Ec. rectas notables en un triángulo

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Ec. rectas notables en un triángulo"

Transcripción

1 Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio de un lado del triángulo el vértice opuesto lturas: Una altura es la recta que es perpendicular a un lado pasa por el vértice opuesto Mediatrices: Una mediatriz es la recta que pasa por el punto medio de un lado es perpendicular al mismo isectrices: Una bisectriz es la recta que divide a un ángulo en dos partes iguales En esta sección encontraremos las ecuaciones de las rectas notables de triángulos De manera analítica verificaremos algunas cosas que a estudiamos en geometría plana Medianas omo a se dió la definición de mediana, vamos directamente a un ejemplo El triángulo tiene sus vértices en los puntos (, ), (, 0) (, ) Encuentra la ecuación de la mediana que pasa por el punto medio del lado Ejemplo Empezamos calculando las coordenadas del punto medio del lado : = + = + = 0 ȳ = + ȳ = + 0 ȳ = hora sabemos que esa mediana pasa por los puntos M(0, ) el vértice opuesto al lado, es decir, por el punto (, ) Ya tenemos dos puntos, podemos encontrar la ecuación de la recta alculamos la pendiente de la mediana: m = = = hora encontramos la ecuación de la recta usando la forma punto-pendiente: = m ( ) ( ) ( ) = ( 0) + = ( + ) = + = 0 wwwaprendematematicasorgm /7

2 Entonces, la ecuación de esa mediana es: = 0 La siguiente figura muestra la situación del problema: + = 0 0 M(, ȳ) Mediana Reto Simplemente observando la figura del ejemplo anterior sin utilizar álgebra, encuentra la ecuación de la mediana que pasa por el punto medio del lado Podemos generalizar este problema un poco más si en lugar de encontrar la ecuación de una mediatriz solamente, nos avocamos a calcular las ecuaciones de las tres mediatrices del triángulo Podemos generalizar todavía más este problema si nos decidimos calcular la mediatriz de un triángulo que pasa por el punto medio de un lado dadas las coordenadas de sus vértices: ( a, a ), ( b, b ) ( c, c ) Siempre que tengas que calcular una ecuación, particularmente en estos problemas, se sugiere que siempre dibujes primero un gráfico que ilustre la situación sí tendrás acceso a información que no es evidente del teto del problema La gráfica siempre te audará de guia para tener orden en tus procedimientos cálculos Ejemplo alcula las ecuaciones de las tres medianas del triángulo que tiene sus vértices en los puntos (, ), (, ) (, ) Vamos a dibujar un gráfico para ordenar ideas: 0 wwwaprendematematicasorgm /7

3 Para tener un orden, primero vamos a calcular la mediana que pasa por el vértice, después la mediana que pasa por el punto finalmente la que pasa por el punto Mediana que pasa por (, ) alculamos las coordenadas del punto medio del lado : = + = + = 0 ȳ = + ȳ = ȳ = 0 El punto medio del lado es el origen del sistema de coordenadas 0 Mediana hora encontramos la pendiente de la mediana que pasa por los puntos M (0, 0) (, ): m = 0 0 = hora sustituimos los datos conocidos en la ecuación de la recta en la forma punto-pendiente: = m ( ) 0 = ( 0) = Entonces, la ecuación de la mediana que pasa por el punto medio del lado por el vértice (, ) es: = 0 Mediana que pasa por (, ) alculamos el punto medio del lado : = + = + = ȳ = + ȳ = ȳ = wwwaprendematematicasorgm /7

