Técnicas de integración. Cambio de variable
|
|
|
- Valentín Rico Peralta
- hace 9 años
- Vistas:
Transcripción
1 Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere que identifiquemos el tipo de función para saber qué regla (fórmula) vamos a utilizar para derivarla. Sin embargo, en cálculo integral se trata de otra historia completamente diferente. Cuando queremos calcular una integral no siempre existe una fórmula con la que podamos calcular la integral inmediatamente. Debido a esto se han creado algunos métodos para calcular las integrales de funciones que aparecen frecuentemente. De estos métodos, los más frecuentemente usados son: Cambio de variable Integración por partes Integración de potencias trigonométricas Sustitución trigonométrica Fracciones parciales Nosotros vamos a considerar solamente estos métodos para iniciarte en el arte de la integración de funciones. Cambio de variable Algunas veces para poder integrar una función conviene utilizar un cambio de variable. Este método tiene su justificación en la regla de la cadena que utilizamos en Cálculo diferencial: f (u(x)) u (x) = f (t) dt En palabras, si tenemos una función compuesta que queremos integrar, debemos verificar que la diferencial incluye a la derivada de la función u(x) para que podamos integrar. Observa que el término u (x) solamente sirve para completar la diferencial. No es parte de la función f que vamos a integrar, de manera que no aparece en el resultado final. Sin embargo, no debes olvidar verificar que este término se encuentre en el integrando como un factor, de otra manera, la integral estará incorrecta. Calcula la siguiente integral indefinida: (5 x 7) 1 Ejemplo 1 Empezamos definiendo: u(x) = 5 x 7, de donde: u (x) = /6
2 Sustituyendo estos valores en la integral: f (u(x)) u (x) = f (t) dt obtenemos: 5 (5 x 7) 1 = 1 (u(x)) 1 u (x) dt 5 5 Observa que hemos completado la diferencial multiplicando por 5/5 en el integrando. Ahora solamente aplicamos la regla (iv) de integración, y obtenemos: (5 x 7) 1 = 1 (u(x)) 1 u (x) 5 = 1 5 [u(x)]13 13 = 1 5 = (5 x 7)13 13 (5 x 7)13 65 En otros casos vamos a tener que simplificar algebraicamente el integrando para que podamos ver la forma dada en la regla para integrar usando el método de cambio de variable. Ejemplo Calcula la integral: ( x x + x 5 + ) x + x 5 Factorizando el término común, podemos representar esta integral como: x + x 5 ( x + 1) Ahora definimos: u(x) = x + x 5 u (x) = x + 1 Entonces, la diferencial está completa, y podemos integrar haciendo el cambio de variable como se acaba de definir: x + x 5 ( x + 1) = u(x) u (x) = (u(x)) 1/ u (x) 3/ ( = 3 x + x 5 = u(x)3/ ) 3/ /6
3 Ejemplo 3 Calcula la integral indefinida: x 1 Podemos calcular esta integral utilizando la regla (iv) de integración: = ( x 1) 1/ x 1 Pero para eso, debemos hacer las definiciones: u(x) = x 1 u (x) = Sustituyendo estos valores en la regla de sustitución obtenemos: = (u(x)) 1/ x 1 = 1 (u(x)) 1/ u (x) = 1 (u(x))1/ 1/ = 1 ( x 1)1/ 1 = x 1 Calcula la siguiente integral: 5 x 4 x x x 3 1 Ejemplo 4 Observa que el integrando se puede reescribir como: 5 x 4 x x x 3 1 = 5 x 4 x x 5 x Y si definimos: u(x) = x 5 x tenemos que: u (x) = 5 x 4 x que es precisamente el factor que tenemos en el numerador del integrando. Entonces, la diferencial está completa. Ahora podemos reescribir la integral como: 5 x 4 x ( = x 5 x ) 1/ 5 x 4 x x 5 x 3/6
4 Y la podemos integrar inmediatamente: 5 x 4 x x 5 x = = ( x 5 x ) 1/ 5 x 4 x (u(x)) 1/ u (x) 1/ = x 5 x = (u(x))1/ Este método será muy útil cuando tengamos una expresión irracional en el denominador del integrando que no se puede simplificar usando solamente las leyes de los exponentes. Para esto, nosotros vamos a definir una variable z de manera que nos permita simplificar el integrando, pero siempre teniendo en cuenta la regla para integrar por el método de cambio de variable. El truco para este tipo de integrales es definir z elevado a una potencia que sea igual al índice de la raíz e igualar esta potencia al radicando (que debe estar en función de x). Los siguientes ejemplos muestran dos casos. Ejemplo 5 Calcula la integral indefinida: 1 + x Como tenemos una raíz en el denominador que no podemos simplificar usando las leyes de los exponentes, vamos a utilizar el siguiente cambio de variable: x = z = z Observa que utilizamos z porque el índice de la raíz es. Esto nos permitirá sustituir al final x en lugar de z. Sustituyendo este cambio de variable en la integral obtenemos: 1 + x = z = z Ahora vamos a sumar y a restar 1 en el numerador. Esto nos permitirá hacer: 1 + [ = 1 + ] [ = 1 1 ] = = z ln 4/6
5 Cambiando la variable z en términos de x, obtenemos: z ln = x ln ( 1 + ) x Entonces, 1 + x = ( x ln 1 + ) x Como puedes ver, el álgebra nos ayudó a convertir el integrando que obtuvimos después del cambio de variable a una forma que fuera inmediatamente integrable. Siempre que utilicemos este método, vamos a requerir de creatividad para saber qué hacer algebraicamente para convertirla a una forma integrable. No siempre conviene sumar y restar en el numerador o para poder calcular la integral. Calcula la siguiente integral indefinida: x x Ejemplo 6 Dado que el índice de la raíz es, definimos: z = x + 1. Así, z = x + 1, y = z. Ahora sustituimos en la integral y obtenemos: x z(z + 1) z = = + z x Ahora vamos a completar el cuadrado en el numerador. Para eso, vamos a sumar 0 = 3 z Así obtenemos: z + z z = + z 3 z (z = z + 1) + 3 () 3 = + 3 = () + Ya podemos calcular la primera integral. Para simplificar la otra integral, vamos a sumar en el numerador: + 3 z (3 z 3) + () + = z + 3 () = z z + + = z z = z z + 6 z + 4 ln() = z + 4 z + 4 ln() 5/6
6 Sustituyendo z en términos de x, encontramos el resultado: x = (x + 1) + 4 ( ) x ln x x Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 010 Año de publicación: Pendiente. Última revisión: 07 de agosto de 010. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: [email protected] 6/6
