nuestro caso, nos limitaremos a calcular el área
Matemáticas. Si un error simple ha llevado a un problema más sencillo se disminuirá la puntuación.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD DE LOS MAYORES DE 25 AÑOS CONVOCATORIA 2014 CRITERIOS DE EVALUACIÓN Matemáticas GENERALES: El examen constará de dos opciones (dos
Álgebra 2. Plan de estudios (305 temas)
Álgebra 2 Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales pueden personalizar el
FICHA 1: Fracciones equivalentes. Fracción irreducible. Comparación de fracciones
EJERCICIOS de FRACCIONES º ESO FICHA 1: Fracciones equivalentes. Fracción irreducible. Comparación de fracciones NOTA: En cada uno de los ejercicios de esta ficha puede ser útil comprobar el resultado
Preparación para Álgebra 1 de Escuela Superior
Preparación para Álgebra 1 de Escuela Superior Este curso cubre los conceptos mostrados a continuación. El estudiante navega por trayectos de aprendizaje basados en su nivel de preparación. Usuarios institucionales
TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL
TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS
Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD
PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el
EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Y POLINOMIOS
EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman VARIABLES, INCÓGNITAS o INDETERMINADAS
I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS
Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES
El estudiante de Pitágoras
COLEGIO INTEGRADO SIMÓN BOLÍVAR GUÍA PARA EL ESTUDIANTE MBP354 FORMATO 1 ASIGNATURA: ARITMÉTICA DOCENTE: CLAUDIA RODRIGUEZ PERIODO: SEGUNDO VALORACIÓN TEMA:NUMEROS RACIONALES. I ESTUDIANTE: FECHA: GRADO:SEPTIMO
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES
UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos
001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ).
3.2.4 Criterios específicos de evaluación. 001. Interpreta correctamente códigos (teléfonos, matrículas, NIF ). 002. Calcula el total de elementos que se puedan codificar con una determinada clave. 003.
Fracciones Algebraicas
Fracciones Algebraicas 1 Conceptos básicos Definición 1 Una fracción algebraica en la indeterminada x (o cualquier otra letra) es una expresión de la forma, donde tanto P como Q son polinomios con coeficientes
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(
No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.
FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números
lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =
LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-
ECUACIONES DE PRIMER Y SEGUNDO GRADO
7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado
POLINOMIOS Y FRACCIONES ALGEBRAICAS
POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (
Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad
Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor
FACTORIZACION FACTORIZACIÓN. Factorizar un número consiste en expresarlo como producto de dos de sus divisores.
-PA-0 FACTORIZACION V0 Página de 9 NOCION: FACTORIZACIÓN Factorizar un número consiste en epresarlo como producto de dos de sus divisores. Ejemplo: Factoriza 0 en dos de sus divisores :, es decir 0 = Y
Vamos a llamar número racional a todo aquel que puede ser expresado como un cociente entre dos números enteros: 4 2 = 2
Instituto Raúl calabrini Ortiz Matemática º año NUMERO RACIONALE En la ecuación 0, todos los números que aparecen son enteros in embargo, cuando tratamos de resolverla, vemos que la ecuación no tiene solución
Fabio Prieto Ingreso 2003
Fabio Prieto Ingreso 00. INECUACIONES CON UNA VARIABLE.. Inecuación lineal Llamaremos desigualdad lineal de una variable a cualquier epresión de la forma: a + b > 0 o bien a + b < 0 o bien a + b 0 o bien
La asignatura de Matemática estimula el desarrollo de diversas habilidades:
La asignatura de Matemática estimula el desarrollo de diversas habilidades: Intelectuales, como: El razonamiento lógico y flexible, la imaginación, la inteligencia espacial, el cálculo mental, la creatividad,
3 Polinomios y funciones racionales
Programa Inmersión, Verano 2016 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 3001 y MATE 3023 Clase #19: viernes, 24 de junio de 2016. 3 Polinomios y funciones racionales
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
