Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos"

Transcripción

1 Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím n n n + n + + n + lím n n n + n + + n + Dividiendo por n en el numerador y en el denominador, vemos que L lím n + n + n + + n ( ) n n Calcula razonadamente el valor del ĺımite lím n n + ( ) n n El término general de la sucesión, a n, cumple n + a n Por tanto, a n e, n ( n + n ) n ( + n) n ( ( + ) n )n e, n Decide razonadamente si la serie n 7 n (n!) (n)! converge o diverge Nombra o enuncia el criterio utilizado La serie es positiva, siendo su término general a n 7n (n!) Por tanto, (n)! a n+ a n 7 n+ ((n+)!) ((n+))! (n)! 7 n (n!) 7(n + ) (n + )(n + ) 7 4, n Al ser el ĺımite mayor que uno, la serie diverge según el criterio del cociente 4 Decide la convergencia condicional o absoluta (o la divergencia, en su caso) de las series infinitas n ( ) n n, n sen n n,

2 ( ) La primera serie es alternada y converge por el criterio de Leibniz, ya que la sucesión es n n positiva, decreciente y tiende a cero Su serie asociada con los valores absolutos: puede compararse con n la armónica: n n n y, por tanto, n n diverge En conclusión, la serie inicial converge condicionalmente n La segunda serie converge absolutamente por el criterio de comparación ya que clase que n converge sen n n n y hemos visto en 5 Cuáles de los siguientes ĺımites eisten y son finitos? lím / sen, lím cos El primer ĺımite es cero por el teorema de encaje, visto en clase, puesto que / sen /, La segunda función es oscilante : al igual que en algunos ejemplos vistos en clase, es fácil encontrar sucesiones a lo largo de las cuales los valores de la función tienden a valores diferentes Por ejemplo, podemos elegir las sucesiones n πn y t n π/ + πn, cuando n Resulta que f( n) mientras que f(t n ), luego el ĺımite lím cos no eiste 6 Demuestra que la función + + toma el valor / en algún punto c [, 6] Sea f() + + Esta función es obviamente elemental y eiste con seguridad cuando + >, es decir, para > (También podría eistir para otros valores pero ésos no nos interesan) Por tanto, f es continua en el intervalo cerrado [, 6] Además, f() < / y f(6) Es fácil ver que este último valor es > / ya que 7 < 7 (cierto porque 7 < 4) Por el teorema del valor intermedio de Bolzano, en algún punto c [, 6] se cumple f(c) / 7 Para qué valor real del parámetro a es horizontal en el punto (, ) la tangente a la gráfica de la función f() a (a + ) +? La pendiente de la tangente en debe ser cero: f () (a + ), pero a + > para todo a R y, por tanto, la derivada no se puede anular Luego la tangente no es horizonal en dicho punto para ningún valor del parámetro

3 8 Calcula el ĺımite L lím + (e ) En primer lugar, usando la continuidad de la función elemental logaritmo y su comportamiento en los etremos de su dominio, vemos que ln L ln lím + (e ) lím + ln(e ) lím + ln(e ) El siguiente paso es convertir la epresión que figura en el ĺımite en una fracción: ln(e ) ln L lím + Puesto que tenemos una forma, podemos aplicar la regla de L Hôpital: ln L lím + e e e lím + e El último ĺımite puede calcularse de varias maneras He aquí una de ellas Recordando el ĺımite elemental: obtenemos que Puesto que ln L, se sigue que L e lím, ln L lím + e e 9 Estima el error de aproimación de la función f() cos cerca de a por el polinomio de Taylor de grado y en el punto / proceder: Para obtener el polinomio de Taylor P n () de orden n de la función coseno, tenemos dos formas de ) usar el desarrollo de cos en serie de Taylor alrededor de a ; en este caso: cos! + 4 4! 6 6! +, truncando luego la serie después de la potencia n ; ) calcular las derivadas sucesivas f (), f (), f (),, evaluándolas en a, etc De cualquiera de las dos maneras, obtendremos: P () P (), P () P (), P 4 () P 5(), Los polinomios P y P coinciden porque f (), lo cual significa que no hay ningún término con Lo que nos interesa en concreto en este caso es P () / y / El error que se comete al aproimar cos por P (), según la fórmula vista en clase, es igual a E f (4) (c)( a) 4 /4! para algún punto c entre a y /, Recordando que f (4) () cos, tenemos la siguiente estimación para E; E f (4) (c), 4 4 cos c, 4, 4, 467 Para la función f() sen, halla su polinomio de Taylor de orden en a