4 El punto medio del segmento es: M (, ) alculamos la pendiente de la mediana que pasa por los puntos: M (, ) (, ) La pendiente de esta recta es cero Esto nos indica que la recta es horizontal m = = 0 Mediana 0 alculamos la ecuación con la ecuación en su forma punto-pendiente: Esta es la ecuación de la mediana Mediana que pasa por (, ) = m ( ) = 0 ( ( )) = 0 alculamos el punto medio del lado : Es decir, M (, ) = + = = ȳ = + ȳ = + ȳ = hora calculamos la pendiente de la mediana, sabiendo que pasa por los puntos M (, ) (, ): m = ( ) = 4 = 4 hora calculamos la ecuación de la mediana usando los datos que a conocemos: ( ( ) = ) ( ) 4 4 ( + ) = ( ) = = 0 wwwaprendematematicasorgm 4/7

5 Mediana 0 Verifica que las tres medianas del triángulo del ejemplo anterior se cortan en un solo punto Reto lturas Debes recordar que una altura es la recta que es perpendicular a un lado del triángulo que pasa por el vértice opuesto al lado considerado Un triángulo tiene sus vértices en los puntos (, ), (, ) (, ) alcula la ecuación de la altura del triángulo que pasa por el vértice Ejemplo Dado que la altura es perpendicular a la base, tenemos que encontrar la pendiente de la base podremos entonces calcular la pendiente de la altura con la condición de perpendicularidad 0 ltura En este caso, las base es el lado alculamos su pendiente: m = ( ) ( ) = 6 = wwwaprendematematicasorgm 5/7

6 La pendiente de la altura es igual al recíproco de signo cambiado de la pendiente del lado : m = = ( ) = m hora podemos calcular la ecuación de la recta, porque sabemos que pasa por el punto (, ) tiene pendiente m = = m ( ) = ( ( )) = + = 0 hora vamos a calcular las ecuaciones de las tres alturas de un triángulo Ejemplo 4 Un triángulo tiene sus vértices en los puntos (, ), (, 0) (, ) alcula las ecuaciones de cada una de sus alturas Iniciamos calculando en el orden alfabético Primero calculamos la ecuación de la altura que pasa por el punto (, ) es perpendicular al lado ltura que pasa por el punto (, ) 0 ltura alculamos la pendiente del lado m = 0 ( ) = 5 = 5 La pendiente de la altura es el recíproco de signo cambiado, porque es perpendicular al lado : m h = = ( m ) = 5 5 wwwaprendematematicasorgm 6/7

7 hora podemos calcular la ecuación de esa altura, porque a conocemos su pendiente un punto por el cual pasa: = m ( ) ( ) 5 = ( ) ( ) = 5 ( ) 6 = = 0 Entonces, la ecuación de la altura es: 5 9 = 0 Vamos con el siguiente caso ltura que pasa por el punto (, 0) 0 ltura alculamos la pendiente del lado : m = = 5 = 5 La pendiente de esta altura es: m h = m = 5 Y la ecuación de esta altura es: = m ( ) 0 = ( ( )) 5 5 = = 0 Vamos con el último caso wwwaprendematematicasorgm 7/7

8 ltura que pasa por el punto (, ) alculamos la pendiente del lado : m = 0 ( ) = 6 = hora podemos conocer la pendiente de esta altura: m h = = ( ) = m Finalmente, calculamos la ecuación de esta altura: = m ( ) ( ) = ( ) + = = 0 0 ltura Mediatrices Ya sabemos que la mediatriz de un segmento es la recta que pasa por su punto medio además es perpendicular al mismo Ejemplo 5 Un triángulo tiene sus vértices en los puntos (0, ), (, ) (, ) Encuentra la mediatriz del lado Sabemos que la mediatriz pasa por el punto medio del lado Por eso necesitamos conocer la pendiente de ese lado: m = ( ) 0 = 5 wwwaprendematematicasorgm 8/7

9 La pendiente de la mediatriz, por ser perpendicular al lado es: m = = ( ) = m 5 5 Ya conocemos la pendiente de la mediatriz, pero necesitamos conocer, además, un punto por el cual pase Ese punto es el punto medio del lado : = + = 0 + = ȳ = + ȳ = + ȳ = 0 M Mediatriz hora podemos calcular la ecuación de esta mediatriz: 5 = m ( ) ( = ) ( ) 5 ( ) ( =, ) 5 5 = = 0 Esta es la ecuación de la mediatriz del lado Un triángulo tiene sus vértices en los puntos (, ), (, 6) (, ) Encuentra las ecuaciones de las mediatrices de todos sus lados Ejemplo 6 wwwaprendematematicasorgm 9/7

10 De nuevo, iniciamos en orden alfabético Mediatriz del lado Mediatriz M 0 4 alculamos la pendiente del lado : m = 6 ( ) = 8 = 4 La pendiente de la mediatriz la calculamos con la condición de perpendicularidad: m = m = 4 onocemos una condición (La pendiente de la mediatriz) Falta la segunda: un punto por donde debe pasar la mediatriz alculamos el punto medio de ese mismo lado: = + = + = ȳ = + ȳ = + 6 ȳ = wwwaprendematematicasorgm 0/7

11 hora calculamos la ecuación de la recta con la forma punto-pendiente: Mediatriz del lado = m ( ) ( = ) ( ) 4 4 ( ) = ( ) 4 8 = = M Mediatriz 0 4 Encontramos el valor de la pendiente del lado : m = 6 = 5 5 = La pendiente de la mediatriz de este lado debe ser hora calculamos las coordenadas del punto medio de ese lado = + = = ȳ = + ȳ = 6 + ȳ = 7 wwwaprendematematicasorgm /7

12 hora podemos calcular la ecuación de la mediatriz de ese lado: = m ( ) 7 ( = ( ) ) 7 = + 7 = = = 0 Mediatriz del lado Mediatriz 0 4 Empezamos calculando la pendiente de este lado: m = ( ) = = La pendiente de la mediatriz de este lado es: hora calculamos el punto medio de este lado: = + = + = ȳ = + ȳ = + ȳ = wwwaprendematematicasorgm /7

13 Finalmente, calculamos la ecuación de la mediatriz con los datos que acabamos de encontrar: = m ( ) ( ) ( ( = () )) + = + = Verifica que las tres mediatrices del triángulo del ejemplo anterior se cortan en un solo punto Reto isectrices Una bisectriz es la recta que divide a un ángulo en dos partes iguales Podemos decir que la bisectriz es el eje de simetría del ángulo Vamos a encontrar bisectrices de los ángulos de triángulos Para eso, primero tenemos que recordar la siguiente propiedad de la bisectriz de un ángulo: ada punto de la bisectriz equidista de los lados del ángulo: r isectriz r α α También vamos a necesitar la siguiente propiedad del valor absoluto: Si = a { bien = a, bien = a Para verificar que esto se cumple, puedes dar valores al número a sustituir en la propiedad Por ejemplo, supongamos que a = 5 Entonces, = 5 se cumple para = 5 para a = 5 también porque 5 = 5 Vamos a utilizar esta propiedad en la fórmula para calcular la distancia de un punto a una recta En esta fórmula está incluida la función valor absoluto (en el numerador) Entonces, tendremos dos soluciones, una cuando el argumento de esa función sea positivo otra cuando el argumento sea negativo Y esto tiene sentido geométricamente, porque para dos rectas que se cortan, podemos encontrar dos bisectrices: wwwaprendematematicasorgm /7

14 Nosotros solamente nos preocuparemos en que la bisectriz realmente esté dentro del triángulo Para esto, vamos a necesitar graficar la ecuación de la bisectriz que haamos obtenido de nuestros cálculos verificar que es así Otra forma de verificar consiste en calcular la distancia a un punto ver gráficamente que la medida tiene sentido con respecto a la bisectriz que calculamos que no tendría sentido con respecto a la otra bisectriz Ejemplo 7 alcula la ecuación de la bisectriz que pasa por el vértice del triángulo que tiene sus vértices en los puntos (, ), (, ) (, ) Empezamos graficando el triángulo vemos de qué lados equidistan los puntos de esa bisectriz: 0 4 isectriz De la figura es evidente que la bisectriz equidista de los lados Entonces, primero debemos encontrar las ecuaciones de esos lados del triángulo Ecuación del lado Primero calculamos su pendiente: m = + = 5 wwwaprendematematicasorgm 4/7

