La integral indefinida
|
|
|
- Adolfo Calderón Gil
- hace 9 años
- Vistas:
Transcripción
1 Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida
2 Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto intervalo de, entonces se dice que F() es una función primitiva de f() para ese determinado intervalo. Dos primitivas cualesquiera de f() difieren en una constante. Def.: El conjunto de todas las funciones primitivas de una función es la integral indefinida de esa función. Si se cumple que F () f(): F() F() + C es una primitiva de f() es la integral indefinida de f() La integral indefinida es una familia de funciones, cuyas gráficas son paralelas ( por tener todas para cada la misma pendiente), pero desplazadas a lo largo del eje OY, según sea el valor de la constante C. Se escribe: f() F() + C A f() se le llama función subintegral o integrando, F() + C es la solución general, siendo C la constante de integración. Para cada valor de C se obtiene una primitiva de f() o solución particular de la integral. La diferencial de,, indica que es la variable de integración. Propiedades: ª: La derivada de la integral de una función respecto a la misma variable es la misma función. ( f() ) f() ª: La integral de una suma de varias funciones integrables es igual a la suma de las integrales de cada una de las funciones. [f() + g()] f() + g() ª: La integral del producto de una constante por una función integrable es igual al producto de la constante por la integral de la función. c f() c f() 80
3 Matemáticas º de bachillerato 7. Integrales inmediatas El gran problema del cálculo integral consiste en reconocer de qué función es derivada la que nos encontramos en el integrando. En algunos casos, es sencillo reconocerlo; nos encontramos entonces ante las integrales inmediatas, que se resuelven aplicando los resultados de las tablas. En el caso de que la función primitiva no se reconozca con tanta facilidad, tendremos que recurrir a los métodos de integración, que son procedimientos que permiten transformar un integrando que no es inmediatamente integrable, en otro que sí lo es.. f () f() + C. k f () k f() + C. [f()] n f () [f()]n + n + 4. f () [f()] m (m )[f()] m + C 5. f () f() 6. f () f() f() + C Ln f() + C 7. e f() f () e f() + C 8. a f() f () af() Ln a + C + C 9. cos f() f () sen f() + C 0. sen f() f () cos f() + C. f () cos f() [ + tg f()] f () tg f() + C. f () sen f() [ + cotg f()] f () cotg f() + C. 4. f () [f()] f () + [f()] arcsen f() + C arctg f() + C sen cos cos + cos 8
4 Matemáticas º de bachillerato Ejemplos de integrales inmediatas: e ( + cos ) 8. ( + sec ) 9. ( ) 0. ( + ) 4. ( + 4)( ) 7. sen cos. tg sec 4. cos( + ) 5. cos( + ) cos (7 + ) 7. sen(7 + ) sen cos 8. sen + cos 9. e cos e 0. e e ( 4) 4 4. sen (7 + 8) 5. sec 6. 7 cos 7. (5 + 5tg ) 8. 8 sen 9. cosec e. e cos + sen 8
5 Matemáticas º de bachillerato 7. Integrales que se reducen a inmediatas Con ayuda de algunos trucos es posible reducir muchas integrales a inmediatas. Generalizando, los trucos consisten en descomponer un polinomio en sus distintos monomios, en reescribir la función en forma de potencia con eponente fraccionario, en multiplicar y dividir por la misma epresión, en sumar y restar la misma cantidad, en multiplicar por una epresión que resulte la unidad (sen + cos ), en sustituir una epresión por otra equivalente, incluso en realizar una división polinómica. Ejemplos de integrales con trucos: sen cos 4. cos 5. tg 6. sec Métodos de integración 7.4. Integrales del tipo arcsen Se trata de ir transformando el radicando hasta obtener una epresión del tipo f (), como veremos en los ejemplos a continuación. Realmente se puede considerar un caso concreto de integrales que se reducen a inmediatas. f () arcsen f() + C [f()] Ejemplo: 6 Ejemplo: 4 8
6 Matemáticas º de bachillerato 7.4. Integrales del tipo arctg Se trata de ir transformando el denominador hasta obtener una epresión del tipo + f (), como veremos en los ejemplos a continuación. Realmente se puede considerar un caso concreto de integrales que se reducen a inmediatas. Sólo se podrá dar este caso si las raíces del denominador son imaginarias. f () arctg f() + C + [f()] Ejemplo: + 4 Ejemplo: Ejemplo: + + Ejemplo:
7 Matemáticas º de bachillerato 7.4. Integración de funciones racionales Antes de distinguir los casos en función del grado del denominador y del tipo de raíces que este tenga, hay que dejar claro que lo primero que se hará siempre, en caso de que el grado del numerador sea igual o mayor que el grado del denominador, es dividir polinómicamente y epresar la división como cociente más resto entre divisor, como se indica en el ejemplo a continuación. Con esto conseguimos que el grado del numerador sea siempre menor que el del denominador Integración de funciones racionales con denominador de primer grado Suponemos que el numerador es un polinomio de grado inferior al del denominador. En caso contrario, se realiza la división polinómica y obtendremos un polinomio - cociente y una función racional, en la que el grado del numerador sí que es menor que el del denominador. Ejemplo : + Ejemplo :
8 Matemáticas º de bachillerato Integración de funciones racionales con denominadores de segundo grado Suponemos que el numerador es un polinomio de grado inferior al del denominador. En caso contrario, se realiza la división polinómica y obtendremos un polinomio - cociente y una función racional, en la que el grado del numerador sí que es menor que el del denominador. Si el denominador es de segundo grado, nos encontramos los siguientes casos: a) que tenga dos raíces reales distintas (Ejemplos y ) b) que tenga una raíz real doble (Ejemplo ) c) que tenga dos raíces imaginarias conjugadas (Ejemplo 4) Ejemplo : Ejemplo :
9 Matemáticas º de bachillerato 87
10 Matemáticas º de bachillerato Ejemplo : Ejemplo 4: Ejercicios:
11 Matemáticas º de bachillerato Integración por sustitución o cambio de variable El papel de la sustitución en la integración es el equivalente a la regla de la cadena en la derivación. Recuérdese que para las funciones derivables dadas por y F(u) y u t(), la regla de la cadena establece que: d [F(t())] F (t()) t () Integrando la epresión anterior, obtenemos: F (t()) t () F(t()) + C F(u) + C Ejemplos: En el caso de las funciones sencillas no tenemos que aplicar este método, ya que la tabla viene preparada con las derivadas internas (f ()). a) b) ( + ) En otro tipo de ejercicios es más cómodo realizar la sustitución como realizaremos en el ejemplo a continuación. Ejemplo: ( ) Sust.: t dt dt 89
12 Matemáticas º de bachillerato Ejercicios:.. e + e. e arctg + ln Ln Ln (Ln ) 6. tg 7. cotg [Ln (sen )] tg tg
13 Matemáticas º de bachillerato Integración por partes Este método de integración se obtiene de la regla de derivación de un producto: d (u v) d (u) v + u d v Despejando el último sumando e integrando hacia toda la epresión, resulta: y simplificando: u dv d (u v) v du u dv u v v du Eiste una regla nemotécnica para la fórmula de la integración por partes: un día vi un viejo vestido de uniforme Ejemplo: cos u du dv cos v dv cos sen. Ln. cos. arcsen 4. e cos 5. e ( + ) 6. Ln 7. sen 8. e sen 9
14 Matemáticas º de bachillerato Integración de funciones trigonométricas, del tipo R(sen, cos ) R es una función racional (sumas, productos y cocientes) de senos y cosenos R es impar en seno: R (- sen, cos ) - R(sen, cos ) Se realizará el cambio de variable cos t sen Ejemplo: + cos R es impar en coseno: R (sen, - cos ) - R(sen, cos ) Se realizará el cambio de variable sen t Ejemplo: cos 9
15 Matemáticas º de bachillerato R es par en seno y coseno: R (- sen, - cos ) R (sen, cos ) Se realizará el cambio tg t dt + t t sen + t cos { + t Ejemplo: sen Para el resto de casos se podrá aplicar la sustitución universal: tg t { dt + t t sen + t cos t + t 9
16 Matemáticas º de bachillerato Ejemplo: sen Ejercicios:. sen cos. cos. sen cos 4. sen cos 5. sen cos 94
17 Matemáticas º de bachillerato Ejercicios. Determina la función primitiva de f() + que pasa por el punto P(, 5).. Determina una función cuya derivada sea f() + cos que cumpla que cuando 0, y también valga 0.. Halla la familia de curvas en las que la pendiente de las rectas tangentes a dichas curvas en cualquier punto viene dada por la función y e. Obtén, de esa familia, la curva que pasa por A(0,). 4. Realiza las siguientes integrales: a) + 4 p) 4 b) sen( ) q) +5 c) r) cos d) s) arctg() e) 4 + e t) e f) u) ++9 g) cos 4 sen v) + 9 h) w) e cos i) ) j) +5 (+) y) + + k) z) ( + ) Ln( + ) l) aa) sen cos m) + ab) cos sen n) + 5 ac) 4 + o) ad) sen cos 95
18 Matemáticas º de bachillerato Ejercicios PAU. 5+ (Junio 0). a) 5 + b) 5 (Junio 0) ( ) +9. Ln (Junio 0) 4. + (Sept 00) 5. a) ( )Ln b) +4 (Sept 008) 96
19 Matemáticas º de bachillerato Ficha de Repaso.. sen sen I 7 Ln ( + ) + C I tg + /cos + C. I arctg + C I / + arctg + C 6. cos I ( sen + cos ½ sen) / + C 7. ( ) ( ) I Ln( ) Ln( ) C 4( ) I - - /Ln - /(Ln) + C 9. I 4 6 Ln( 4 6) arctg 0. e 4 I e4 e4 + C 4 6. sen I cos cos C sen. cos I /cos + cos + C. I / Ln( ) C 4. e I ( e arctg e ) + C 5. Ln 97
20 Matemáticas º de bachillerato I 7 7/ Ln(-) + C 7. I - Ln + Ln( + ) + C I 5Ln( + ) + 7Ln( + ) + Ln( ) + C 5 9. ( ) I ( ) C 0. I C. / C I Ln I Ln( 5) arctg C I Ln( ) Ln( 6 ) arctg C I 8 Ln( ) Ln( ) Ln( ) C I Ln( 6 ) ( ) C 98
1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia
Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas
TEMA 12.- CÁLCULO DE PRIMITIVAS
TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA
INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una
Integral. F es primitiva de f F (x) = f(x)
o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.
1. CÁLCULO DE PRIMITIVAS
. CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =
DERIVADAS (1) LA DERIVADA DE UNA CONSTANTE es cero. Sol: Sol: Sol: Sol: Derivada de una función potencial: Forma simple
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición
Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1
Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos
Derivada de una función MATEMÁTICAS II 1
Derivada de una función MATEMÁTICAS II TASA DE VARIACIÓN MEDIA La tasa de variación media de una función nos da una idea de la rapidez con que crece o decrece en un intervalo. Sea y = f() una función que
Bloque 1. Aritmética y Álgebra
Bloque. Aritmética y Álgebra 6. Los números reales: radicales. Definición de radical Un radical es una epresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Obsérvese
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN
INTEGRAL INDEFINIDA. MÉTODOS DE INTEGRACIÓN EJERCICIOS RESUELTOS Calcula una función real f : que cumple las condiciones siguientes: f (0) = 5, f (0) =, f (0) = 0 y f () = + Como f () = +, integremos esta
DERIVADAS DERIVADAS. La siguiente tabla muestra el número de nacimientos en cada mes a lo largo de un año en una determinada población:
DERIVADAS INTRODUCCIÓN Una recta es tangente a una curva en un punto si solo tiene en común con la curva dicho punto. y 5 4 Recta tangente en (,) La pendiente de una recta es la tangente del ángulo que
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2014 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Integral indefinida Matemáticas I 1 INTEGRAL INDEFINIDA. Cuando utilizamos la notación diferencial, teniendo en cuenta que
Primitiva. Integral indefinida INTEGRAL INDEFINIDA Sean f y F dos funciones reales definidas en un mismo dominio. La función F es una función primitiva de f, o simplemente primitiva de f, si F tiene por
TEMA 5: INTEGRAL INDEFINIDA.
TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador
UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES
DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : [email protected] url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV
CONCRECIÓN DE LOS CRITERIOS DE EVALUACIÓN Curso: PRIMERO de BACHILLERATO CIENCIAS Asignatura: MATEMÁTICAS I Profesor: ALFONSO BdV 1. Números reales. Aritmética y álgebra 1.1. Operar con fracciones de números
Cuadro de derivadas. Cuadro de Derivadas. y = k La derivada de una cte es igual a cero. Es decir: y = 0
Cuadro de derivadas y = k La derivada de una cte es igual a cero. Es decir: 0 y = x y = + g(x) y = g(x) y = k y = g(x) La derivada de la función identidad es igual a. Es decir: La derivada de una suma
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales.
Polinomios y fracciones algebraicas. Resolución de ecuaciones polinómicas y racionales. Índice de contenido Polinomios y fracciones algebraicas: nociones básicas...2 Qué es y qué no es un polinomio...2
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. en un intervalo al siguiente cociente:
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Crecimiento de una Función en un Intervalo Tasa de Variación Media (T.V.M.) Se llama tasa de variación media (T.V.M.) de una función y f() en un intervalo
Si se pueden obtener las imágenes de x por simple sustitución.
TEMA 0: REPASO DE FUNCIONES FUNCIONES: TIPOS DE FUNCIONES Funciones algebraicas En las funciones algebraicas las operaciones que hay que efectuar con la variable independiente son: la adición, sustracción,
Integración por fracciones parciales
Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla
Unidad 10 Integrales definidas. Aplicaciones
Unidad Integrales definidas. Aplicaciones PÁGINA 5 SOLUCIONES. Las áreas quedan: A u A u A 5 u. El área del recinto viene dada por : ( ) ( ) Área d,5 u PÁGINA 9 SOLUCIONES. La solución queda: Directo:
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 5 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
TEMA 0: REPASO DE FUNCIONES
TEMA 0: REPASO DE FUNCIONES Recordamos que una función real de variable real es una aplicación de un subconjunto de los números reales A en el conjunto de los números reales de forma que a cada elemento
INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES
INTEGRAL INDEFINIDA E INTEGRAL DEFINIDA. APLICACIONES. a) Eplicar el concepto de función primitiva. b) Sea f () = e + 8, justificar si es primitiva de alguna de las siguientes funciones: g () = e + 8 h
ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017
ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,
Cálculo de límites. Continuidad
Chapter 8 Cálculo de límites. Continuidad 8. Definición Una función f () tiene límite l en a, siparatodasucesióndevalores n a las imágines correspondientes f ( n ) l. Sediceentoncesque f () f (a) a 8.2
Apellidos: Nombre: Curso: 2º Grupo: Día: CURSO
EXAMEN DE MATEMATICAS II ª ENSAYO (ANÁLISIS) Apellidos: Nombre: Curso: º Grupo: Día: CURSO 56 Instrucciones: a) Duración: HORA y MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios
AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS
AYUDA MEMORIA PARA EL ESTUDIO DE MATEMÁTICAS II - SISTEMAS Potencias de la unidad imaginaria i 0 = 1 i 1 = i i 2 = 1 i 3 = i i 4 = 1 Los valores se repiten de cuatro en cuatro, por eso, para saber cuánto
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros
APUNTES DE MATEMÁTICAS
APUNTES DE MATEMÁTICAS TEMA 7: FUNCIONES 1º BACHILLERATO 1 ÍNDICE 1. INTRODUCCIÓN...3 1.1. CONCEPTO DE FUNCIÓN...3. Definición de Dominio...3.1. CÁLCULOS DE DOMINIOS...3 3. Composición de funciones...4
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
INTEGRALES INDEFINIDAS
INTEGRALES INDEFINIDAS Índice: 1. Primitiva de una función--------------------------------------------------------------------------- 2 2. Interpretación geométrica. Propiedades de la integral indefinida--------------------------
CONCEPTOS QUE DEBES DOMINAR
INTERVALOS CONCEPTOS QUE DEBES DOMINAR Un intervalo es un conjunto infinito de números reales comprendidos entre dos extremos, que pueden estar incluidos en él o no. 1. Intervalo abierto (a, b): Comprende
Longitud, áreas y volúmenes. Trigonometría. Circunferencia de radio R Círculo de radio R. 1 Triángulo de base B y altura H A = (BH ) 2
Longitud, áreas y volúmenes Circunferencia de radio R Círculo de radio R A πr L πr Triángulo de base B y altura H A (BH ) Cuadrado de lado L A L Rectángulo de base B y altura H Superficie esférica A 4πR
DERIVADAS (1) (para los próximos días)
DERIVADAS (1) (para los próimos días) Derivada de una constante K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. Ejercicio nº 1) Ejercicio nº 2) Ejercicio nº 3) Ejercicio nº 4) Ejercicio nº 5) Ejercicio
TEMA1: CÁLCULO DE LÍMITES DE FUNCIONES.
TEMA: CÁLCULO DE LÍMITES DE FUNCIONES.. Límite en un punto ( a) La condición necesaria y suficiente para que eista el límite de una función en un punto es que eistan los dos límites laterales de la función
Integrales indenidas
Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.
LA DERIVADA DE UNA CONSTANTE
DERIVADAS ( Derivada de una constante K K R F ( 0 LA DERIVADA DE UNA CONSTANTE es cero. nº nº nº nº 4 nº 5 nº 6 Derivada de una función potencial: Forma simple r r R r. r LA DERIVADA DE UNA FUNCIÓN POTENCIAL
Matemáticas de 2º de bachillerato página 1 Integral indefinida. Integral indefinida
Matemáticas de º de bachillerato página Integral indefinida Integral indefinida.introducción.- La integración es el proceso recíproco de la derivación, es decir, en la derivación se trata de hallar la
12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo
FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =
Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
Técnicas de integración. Cambio de variable
Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere
FUNCIONES ELEMENTALES Y PROPIEDADES
. NOCIONES INTRODUCTORIAS.. Concepto de función. Dominio e Imagen. Una función es una relación entre dos variables, de forma que a cada valor de la variable independiente x, le asocia un único valor de
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
DERIV. DE UNA FUNC. EN UN PUNTO
DERIVADA DE UNA FUNCIÓN Se abre aquí el estudio de uno de los conceptos fundamentales del cálculo diferencial: la derivada de una función. En este tema, además de definir tal concepto, se mostrará su significado
ANÁLISIS DE FUNCIONES
ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo
COL LECCIÓ DE PROBLEMES RESOLTS
DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5
Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual
FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.
FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto
INTEGRACIÓN DE FUNCIONES REALES DE UNA VARIABLE REAL RESUMEN
INTEGRACIÓN DE FUNCIONES REALES DE UNA VARIABLE REAL RESUMEN 1.- INTRODUCCIÓN. 1.1 Definición de Primitiva F es función primitiva de f Para todo elemento del Dom(f) F (x)=f(x) 1.2 Representación de Primitivas
Métodos de integración
Integración por partes Métodos de integración De la derivada del producto de dos funciones obtenemos la fórmula de la derivación por partes. (uu. vv) = uu vv + uu vv que se puede escribir dd(uu. vv) =
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
MATEMÁTICAS VI. CÁLCULO INTEGRAL UNIDAD II MÉTODOS DE INTEGRACIÓN
MÉTODOS DE INTEGRACIÓN UNIDAD II MÉTODOS DE INTEGRACIÓN No todas las funciones en un integrando se pueden resolver mediante reglas inmediatas de integración, y requieren ser tratadas con técnicas especiales.
El proceso de calcular la derivada se denomina derivación. Se dice que ( ) es derivable en c si existe ( ), es decir, lim. existe
DEFINICIÓN DE LA DERIVADA DE UNA FUNCIÓN La derivada de una función () respecto de (x) es la función () (se lee f prima de (x) y está dada por: ()=lim (+h) () h El proceso de calcular la derivada se denomina
Tema 5: Funciones, límites y Continuidad
Tema 5: Funciones, límites y Continuidad 0.- Introducción.- Definición de Función..- Funciones elementales..- Operaciones con funciones...- Composición de funciones...- Función inversa o recíproca 3.-
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
INTEGRACIÓN INDEFINIDA
1. PRIMITIVA DE UNA FUNCIÓN Definición: Sean F(x) y f(x) dos funciones reales definidas en un mismo dominio D. Se dice, entonces, que F(x) es una primitiva de f(x) si se cumple quef'(x) = f(x), x. Dicho
Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,
GUÍA: INTEGRALES. Página 1 de 27
GUÍA: INTEGRALES Área de EET Página de 7 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 00. Página de 7 . INTEGRALES. La
Potencias. Potencias con exponente entero. Con exponente racional o fraccionario
Potencias con exponente entero Potencias Con exponente racional o fraccionario Propiedades 1.a 0 = 1 2.a 1 = a 3.Producto de potencias con la misma base: Es otra potencia con la misma base y cuyo exponente
1. Halla el dominio, el recorrido, las asíntotas y los límites e imágenes que se indican para cada gráfica. y asíntota vertical de:
Identificación gráfica de funciones, límites asíntotas Al observar la gráfica de una función es posible determinar gran cantidad de parámetros características de dicha función aunque no conozcamos su epresión,
Integral indefinida (CCSS)
ntegral indeinida SS achillerato SS ntegral indeinida (SS). Primitiva de una unción Deinición: Sea () una unción deinida en el intervalo (a,b), llamaremos primitiva de la unción () a toda unción real de
Apuntes Matemáticas 2º de bachillerato. Tema 2. Límites de funciones
Apuntes Tema 2 Límites de funciones 2.1 Límites de funciones Def.: Dada una función f(), diremos que su límite cuando tiende hacia a es el número L, y lo escribiremos, lim f() L si eisten los límites laterales
MÉTODOS DE INTEGRACION
MÉTODOS DE INTEGRACION En este tema se continúa con los métodos de integración iniciados en el capítulo anterior, en el que a partir del concepto de primitiva y de las derivadas de las funciones elementales
El número áureo,, utilizado por artistas de todas las épocas (Fidias, Leonardo da Vinci, Alberto Durero, Dalí,..) en las proporciones de sus obras.
1.- LOS NÚMEROS REALES Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se pueden expresar en forma de fracción. El número irracional más
Derivadas. Derivabilidad
Apuntes Tema 4 Derivadas. Derivabilidad 4.1 Derivada de una función Llamamos tasa de variación media al cociente entre el incremento que sufre la variable dependiente y el incremento de la variable independiente.
TRABAJO DE MATEMÁTICAS. PENDIENTES DE 2º E.S.O. (1ª parte)
TRABAJO DE MATEMÁTICAS PENDIENTES DE º E.S.O. (ª parte) NÚMEROS ENTEROS.-) Realiza las operaciones siguientes () (0) (-) ( ) (-) ( -) (-) ( -) (-) () - - - -0 - - - ( -) ( ) ( -) ( ) ( ) ( - ) ( - ) (
2º) El límite de la función f(x)=x, tanto en - como en + : Veamos como ejemplo el límite de la función polinómica f(x)=3x 2-8 en + :
LÍMITES LECCIÓN 6 Índice: Cálculo de ites en el infinito. Epresión indeterminada -. Epresión indeterminada /. Epresión indeterminada 0. Epresión indeterminada ±. Límites de sucesiones. Cálculo de ites
Examen de Selectividad Matemáticas JUNIO Andalucía OPCIÓN A
Eámenes de Matemáticas de Selectividad ndalucía resueltos http://qui-mi.com/ Eamen de Selectividad Matemáticas JUNIO - ndalucía OPCIÓN. Sea f : R R definida por: f ( a b c. a [7 puntos] Halla a b y c para
Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.
Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones
Técnicas de Integración, preparado por: Gil Sandro Gómez
Tema II. Técnicas de Integración. Integración por partes. La integración por partes surge del producto de una función trascendente y una algebraica, una inversa trigonométrica y una algébrica, una trigonométrica
Propedéutico de Matemáticas
Propedéutico de Matemáticas TEMARIO DEL MODULO I, ARITMÉTICA Y ALGEBRA CAPÍTULO 1: CONCEPTOS ELEMENTALES DE ARITMÉTICA Número primo absoluto o simple. Número compuesto. Múltiplo. Submúltiplo, factor o
CONTINUIDAD Y DERIVABILIDAD 1.- CONTINUIDAD
CONTINUIDAD Y DERIVABILIDAD Continuidad. Derivabilidad. 1.- CONTINUIDAD 1.1 FUNCIÓN CONTINUA EN UN PUNTO Decimos que f es continua en a si: Lim f( ) = f( a) a Para que una función sea continua en un punto
TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO
TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación
Apellidos: Nombre: Curso: 1º Grupo: C Día: 2- III- 16 CURSO
EXAMEN DE MATEMÁTICAS GRÁFICAS E INTEGRALES Apellidos: Nombre: Curso: º Grupo: C Día: - III- 6 CURSO 05-6. [ punto] Estudia si las siguientes funciones presentan simetría par (respecto del eje de ordenadas)
Partes de un monomio
Monomios Un monomio es una epresión algebraica en la que la únicas operaciones que afectan a las letras son la multiplicación y la potencia de eponente natural. Son monomios: NO son monomios: 1 yz 1 abc
4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:
U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento
Integración de funciones trigonométricas
Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este
DERIVADAS (1) Derivada de una constante. LA DERIVADA DE UNA CONSTANTE es cero. Derivada de una función potencial: Forma simple.
DERIVADAS (1) Derivada de una constante f ( ) K K F ( ) 0 LA DERIVADA DE UNA CONSTANTE es cero. nº 1) nº ) nº 3) nº 4) nº 5) nº 6) Derivada de una función potencial: Forma simple r f ( ) r f ( ) r. r 1
Tema 1.- Los números reales
Tema 1.- Los números reales Los números irracionales Un número es irracional si posee infinitas cifras decimales no periódicas, por tanto no se puede expresar en forma de fracción. El número irracional
PLAN DE ESTUDIOS DE MS
PLAN DE ESTUDIOS DE MS Temario para desarrollar a lo largo de las clases 11 y 12. CLASE 11: I. ELEMENTOS DE ÁLGEBRA LINEAL. a) Revisión de conceptos Estructura de espacio vectorial. Propiedades de los
RADICALES. Un radical es una expresión de la forma, en la que n y ; con tal que cuando a sea negativo, n ha de ser impar.
RADICALES Un radical es una expresión de la forma, en la que n y a ; con tal que cuando a sea negativo, n ha de ser impar. Se puede expresar un radical en forma de potencia: Radicales equivalentes Utilizando
CONTENIDO PRÓLOGO LAS FUNCIONES... 5
CONTENIDO PRÓLOGO... 1 1. LAS FUNCIONES... 5 1.1 FORMAS DE REPRESENTACIÓN... 5 1.1.1 Representación de funciones... 6 1.1.2 Funciones definidas a trozos... 7 1.1.3 Simetría... 8 1.1.4 Funciones crecientes
Expresiones algebraicas
Epresiones algebraicas Matemáticas I 1 Epresiones algebraicas Epresiones algebraicas. Monomios y polinomios. Monomios y polinomios. Una epresión algebraica es una combinación de letras, números y signos
3º ESO ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. SAGRADO CORAZÓN COPIRRAI_Julio César Abad Martínez-Losa ECUACIONES
º ESO ECUACIONES DEPARTAMENTO DE MATEMÁTICAS. ECUACIONES.- ECUACIONES Una ecuación es una igualdad donde se desconoce el valor de una letra (incógnita o variable). El valor de la variable que hace que
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL
EJERCICIOS RESUELTOS DE DERIVADAS DE UNA FUNCIÓN REAL Estudiar la continuidad y derivabilidad de las siguientes funciones y escribir su función derivada: si < ( ) f 7 si < 7 si b) f c) f La función f(
B. Cálculo de primitivas.
50CAPÍTULO 5. INTEGRAL DEFINIDA. CÁLCULO DE PRIMITIVAS y y f(x) x y y F (x) x F (x) 8 >< >: x si x [0, ] x + six (, ] x si x (, ] Figura 5.5: B. Cálculo de primitivas. 5.. Integración inmediata. Definición
1. Expresiones polinómicas con una indeterminada
C/ Francisco García Pavón, 16 Tomelloso 1700 (C. Real) Teléfono Fa: 96 51 9 9 Polinomios 1. Epresiones polinómicas con una indeterminada 1.1. Los monomios Un monomio es una epresión algebraica con una