4 La respuesta es: P () Como recordaremos de la teoría vista en clase, los polinomios de Taylor en a de la función sen son, /!, etc Multiplicándolos por, obtenemos que los polinomios correspondientes de f() son, 4 /!, etc El primero es de grado mientras que el siguiente ya es de grado 4; por tanto, P () Otra manera de llegar a la misma conclusión es calculando f () sen + cos y f () cos sen y evaluándolos en, para luego calcular P () f() + f () + f () Calcula la integral indefinida sen cos Primero aplicamos un truco visto en otros ejercicios similares: I sen cos cos sen cos y luego el cambio de variable t sen Éste nos da dt cos, cos sen t y, por tanto, dt I t ( t ) dt t ( + t) ( t) De esta manera hemos conseguido reducir la integral I a la integral de una función racional de t Ésta se puede calcular usando las fracciones simples o parciales: t ( + t) ( t) A + t + B t + C t + D t Multiplicando ambos lados por el denominador de la izquierda: t ( + t) ( t), obtenemos la condición At ( t) + Bt ( + t) + Ct ( t ) + D ( t ) Agrupando los términos constantes y los términos que contienen a t, t y t respectivamente, vemos que D + Ct + (A + B D)t + ( A + B C)t Para que el polinomio (constante) a la izquierda y el polinomio a la derecha sean iguales para todo t R, es necesario y suficiente que sus coeficientes correspondientes sean iguales, luego D, C, A + B D, A + B C De ahí se sigue inmediatamente que D, C, A+B y B A De las dos últimas ecuaciones fácilmente obtenemos A B / Por lo tanto, t ( + t) ( t) t + t + t, que es la representación buscada Integrando y recordando que ln + C para todo, obtenemos I ln t + ln t t + C ln t + t t + C, donde C R es una constante arbitraria Finalmente, sustituyendo de nuevo t sen, vemos que I ln sen + sen sen + C 4

5 Evalúa la integral indefinida Completando el cuadrado en el denominador: () ( + ) + 4, obtenemos I ( + ) ) + ( + Después del siguiente cambio de variable (bastante obvio): ( + )/ t, (t/) dt, se obtiene I 4 dt t + 6 arc tg t + C + arc tg + C 6 Si una función es diferenciable dos veces y su segunda derivada es cero, deduce que la función es lineal: f() m + n, para algunos m, n R La igualdad f () se cumple para todo R Integrándola, obtenemos f () m para cierta constante m R y para todo R Integrando esta nueva igualdad, obtenemos f() m + n, para alguna constante n R 4 Calcula el valor eacto de la integral ( + ) Aplicando el cambio de variable t en nuestra integral definida, obtenemos: dt, t ; : t, : t, de manera que dt ( ( + ) + t arc tg π π ) π Calcula el valor de la integral ln e Integrando por partes: u, dv e, du, v e, obtenemos e e e e e + C Por el Teorema Fundamental del Cálculo, tenemos que ln e (e e ) ln ln e ln e ln ( e ) ln + ln 6 Calcula el área comprendida entre las curvas f() y g() 4 5

6 Los puntos de intersección de las dos gráficas se encuentran resolviendo la ecuación f() g(), es decir, 4 Para, la ecuación es equivalente a 4, que es lo mismo que 4 + Las soluciones de esta ecuación cuadrática son 4 ± ±, siendo ambas positivas y menores que 4 ya que > Observando las gráficas de las funciones f y g entre y +, vemos que g() > f() en dicho intervalo y que encierran una región en forma parecida a la de media luna, contenida en el triángulo con los vértices (, ), (4, ) y (, 4) Esto se puede comprobar algebraicamente, pues en el intervalo (, + ) se cumple 4 + <, luego < 4 y, al ser positivo, podemos dividir por para deducir que 4 > El área entre las dos gráficas es, por tanto, A + (g() f()) + (4 ) (4 ln ) + 4 ln + 7 Evalúa la integral ( )(9 + ) Primero descomponemos la fracción en suma de fracciones simples Dado que >, este trinomio cuadrático no tiene ceros reales, luego no se puede factorizar más (en factores lineales con coeficientes reales) Por tanto, según la teóría, buscamos los números reales A, B y C para los que ( )(9 + ) A + B + C 9 + para todo Multiplicando ambos lados por ( )(9 + ), obtenemos A(9 + ) + ( )(B + C) (A + B) + (C B) + 9A C, R Comparando los coeficientes del polinomio a la derecha con los del polinomio constante uno, deducimos que A + B, C B, 9A C Por tanto, B C A y A, luego A / y B C / Finalmente, ( )(9 + ) La primera fracción se integra directamente, la segunda usando el cambio de variable t + y la tercera, directamente o poniendo primero t El resultado final es ( )(9 + ) ( ln ln(9 + ) arc tg ) ln 8 ln (π 4 π 6 ) ln( + ) ln π 6 6