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: TÉCNICAS DE INTEGRACIÓN
UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: TÉCNICAS DE INTEGRACIÓN TÉCNICAS DE INTEGRACIÓN En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada
Integración de funciones trigonométricas
Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este
Reglas del producto y del cociente
Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones
Integral indefinida de funciones algebraicas
Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar
Denominadores con factores lineales
Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores
Int. indefinida de funciones exponenciales
Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de
Diferenciabilidad en un intervalo
Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en
Ecuación general de la circunferencia
Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso
Teoremas de los límites
Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno
Interpretación gráfica
Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con
La derivada como razón de cambio instantánea
La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos
Resolución de Ecuaciones de Segundo Grado
Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también
Ecuación ordinaria de la hipérbola
Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones
Método de Sustitución
Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las
Derivadas de orden superior
Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente
Forma pendiente-ordenada al origen
Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo
La diferencial como aproximación al incremento
La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.
Profr. Efraín Soto Apolinar. Forma normal
Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su
Ecuaciones exponenciales y logaritmicas
Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3
S.E.L.: 3 ecuaciones con 3 incógnitas
1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para
Funciones crecientes y decrecientes
Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f
Límites de funciones
Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las
Método de fórmula general
Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula
Problemas geométricos y algebraicos. Reglas de los exponentes
Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.
Profr. Efraín Soto Apolinar. Variación inversa. entonces,
Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el
La derivada. Razón de cambio promedio e instantánea
La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,
Definición y Clasificación de Polígonos. Definición
Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono
Conversión de la forma general a la forma ordinaria
Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la
Profr. Efraín Soto Apolinar. Forma general
Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación
Ángulos formados por dos rectas paralelas y una secante
Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Máximos y mínimos usando la segunda derivada
Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya
Profr. Efraín Soto Apolinar. Productos notables
Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido
Profr. Efraín Soto Apolinar. Método de despeje
Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente
Profr. Efraín Soto Apolinar. Lugares geométricos
Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos
Parábolas con vértice fuera del origen
Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos
Operaciones con polinomios
1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión
Método de Igualación
Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
1 Razones y proporciones
1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos
Ecuaciones ordinarias de la parábola
Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice
Series y sucesión lineal
Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera
Coordenadas de un punto
Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados
Centro fuera del origen
Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos
Profr. Efraín Soto Apolinar. Suma de ángulos
Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema
Triangulación de polígonos. Perímetros y áreas
Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:
Ecuaciones de la tangente y la normal
Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos
Profr. Efraín Soto Apolinar. Función logarítmica
Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer
Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:
Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,
Profr. Efraín Soto Apolinar. La función racional
La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que
Aplicaciones en ciencias naturales, económico-administrativas y sociales
Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,
Clasificación y transformación de funciones
Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación
Funciones especiales
Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.
Congruencia de triángulos
Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen
Circunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,
Profr. Efraín Soto Apolinar. Polígonos
Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el
La integral indefinida
Apuntes Matemáticas º de bachillerato Leibniz Tema 7 La integral indefinida Matemáticas º de bachillerato 7. Introducción Def.: Dadas dos funciones, F() y f(), si se verifica que: F () f(), para un cierto
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO INTEGRACIÓN POR SUSTITUCIÓN
UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO COLEGIO DE CIENCIAS Y HUMANIDADES PLANTEL VALLEJO ÁREA DE MATEMÁTICAS CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRACIÓN POR SUSTITUCIÓN Las formulas de integración inmediatas
Integral indefinida. Integral indefinida es el conjunto de las infinitas primitivas que puede tener una función.
Integral indefinida 1. Integración Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones F(x) que al ser derivadas conducen a f(x). Se dice, entonces,
La función cuadrática
La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola
Potencias de exponente entero o fraccionario y radicales sencillos
Potencias de exponente entero o fraccionario y radicales sencillos I. Potencias de exponente entero La potencia es una operación matemática que sirve para representar la multiplicación de un número por
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Guía de Ejercicios: Métodos de Integración
Guía de Ejercicios: Métodos de Integración Área Matemática Resultados de aprendizaje Resolver integrales usando diferentes métodos de integración Contenidos 1. Método de sustitución simple 2. Método de
INTEGRAL INDEFINIDA. CÁLCULO DE PRIMITIVAS
urso 07-08 TEMA 0 INTEGRAL INDEFINIDA. ÁLULO DE PRIMITIVAS ÍNDIE I. INTRODUIÓN II. PRIMITIVA DE UNA FUNIÓN. INTEGRAL INDEFINIDA III. INTEGRALES INMEDIATAS IV. MÉTODOS DE INTEGRAIÓN A. MÉTODO DE SUSTITUIÓN.
Radicales y sus operaciones MATEMÁTICAS 2º CICLO E.S.O.
Radicales y sus operaciones MATEMÁTICAS º CICLO E.S.O. Objetivos: Simplificar radicales Efectuar operaciones de suma, resta, multiplicación y división con radicales Racionalizar parte de una fracción Notación:
1 Ecuaciones y propiedades de la recta
Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente
Desigualdades de dos variables
Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.
Triángulos. Definición y clasificación
Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y
Alumno/a:... Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente fraccionario.
Hoja Cálculos con radicales Calificación Alumno/a:... Curso: º E.S.O. A Definición de radical Lo primero que debes tener en cuenta cuando trabajes con radicales es que no son más que potencias con exponente
ANÁLISIS MATEMÁTICO IES A SANGRIÑA 2016/2017
ANÁLISIS MATEMÁTICO 4. INTEGRACIÓN INDEFINIDA UN POCO DE HISTORIA El símbolo de integración fue introducido por el matemático alemán Gottfried Leibniz en 1675, basándose en la palabra latina summa, suma,
1. Algunas primitivas inmediatas (o casi inmediatas)
Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:
UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.
UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números
Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.
1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio
Problemas resueltos del Boletín 4
Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:
CÁLCULO DE PRIMITIVAS
2 CÁLCULO DE PRIMITIVAS REFLEXIONA Y RESUELVE Concepto de primitiva NÚMEROS Y POTENCIAS SENCILLAS a) b) 2 c) 2 a) 2x b) x c) 3x 3 a) 7x b) c) x 4 a) 3x2 b) x2 c) 2x2 5 a) 6x 5 b) x5 c) 3x5 x 3 2 2 POTENCIAS
1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1
Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros
TEMA 3. Algebra. Teoría. Matemáticas
1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos
Ec. rectas notables en un triángulo
Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio
TEMA 12.- CÁLCULO DE PRIMITIVAS
TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()
Gráficas de las funciones racionales
Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que
Apellidos: Nombre: para x 1, determina sus asíntotas. 4. Halla el valor de los parámetros m y n para que la función f sea continua en todo.
EXAMEN DE MATEMÁTICAS CONTINUIDAD Y DERIVABILIDAD Apellidos: Nombre: Curso: º Grupo: C Día: 3- II- 6 CURSO 05-6. Halla el dominio de definición y recorrido de las funciones a) f(x)= 9 b) g(x)= 4. Calcula
Las operaciones con números irracionales
Las operaciones con números irracionales Antes de empezar a sumar, restar, multiplicar, y realizar cualquier tipo de las operaciones con números irracionales, debemos comprender como extraer, e introducir
5.1. Primitiva de una función. Reglas básicas
Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra
ACTIVIDAD 4.0 DEL PARCIAL 2
CECTEM ACTIVIDAD 4.0 DEL PARCIAL 2 En esta actividad trabajaremos con las integrales por partes, para lo cual definiremos u y dv, la u se derivara y la dv se integrara, para lo cual se utilizara la siguiente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 7 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
1. Límites Algebraicos. 2. Límites Trigonométricos. 3. Límites al infinito
Dependiendo de la clase de límite con la que nos encontremos, tenemos diferentes procedimientos para resolverlos. Para aprender cada procedimiento, haga Click sobre el nombre respectivo: 1. Límites Algebraicos
TEMA: 5 ÁLGEBRA 2º ESO
TEMA: 5 ÁLGEBRA º ESO 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente natural. Ejemplo: x