15 hora podemos calcular su ecuación: = m ( ) ( ) = ( ) 5 5 ( ) = 5 0 = = 0 Ya encontramos la ecuación del lado Ecuación del lado alculamos su pendiente: hora calculamos su ecuación: Ecuación de la bisectriz m = = 5 = 5 = ( ) 5 ( ) ( ) = 5 ( ) 4 = = 0 Sabemos que todo punto P(, ) sobre la bisectriz, equidista de los lados lgebraicamente, esto se representa como: = Vamos a resolver esta ecuación Observa que tenemos dos valores absolutos aso I Primero vamos a considerar los argumentos de ambos valores absolutos positivos 5 9 = (5 ) = 9 ( 5 + 7) = hora podemos simplificar esta ecuación de la siguiente manera: ( 5 6 ) ( ) ( ) 9 = = 0 wwwaprendematematicasorgm 5/7

16 hora debemos verificar que esta ecuación es la de la mediatriz que corta al ángulo interno del triángulo Para eso, despejamos obtenemos: = = + 56 En esta ecuación la pendiente es negativa, lo que nos indica que la recta es decreciente Es decir, cuando incrementamos en ha una disminución en Pero la gráfica de la bisectriz es creciente, por lo que tenemos que ir al siguiente caso aso II hora vamos a intentar resolver con un argumento de la función valor absoluto positivo el otro negativo Simplificando, obtenemos: ( ) 9 (5 ) = = ( ) = 9 ( 5 + 7) = ( ) ( ) 9 = = 0 l despejar para conocer la pendiente ordenada al origen de esta ecuación obtenemos: = Esta es la ecuación de la mediatriz del ángulo = En cualquier ejercicio, siempre bastará con probar los dos casos Pues en estos dos casos están contenidos los 4 posibles casos de la igualdad: l + = = l + Los cuatro casos posibles consisten en que el argumento de las funciones valor absoluto sean, bien positivo, bien negativo wwwaprendematematicasorgm 6/7

17 lbert Einstein réditos Todo debe hacerse tan simple como sea posible, pero no más Este material se etrajo del libro Matemáticas I escrito por Efraín Soto polinar La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor utor: Efraín Soto polinar Edición: Efraín Soto polinar omposición tipográfica: Efraín Soto polinar Diseño de figuras: Efraín Soto polinar Productor general: Efraín Soto polinar ño de edición: 00 ño de publicación: Pendiente Última revisión: de julio de 00 Derechos de autor: Todos los derechos reservados a favor de Efraín Soto polinar Méico 00 Espero que estos trucos se distribuan entre profesores de matemáticas de todos los niveles sean divulgados entre otros profesores sus alumnos Este material es de distribución gratuita Profesor, agradezco sus comentarios sugerencias a la cuenta de correo electrónico: efrain@aprendematematicasorgm wwwaprendematematicasorgm 7/7

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

Conversión de la forma general a la forma ordinaria

Conversión de la forma general a la forma ordinaria Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Ecuaciones ordinarias de la parábola

Ecuaciones ordinarias de la parábola Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

Profr. Efraín Soto Apolinar. Método Gráfico

Profr. Efraín Soto Apolinar. Método Gráfico Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

Problemas geométricos y algebraicos. Reglas de los exponentes

Problemas geométricos y algebraicos. Reglas de los exponentes Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.

Más detalles

Parábolas con vértice fuera del origen

Parábolas con vértice fuera del origen Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos

Más detalles

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas: Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Series y sucesión lineal

Series y sucesión lineal Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera

Más detalles

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS

APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

Triángulos. Definición y clasificación

Triángulos. Definición y clasificación Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y

Más detalles

PROBLEMAS RESUELTOS GEOMETRÍA

PROBLEMAS RESUELTOS GEOMETRÍA PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el

Más detalles

Denominadores con factores lineales

Denominadores con factores lineales Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores

Más detalles

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f

Más detalles

Congruencia de triángulos

Congruencia de triángulos Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen

Más detalles

Forma pendiente-ordenada al origen

Forma pendiente-ordenada al origen Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo

Más detalles

UNIDAD DIDÁCTICA 5: Geometría analítica del plano

UNIDAD DIDÁCTICA 5: Geometría analítica del plano UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La

Más detalles

Profr. Efraín Soto Apolinar. Función logarítmica

Profr. Efraín Soto Apolinar. Función logarítmica Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer

Más detalles

GEOMETRÍA ANALÍTICA DEL PLANO

GEOMETRÍA ANALÍTICA DEL PLANO GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del

Más detalles

20. Rectas y puntos notables

20. Rectas y puntos notables Matemáticas II, 2012-II Lugares geométricos En geometría es útil conocer varios lugares geométricos. Un lugar geométrico es un conjunto de puntos que satisfacen una cierta propiedad. Ejemplo 1. El lugar

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

TEMA 8 GEOMETRÍA ANALÍTICA

TEMA 8 GEOMETRÍA ANALÍTICA Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,

Más detalles

Cálculo vectorial en el plano.

Cálculo vectorial en el plano. Cálculo vectorial en el plano. Cuaderno de ejercicios MATEMÁTICAS JRM SOLUCIONES Índice de contenidos. 1. Puntos y vectores. Coordenadas y componentes. Puntos en el plano cartesiano. Coordenadas. Vectores

Más detalles

Ecuación ordinaria de la hipérbola

Ecuación ordinaria de la hipérbola Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones

Más detalles

Definición y clasificación de ángulos

Definición y clasificación de ángulos y clasificación de ángulos La palabra «geometría» viene de las palabras griegas «geo» que significa tierra y la palabra «metria» que significa medición. odemos traducir esta palabra como: «medición de

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Teoremas de los límites

Teoremas de los límites Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno

Más detalles

Boletín de Geometría Analítica

Boletín de Geometría Analítica Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

PROBLEMAS METRICOS. r 3

PROBLEMAS METRICOS. r 3 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices

Más detalles

Graficación de funciones sin tabulación

Graficación de funciones sin tabulación Graficación de funciones sin tabulación Cuando se les solicita a los estudiantes que grafiquen una función lineal o cuadrática, es mu común que los estudiantes empiecen tabulando valores de a partir de

Más detalles

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)

1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0) 1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por

Más detalles

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187

Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187 Resuelve Página 87 El embarcadero A Tenemos dos pueblos, A y B, cada uno a un lado de un canal. Se desea construir un embarcadero situado exactamente a la misma distancia de los dos pueblos. Dónde habrá

Más detalles

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta.

LA FUNCIÓN LINEAL: Ecuaciones y aplicaciones de la línea recta. INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : MATEMÁTICAS ASIGNATURA: GEOMETRÍA DOCENTE: JOSÉ IGNACIO DE JESÚS FRANCO RESTREPO TIPO DE GUIA: CONCEPTUAL - EJERCITACION PERIODO GRADO N FECHA

Más detalles

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:

1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,

Más detalles

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura.

O -2-1 1 2 X -1- -2- de coordenadas, y representamos los números sobre cada eje, eligiendo en ambos ejes la misma unidad, como muestra la figura. MATEMÁTICA I Capítulo 1 GEOMETRÍA Plano coordenado Para identificar cada punto del plano con un par ordenado de números, trazamos dos rectas perpendiculares que llamaremos eje y eje y, que se cortan en

Más detalles

TEMA N 2 RECTAS EN EL PLANO

TEMA N 2 RECTAS EN EL PLANO 2.1 Distancia entre dos puntos1 TEMA N 2 RECTAS EN EL PLANO Sean P 1 (x 1, y 1 ) y P 2 (x 2, y 2 ) dos puntos en el plano. La distancia entre los puntos P 1 y P 2 denotada por d = esta dada por: (1) Demostración

Más detalles

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.

ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas. ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas

Más detalles

TEMA 5. GEOMETRÍA ANALÍTICA

TEMA 5. GEOMETRÍA ANALÍTICA TEMA 5. GEOMETRÍA ANALÍTICA 6.1. Ecuaciones de la recta. - Vector director. - Ecuación vectorial. - Ecuaciones paramétricas. - Ecuación contínua. - Ecuación general. - Ecuación punto-pendiente. - Ecuación

Más detalles

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .

LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE . LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O

Más detalles

Universidad Icesi Departamento de Matemáticas y Estadística

Universidad Icesi Departamento de Matemáticas y Estadística Universidad Icesi Departamento de Matemáticas y Estadística Solución del primer eamen parcial del curso Cálculo de una variable Grupos: Uno y Cinco Período: Inicial del año 00 Prof: Rubén D. Nieto C. PUNTO.

Más detalles

sen sen sen a 2 a cos cos 2 a

sen sen sen a 2 a cos cos 2 a BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Problemas aritméticos

Problemas aritméticos Problemas aritméticos En las matemáticas los números y los conjuntos son la base de toda la demás teoría. Por eso es importante saber realizar las operaciones básicas con ellos: suma, resta, multiplicación

Más detalles

3. 2. Pendiente de una recta. Definición 3. 3.

3. 2. Pendiente de una recta. Definición 3. 3. 3.. Pendiente de una recta. Definición 3. 3. Se llama Angulo de Inclinación α de una recta L, al que se forma entre el eje en su dirección positiva y la recta L, cuando esta se considera dirigida hacia

Más detalles

a intersección de los semiplanos aa, bb y cc lo llamaremos el triángulo determinado por los puntos A, B y C y lo

a intersección de los semiplanos aa, bb y cc lo llamaremos el triángulo determinado por los puntos A, B y C y lo apítulo 3 Triángulos Luego de las rectas y los ángulos, las figuras más sencillas en el plano son los triángulos, que pasamos a estudiar a continuación. Sean, y tres puntos no colineales en el plano, a

Más detalles

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente:

LA RECTA. Recuerda: Ejercicios de autoaprendizaje 1. Sea la gráfica siguiente: LA RECTA Recuerda: Una recta es una función de la forma y = mx + n, siendo m y n números reales m es la pendiente de la recta y n es la ordenada en el origen La ordenada en el origen nos indica el punto

Más detalles

LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA

LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA Definimos una línea recta como una sucesión infinita de puntos consecutivos que se extienden en una misma dirección. Ahora, nuestros esfuerzos

Más detalles

TEMA 5 FUNCIONES ELEMENTALES II

TEMA 5 FUNCIONES ELEMENTALES II Tema Funciones elementales Ejercicios resueltos Matemáticas B º ESO TEMA FUNCIONES ELEMENTALES II Rectas EJERCICIO. Halla la pendiente, la ordenada en el origen y los puntos de corte con los ejes de coordenadas

Más detalles

ECUACIÓN DE LA RECTA

ECUACIÓN DE LA RECTA ECUCIÓN DE L RECT.- PRIMERO DE BCHILLERTO.- TEORÍ Y EJERCICIOS. Pág. ECUCIÓN DE L RECT Sistema de referencia. Es el conjunto formado por: Un punto O del plano llamado origen. Una base B {i, j } para los

Más detalles

CÁLCULO SIMBÓLICO Y GEOMETRÍA CON MAPLE. Recta. Ricardo Villafaña Figueroa

CÁLCULO SIMBÓLICO Y GEOMETRÍA CON MAPLE. Recta. Ricardo Villafaña Figueroa CÁLCULO SIMBÓLICO Y GEOMETRÍA CON MAPLE Recta 2 Contenido Definición de una línea recta a partir de su representación algebraica... 3 Ecuación de la recta dada dos puntos... 6 Intersección entre dos rectas...

Más detalles

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.

MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares. ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la

Más detalles

Integral indefinida de funciones algebraicas

Integral indefinida de funciones algebraicas Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar

Más detalles

Los números complejos

Los números complejos 7 Los números complejos 1. Forma binómica del número complejo Piensa y calcula Halla mentalmente cuántas soluciones tienen las siguientes ecuaciones en el conjunto de los números reales. a) x 2 25 = 0

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA

MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA 1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición

Más detalles

Lección 10: Representación gráfica de algunas expresiones algebraicas

Lección 10: Representación gráfica de algunas expresiones algebraicas LECCIÓN Lección : Representación gráfica de algunas epresiones algebraicas En la lección del curso anterior usted aprendió a representar puntos en el plano cartesiano y en la lección del mismo curso aprendió

Más detalles

Veamos sus vectores de posición: que es la ecuación vectorial de la recta:

Veamos sus vectores de posición: que es la ecuación vectorial de la recta: T.5: ECUACIONES DE LA RECTA 5.1 Ecuación vectorial de la recta Una recta queda determinada si se conoce un vector que lleve su dirección (de entre todos los vectores proporcionales), llamado vector director,

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A

ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A GEOMETRÍA ANALÍTICA CENTRO DE ESTUDIOS DE BACHILLERATO LIC. JESÚS REYES HEROLES ACADEMIA DE FÍSICO-MATEMÁTICAS CICLO ESCOLAR TERCER SEMESTRE G E O M É T R Í A GUÍA A N A L Í T I C A G U Í A E X A M E N

Más detalles

EJERCICIOS BLOQUE III: GEOMETRÍA

EJERCICIOS BLOQUE III: GEOMETRÍA EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es

Más detalles

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS

GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS 8 GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 88 PARA EMPEZAR, REFLEXIONA Y RESUELVE Punto medio de un segmento ;;;;;; Toma los puntos P (, ), Q (0, ) y represéntalos en el plano: ;;;;;; P

Más detalles

Ecuaciones exponenciales y logaritmicas

Ecuaciones exponenciales y logaritmicas Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3

Más detalles

Preparación olímpica III: geometría

Preparación olímpica III: geometría Preparación olímpica III: geometría Teoría Adrián Rodrigo Escudero 20 de noviembre de 2015 Los problemas de geometría, como el resto de problemas de olimpiada, están pensados para que no sean necesarios

Más detalles

Educacio n Pla stica y Visual. Pra cticas con Geogebra

Educacio n Pla stica y Visual. Pra cticas con Geogebra Educacio n Pla stica y Visual Pra cticas con Geogebra Curso: 3o ESO Curso 2014-15 IES no1 de Ribeira Índice general 1. Triángulos 3 1.1. Dibujar el que viene definido por los vértices: A(2, 6), B(8, 10)

Más detalles

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos:

rad, y rad = 360 Ejercicio 1 Realizar las conversiones de grados a radianes y de radianes a grados de los siguientes ángulos: Trigonometría 1.- Ángulos En la medida de ángulos, y por tanto en trigonometría, se emplean dos unidades, si bien la más utilizada en la vida cotidiana es el grado sexagesimal, en matemáticas es el radián

Más detalles

FUNCIONES CUADRÁTICAS. PARÁBOLAS

FUNCIONES CUADRÁTICAS. PARÁBOLAS FUNCIONES CUADRÁTICAS. PARÁBOLAS 1. FUNCIONES CUADRÁTICAS Representemos, en función de la longitud de la base (x), el área (y) de todos los rectángulos de perímetro 1 metros. De ellos, cuáles son las medidas

Más detalles