7 8 Halla F () cuando la función F viene dada por (a) F () (a) Considerando la función g() e t dt, (b) F () e + log(t + ) dt e t dt, vemos que F es la función compuesta de g y h() : F () g( ) g(h()) Por tanto, la Regla de la Cadena y el Teorema Fundamental del Cálculo nos dicen que F () g ( ) e (b) Para poder aplicar el Teorema Fundamental del Cálculo, representamos la función F como diferencia de dos integrales: e + e + F () log(t + ) dt log(t + ) dt log(t + ) dt Derivando la diferencia, obtenemos (como en el apartado anterior): F () (e + ) log((e + ) + ) log( 4 + ) 9 Si f : [, ] R es una función continua y tal que c f(t) dt? Razona la respuesta Sí, esto se cumple siempre Damos la prueba a continuación En primer lugar, puesto que f C[, ], podemos definir la función F mediante F () f(t) dt, [, ] f(t) dt, es cierto que siempre eiste c (, ) Según el Teorema Fundamental del Cálculo, F es diferenciable y, por tanto, continua en el mismo intervalo Además, F cumple F () f(t) dt, F () f(t) dt Puesto que < / <, por el Teorema de Bolzano se sigue que eiste c (, ) tal que F (c) /; es decir, c f(t) dt (a) Determina los puntos críticos de la función en el intervalo indicado F () sen t t dt, ( π, π ), (b) Razona si los puntos críticos encontrados son puntos de máimo o mínimo o no 7

8 (a) Aplicando el Teorema Fundamental del Cálculo, derivamos la función F, obteniendo F () sen Para encontrar los puntos críticos de F, igualamos la derivada a cero y obtenemos sen Recordando que π < < π, la única posibilidad es π (b) Para decidir si el punto crítico encontrado, π, es un punto de etremo local o no, calculamos la segunda derivada de F (aplicando la regla del cociente) y eaminamos su signo en dicho punto: F () ( sen ) cos sen ; F (π) π ( ) π π < Por tanto, el punto crítico es un punto de máimo local 8

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.

1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida. Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,

Más detalles

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA

EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA EJERCICIOS RESUELTOS DE INTEGRAL DEFINIDA. Calcular las siguientes integrales definidas: b) d e d c) + d d) d e) sen d f) + d d ( ) En primer lugar se ha calculado una primitiva de f() Barrow. y después

Más detalles

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL

EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD LÍMITES Y CONTINUIDAD Tema 4: LÍMITES Y CONTINUIDAD. Índice:. Límite de una función en un punto. Límites laterales.. Límites en el infinito.. Cálculo de límites... Propiedades de los límites... Límites

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3.

a) f(x) (x 1) 2 b) f(x) x c) h(x) 1 2 a) f (3) 8 0 f es creciente en x 3. 6 Aplicando la definición de derivada, calcula la derivada de las siguientes funciones en los puntos que se indican: a) f() en Aplicando la definición de derivada, calcula f () en las funciones que se

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

La función, definida para toda, es periódica si existe un número positivo tal que

La función, definida para toda, es periódica si existe un número positivo tal que Métodos con series de Fourier Definición: Función periódica La función, definida para toda, es periódica si existe un número positivo tal que para toda. El número en un periodo de la función. Si existe

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2

Integrales. 1. Calcular las siguientes integrales: dx x. iii) xsenx dx. ii) 3dx. Solución: i) Operando se tiene: x 2 Integrales. Calcular las siguientes integrales: i) d ii) d 6 iii) sen d i) Operando se tiene: d = / / / / d = 7 / / / / / = c = c 7 7 ii) Ajustando constantes se tiene: d 6d = 6 c 6 6 iii) Haciendo el

Más detalles

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito

Infinito más un número Infinito más infinito. Infinito por infinito. OPERACIONES CON INFINITO Sumas con infinito. Productos con infinito OPERACIONES CON INFINITO Sumas con infinito Infinito más un número Infinito más infinito Infinito menos infinito Productos con infinito Infinito por un número Infinito por infinito Infinito por cero Cocientes

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:

DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población: DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

EXAMEN EXTRAORDINARIO 8 de julio de 2016

EXAMEN EXTRAORDINARIO 8 de julio de 2016 CÁLCULO I EXAMEN EXTRAORDINARIO 8 de julio de 16 Apellidos: Titulación: Duración del eamen: horas y 3 minutos Fecha publicación notas: 18-7-16 Fecha revisión eamen: 1-7-16 Todas las respuestas deben de

Más detalles

La integral indefinida

La integral indefinida Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto

Más detalles

LÍMITES. REGLA DE L HOPITAL

LÍMITES. REGLA DE L HOPITAL LÍMITES. REGLA DE L HOPITAL EJERCICIOS RESUELTOS Calcula los valores de k de modo que sean ciertas las siguientes igualdades: k 7 5 k k a) b) 4 7 3 3 a) El límite de una función racional, cuando tiende

Más detalles

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad

Más detalles

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Límites y continuidad. Cálculo 1

Límites y continuidad. Cálculo 1 Límites y continuidad Cálculo 1 Razones de cambio y límites La rapidez promedio de un móvil es la distancia recorrida durante un intervalo de tiempo dividida entre la longitud del intervalo. Ejemplo 1

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) 4 en el punto Para ello, damos a valores próimos

Más detalles

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 =

lím lím Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en 1: x 1 (3x2 )-lím 8 x 1 =2 x 1 x)2 -lím x 1 8 = LÍMITES LECCIÓN 7 Índice: Cálculo de ites en un punto. Epresión indeterminada L/0. Epresión indeterminada 0/0. Algunos ites de funciones irracionales. Otras técnicas básicas para el cálculo de ites. Problemas..-

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

Teoría y ejercicios de Matemáticas II. Análisis

Teoría y ejercicios de Matemáticas II. Análisis 9.DERIVADAS 9.. VARIACIÓN DE UNA VARIABLE Las propiedades estudiadas en los temas anteriores, límites, continuidad, etc., nos aportan inormación puntual sobre las unciones; pero no nos dicen nada sobre

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS. Dada la función f (), (, ), definir f () y f () de forma que f sea continua sen(π ) en todo el intervalo cerrado [, ]. : f () f () π 5 si. Estudiar la continuidad

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 3. LÍMITES Y CONTINUIDAD DE FUNCIONES 1 Tema LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g( ) ENT[ ] h ( ) i ( ) 4 en el punto = Para ello, damos a valores

Más detalles

Derivadas e integrales

Derivadas e integrales Derivadas e integrales Álvarez S., Caballero M.V. y Sánchez M a M salvarez@um.es, m.victori@um.es, marvega@um.es ÍNDICE Matemáticas Cero Índice. Definiciones 3. Herramientas 4.. Reglas de derivación.......................

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Matemáticas II. Segundo de Bachillerato. Curso Exámenes

Matemáticas II. Segundo de Bachillerato. Curso Exámenes Matemáticas II. Segundo de Bachillerato. Curso 0-03. Exámenes LÍMITES Y CONTINUIDAD o F. Límites y continuidad o F Ejercicio. Calcular el dominio de definición de las siguientes funciones: f(x) = 4 x h(x)

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1

3x2 2x x 1 + x 3x 5 5x2 5x x3 3x 2. 1 1. Calcula la derivada de las funciones: y = Ln3 4 3 ) 5 y = Ln [ 1) )]. Calcula la derivada de las funciones: y = sen y = sen 3 y = sen 3 y = sen 3 3 y = sen 3 ) y = sen 4 3 4 5) 3 3. Calcula la derivada

Más detalles

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.

Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo. EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula

Más detalles

FUNCIONES DE UNA VARIABLE

FUNCIONES DE UNA VARIABLE FUNCIONES DE UNA VARIABLE 1- Definiciones 2- Algunas funciones reales 3- Ecuaciones de curvas planas en coordenadas cartesianas 4- Coordenadas polares 5- Coordenadas paramétricas 6- Funciones hiperbólicas

Más detalles

2. Continuidad y derivabilidad. Aplicaciones

2. Continuidad y derivabilidad. Aplicaciones Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto

Más detalles

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo.

tiene un máximo relativo en x = asíntota horizontal la recta y = 3. Razonar si para a = 2 y b = 3 la función f(x) tiene algún mínimo relativo. Selectividad CCNN 006. [ANDA] [SEP-A] Sea f: la función definida por f() = -. a) Estudia la derivabilidad de f. b) Determina los intervalos de crecimiento y decrecimiento de f. c) Calcula los etremos relativos

Más detalles

EJERCICIOS RESUELTOS DE INECUACIONES

EJERCICIOS RESUELTOS DE INECUACIONES EJERCICIOS RESUELTOS DE INECUACIONES 1. Resolver las inecuaciones: a) 3-8 - 7 b) 6-5 > 1-10 a) Para resolver la inecuación, se pasan los términos con al primer miembro y los independientes al segundo quedando

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

ECUACIONES DE PRIMER Y SEGUNDO GRADO

ECUACIONES DE PRIMER Y SEGUNDO GRADO 7. UNIDAD 7 ECUACIONES DE PRIMER Y SEGUNDO GRADO Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas que involucren la solución de ecuaciones de primer grado y de segundo grado

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

TALLER DE TALENTO MATEMÁTICO

TALLER DE TALENTO MATEMÁTICO TALLER DE TALENTO MATEMÁTICO PROBLEMAS DE OPOSICIONES DE SECUNDARIA DE ARAGÓN AÑOS 998, 00, 00 Y 0 (Algunas de las soluciones han sido tomadas de la academia DEIMOS) - En una circunferencia de centro O

Más detalles

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales

INDICE Prefacio 1 Preliminares del cálculo: funciones y limites teoremas escogidos con demostraciones formales INDICE Prefacio XIII 1 Preliminares del cálculo: funciones y limites 1 1.1. Qué es el calculo? 3 1.1.1. el limite: la paradoja de Zenón 5 1.1.2. la derivada: el problema de la tangente 6 1.1.3. la integral:

Más detalles

Límite de una Función

Límite de una Función Cálculo _Comisión Año 06 Límite de una Función I) Límite Finito Muchas veces interesa analizar el comportamiento de los valores de una función, para valores de la variable independiente cercanos a uno

Más detalles

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A

Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO 5 - ndalucía OPCIÓN.- [,5 puntos] Se quiere construir un depósito abierto de base cuadrada

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo)

CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA. (Se utiliza el valor de la función en el extremo izquierdo de cada subintervalo) CALCULO INTEGRAL CONCEPTOS DE AREA BAJO LA CURVA El problema del área, el problema de la distancia tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto

Más detalles

I. Determinar los siguientes límites, aplicando las propiedades. lim =

I. Determinar los siguientes límites, aplicando las propiedades. lim = Ejercicios resueltos I. Determinar los siguientes límites, aplicando las propiedades ) 3 + 2 4 3 + 2 4 = (2) 3 + 2 (2) 2 - (2) - 4 Sustituir la por el 2 = 8 + 8-2 - 4 = 0 Aplicar límite a cada término

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Repaso de integración

Repaso de integración TABLA DE INTEGRALES INMEDIATAS Repaso de integración. Tabla de integrales inmediatas n d = n+ + C, si n n + f() n f () d = f()n+ n + + C, si n d = ln + C f() f () d = ln f() + C e d = e + C e f() f ()

Más detalles

4. Resolución de indeterminaciones: la regla de L Hôpital.

4. Resolución de indeterminaciones: la regla de L Hôpital. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Funciones y derivada. 4. Resolución de indeterminaciones: la regla de L Hôpital. Sean f y g dos funciones derivables en un intervalo abierto I R y sea

Más detalles

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS

CONTINUIDAD Y DERIVABILIDAD. DERIVADAS CONTINUIDAD Y DERIVABILIDAD. DERIVADAS EJERCICIOS RESUELTOS 3 si Si la función f está definida mediante f (), calcula a y b para que sea a b si > continua. La función es continua en (, ) (, ), pues en

Más detalles

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002.

Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso Examen de Septiembre. 6 de Septiembre de 2002. Cálculo. Primer curso de Ingenieros de Telecomunicación. Curso -. Examen de Septiembre. 6 de Septiembre de. Primera parte Ejercicio. Un canal abierto cuya sección es un trapecio isósceles de bases horizontales,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x =

Definición. 1. Se define la función logaritmo (neperiano ) por. ln x = ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES LOGARITMO Y EXPONENCIAL. A partir de la integral y el Teorema Fundamental del Cálculo podemos definir y demostrar las propiedades de las funciones logaritmo y

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

CONCEPTOS QUE DEBES DOMINAR

CONCEPTOS QUE DEBES DOMINAR INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles

Derivada de la función compuesta. Regla de la cadena

Derivada de la función compuesta. Regla de la cadena Derivada de la función compuesta. Regla de la cadena Cuando en las matemáticas de bachillerato se introduce el concepto de derivada, su significado y su interpretación geométrica, se pasa al cálculo de

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

3.1 Extremos en un intervalo

3.1 Extremos en un intervalo 6 CAPÍTULO Aplicaciones de la derivada. Etremos en un intervalo Entender la definición de etremos de una función en un intervalo. Entender la definición de etremos s de una función en un intervalo abierto.

Más detalles

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido

1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD

Continuidad y Derivabilidad PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD PROBLEMAS RESUELTOS DE CONTINUIDAD Y DERIVABILIDAD ) Conderar la función f : (, ) R definida por: a 6 f() 5 a) Determinar el valor de a sabiendo que f es continua (y que a > ). Vamos a comprobar que el

Más detalles

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3

Solución: Para calcular la pendiente, despejamos la y: La ordenada en el origen es n. 3 Puntos de corte con los ejes: 1 Eje Y 0, 3 EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas de la recta 6y 0. Represéntala gráficamente. Para calcular la pendiente, despejamos la y: 6y 0

Más detalles

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a

La derivada de una función en punto a de su dominio está dada por la fórmula. f(x) f(a) x a. x a 3 Derivación 3.. La derivada La derivada de una función en punto a de su dominio está dada por la fórmula f (a) = lím a f() f(a) a El cociente f() f(a) a es la pendiente de la recta secante a la función

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

LÍMITE DE UNA FUNCIÓN EN UN PUNTO

LÍMITE DE UNA FUNCIÓN EN UN PUNTO pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO c significa que toma valores cada vez más próimos a c. Se lee tiende a c. Por ejemplo: ; `9; `; `; `; `; `9; `; `999; Es una secuencia de números cada vez más próimos

Más detalles

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES

UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES UNIDAD 4: FUNCIONES POLINOMIALES Y RACIONALES En la Sección anterior se abordó contenidos relacionados con las funciones y gráficas, continuamos aprendiendo más sobre funciones; en la presente unidad abordaremos

Más detalles

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades:

Inecuaciones en. Desigualdad: se llama desigualdad a toda relación entre expresiones numéricas o algebraicas. Propiedades de las desigualdades: Inecuaciones en Introducción Desigualdad: se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por uno de los cuatro signos de desigualdad,,,, Por ejemplo: 6 ; ; 8, etc....

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas.

UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. UNIVERSIDAD DE CASTILLA-LA MANCHA Departamento de Matemáticas. PROBLEMAS DE CÁLCULO INFORMÁTICA DE SISTEMAS . Cálculo diferencial. Probar que a si y sólo si a a, siendo a >. Utilizar estas desigualdades

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

UNIDAD DIDÁCTICA 9: Límites y continuidad

UNIDAD DIDÁCTICA 9: Límites y continuidad accés a la universitat dels majors de anys acceso a la universidad de los mayores de años UNIDAD DIDÁCTICA 9: Límites y continuidad ÍNDICE Concepto de límite de una función en un punto. Indeterminaciones.

Más detalles

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno:

UNIDAD 3. La derivada. Objetivos. Al terminar la unidad, el alumno: UNIDAD La derivada Objetivos Al terminar la unidad, el alumno: Calculará la derivada de funciones utilizando el álgebra de derivadas. Determinará la relación entre derivación y continuidad. Aplicará la

Más detalles

Parciales Matemática CBC Parciales Resueltos - Exapuni.

Parciales Matemática CBC Parciales Resueltos - Exapuni. Parciales Matemática CBC 2012 Parciales Resueltos - Exapuni www.exapuni.com.ar Compilado de primeros parciales del 2012 Parcial 1 1) Sea. Hallar todos los puntos de la forma, tales que la distancia entre

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

Despejando, se tienen las siguientes ecuaciones de la forma : a) b)

Despejando, se tienen las siguientes ecuaciones de la forma : a) b) MAT 115 B EJERCICIOS RESUELTOS 1. De la siguiente ecuación: Despejando, se tienen las siguientes ecuaciones de la forma : a) b) Calcule la raíz por el método de punto fijo, tomando en cuenta el criterio

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles