Profr. Efraín Soto Apolinar. Forma normal
|
|
|
- Concepción Montoya Giménez
- hace 9 años
- Vistas:
Transcripción
1 Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su forma normal es: A x + B y + C A 2 + B 2 = A A 2 + B 2 x + B A 2 + B 2 y + C A 2 + B 2 = 0 Definición donde A, B, C R y los coeficientes A, B no pueden ser cero simultáneamente. Para obtener esta ecuación basta dividir ambos lados de la ecuación de la recta en su forma general entre A 2 + B 2. Encuentra la ecuación en forma normal de la recta: 2 x 5y + = 0. Ejemplo En este ejemplo necesitamos convertir la ecuación de la recta en forma general a la forma normal. Para eso basta calcular el valor del denominador: A 2 + B 2 y dividir ambos lados de la ecuación (en su forma general) por ese valor. A 2 + B 2 = (2) 2 + ( 5) 2 = = 69 = 3 Entonces, la ecuación simétrica la obtenemos dividiendo entre 3: 2 3 x 5 3 y + 3 = 0 En este primer ejemplo obtuvimos un valor entero para A 2 + B 2, pero eso no siempre ocurrirá. La mayoría de las veces encontraremos raíces de números que no se podrán simplificar. En esos casos es mejor dejar indicada la raíz y no escribir decimales. Es más fácil de entender la ecuación mientras menos decimales contenga y es más fácil de escribir la ecuación cada vez. El siguiente ejemplo muestra uno de esos casos. Encuentra la ecuación (forma normal) de la recta que tiene pendiente m = 4 y que pasa por el punto P(, 3). Ejemplo 2 Empezamos calculando la ecuación en forma punto-pendiente, así obtenemos su forma general y finalmente calculamos la ecuación en la forma normal. Fase A: Ecuación en forma punto-pendiente: y 3 = 4 (x ) y 3 = 4 x x + y + = 0 /5
2 Fase B: Convertimos a la forma normal. Calculamos el valor de A 2 + B 2 : A 2 + B 2 = = 6 + = 7 Dividimos ambos lados de la ecuación en forma general entre 7 y así obtenemos la ecuación en la forma normal: 4 x + y + = Esta es la ecuación que deseabamos calcular. Ejemplo 3 Calcula la ecuación (forma normal) de la recta que pasa por los puntos P(5, ) y Q(, 5). Primero debemos calcular la pendiente de la recta, después vamos a utilizar la forma puntopendiente y finalmente debemos convertir a la forma normal. Fase A: Encontramos la pendiente de la recta: m = y 2 y x 2 x = 5 5 = 4 4 = Fase B: Sustituimos en la ecuación de la recta en su forma punto-pendiente: Fase C: Convertimos a la forma normal. y = ( ) (x 5) y = x + 5 x + y 6 = 0 Primero calculamos el valor del denominador: A 2 + B 2 = = 2 Finalmente dividimos la ecuación de la recta en su forma general entre 2 para convertirla a la forma normal: x + y 6 = Y terminamos. Ejemplo 4 Calcula la ecuación de la recta que es paralela a la recta 3 x y + 2 = 0 y que pasa por el punto P(, ). Dado que las rectas son paralelas, sus pendientes son iguales. 2/5
3 Para conocer la pendiente de la recta cuya ecuación conocemos, despejamos y: Entonces, m = 3 y b = 2. y = 3 x + 2 Ahora vamos a sustituir m = 3 y P(, ) en la ecuación de la recta en su forma puntopendiente: y = 3 (x ( )) y = 3 x + 3 x + y 2 = 0 3 x y + 2 = 0 Ahora vamos a convertirla a la forma normal. Calculamos el valor del denominador: A 2 + B 2 = (3) 2 + ( ) 2 = 0 Ahora dividimos la ecuación en la forma general entre 0 para obtener la forma normal: 3 x y + 2 = Esta es la ecuación de la recta en su forma normal. Calcula la ecuación de la recta que es perpendicular a la recta x + 2 y 2 = 0 y que pasa por el punto P(2, ). Ejemplo 5 Sabemos que las rectas son perpendiculares, por eso podemos usar la condición de perpendicularidad para encontrar la pendiente de la recta cuya ecuación queremos encontrar. Primero calculamos la pendiente de la recta que conocemos, para eso despejamos y: x + 2 y 2 = 0 x 2 = 2 y 2 x + = y Entonces, m = /2 y b =. Ahora encontramos la pendiente de la recta perpendicular a ésta con la condición de perpendicularidad: m 2 = = ( m ) = /5
4 Ahora sustituimos los datos conocidos en la ecuación de la recta en la forma punto-pendiente: y 2 = 2 (x ( )) y 2 = 2 x x + y 4 = 0 2 x y + 4 = 0 Y finalmente, la vamos a convertir a la forma normal. Calculamos el valor del denominador: A 2 + B 2 = ( ) 2 = 5 Ahora dividimos ambos lados de la ecuación en forma general entre 5 y terminamos: 2 x y + 4 = Esta forma de la recta nos ayuda a calcular la distancia de un punto P(x, y ) hasta una recta cuando concemos su ecuación: A x + B y + C = 0, que es lo que estudiaremos en el siguiente y último tema de esta unidad. Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 200 Año de publicación: Pendiente. Última revisión: 3 de julio de 200. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México /5
5 Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: [email protected] 5/5
Profr. Efraín Soto Apolinar. Forma general
Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación
La diferencial como aproximación al incremento
La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.
1 Ecuaciones y propiedades de la recta
Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente
Conversión de la forma general a la forma ordinaria
Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la
Int. indefinida de funciones exponenciales
Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de
Profr. Efraín Soto Apolinar. Método de despeje
Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente
Triangulación de polígonos. Perímetros y áreas
Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:
Funciones especiales
Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.
Método de fórmula general
Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula
Problemas geométricos y algebraicos. Reglas de los exponentes
Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.
Profr. Efraín Soto Apolinar. Suma de ángulos
Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema
Profr. Efraín Soto Apolinar. La función racional
La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que
Método de Igualación
Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que
Circunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,
Profr. Efraín Soto Apolinar. Productos notables
Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido
Ec. rectas notables en un triángulo
Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio
Series y sucesión lineal
Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera
Desigualdades de dos variables
Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.
La función cuadrática
La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola
Reglas del producto y del cociente
Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones
Ecuación general de la circunferencia
Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso
Interpretación gráfica
Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con
Gráficas de las funciones racionales
Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que
Técnicas de integración. Cambio de variable
Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere
Profr. Efraín Soto Apolinar. Método Gráfico
Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición
Funciones crecientes y decrecientes
Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f
Forma pendiente-ordenada al origen
Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Integración de funciones trigonométricas
Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este
Ecuaciones exponenciales y logaritmicas
Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3
Denominadores con factores lineales
Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores
Teoremas de los límites
Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno
Método de Sustitución
Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las
Problemas aritméticos
Problemas aritméticos En las matemáticas los números y los conjuntos son la base de toda la demás teoría. Por eso es importante saber realizar las operaciones básicas con ellos: suma, resta, multiplicación
Resolución de Ecuaciones de Segundo Grado
Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también
Derivadas de orden superior
Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente
S.E.L.: 3 ecuaciones con 3 incógnitas
1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para
Diferenciabilidad en un intervalo
Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en
La derivada como razón de cambio instantánea
La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos
Ecuación ordinaria de la hipérbola
Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones
1 Razones y Proporciones
1 Razones y Proporciones 1 1 Razones y Proporciones En la vida real surgen muchas ocasiones en las que deseamos comparar dos cantidades. Para compararlas tenemos muchas opciones válidas, pero la que nos
La derivada. Razón de cambio promedio e instantánea
La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,
Ecuaciones ordinarias de la parábola
Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice
Ecuaciones de la tangente y la normal
Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos
Ángulos formados por dos rectas paralelas y una secante
Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva
Profr. Efraín Soto Apolinar. Lugares geométricos
Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos
Profr. Efraín Soto Apolinar. Lenguaje algebraico
Lenguaje algebraico Las matemáticas son un lenguaje, hecho por los humanos para los humanos. Como todo lenguaje, tiene sus reglas, y si conoces sus reglas, podrás entender todas las matemáticas. Evidentemente,
Profr. Efraín Soto Apolinar. Variación inversa. entonces,
Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el
Centro fuera del origen
Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos
Operaciones con polinomios
1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión
Definición y Clasificación de Polígonos. Definición
Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono
Integral indefinida de funciones algebraicas
Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar
Parábolas con vértice fuera del origen
Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos
Profr. Efraín Soto Apolinar. Polígonos
Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el
Límites de funciones
Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las
Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:
Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,
Máximos y mínimos usando la segunda derivada
Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?
. Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta
1 Razones y proporciones
1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada
Coordenadas de un punto
Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados
Definición y clasificación de ángulos
y clasificación de ángulos La palabra «geometría» viene de las palabras griegas «geo» que significa tierra y la palabra «metria» que significa medición. odemos traducir esta palabra como: «medición de
Aplicaciones en ciencias naturales, económico-administrativas y sociales
Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,
Triángulos. Definición y clasificación
Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y
Profr. Efraín Soto Apolinar. Función logarítmica
Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer
Graficación de funciones sin tabulación
Graficación de funciones sin tabulación Cuando se les solicita a los estudiantes que grafiquen una función lineal o cuadrática, es mu común que los estudiantes empiecen tabulando valores de a partir de
Notas del curso de Introducción a los métodos cuantitativos
Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una
Ecuaciones de Primer Grado
Ecuaciones de Primer Grado Vamos a empezar el estudio de las ecuaciones de primer grado con el caso más sencillo. Poco a poco iremos estudiando casos más complicados. Ec. de Primer Grado con una incógnita
Propiedades de la igualdad
Propiedades de la igualdad El álgebra es la rama de las maemáicas que se dedica al esudio de las propiedades de objeos maemáicos. Un objeo maemáico puede ser un número, una ecuación, un vecor, ec. Por
Profr. Efraín Soto Apolinar. Área bajo una curva
Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura
Polinomios. 1.- Funciones cuadráticas
Polinomios 1.- Funciones cuadráticas Definición 1 (Función polinomial) Sea n un entero no negativo y sean a n, a n 1,..., a, a 1, a 0 número s reales con a n 0. La función se denomina función polinomial
ECUACIÓN DE LA RECTA. Dibujando los ejes de coordenadas y representando el punto vemos que está situado sobre el eje de abscisas.
ECUACIÓN DE LA RECTA. El punto (, 0) está situado: a) Sobre el eje de ordenadas. b) En el tercer cuadrante. c) Sobre el eje de abscisas. (Convocatoria junio 00. Examen tipo D) Dibujando los ejes de coordenadas
Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)
Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:
Congruencia de triángulos
Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen
P. A. U. LAS PALMAS 2005
P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica
TEMA 1: Funciones elementales
MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace
SISTEMAS DE ECUACIONES Y DE INECUACIONES
SISTEMAS DE ECUACIONES Y DE INECUACIONES SISTEMAS DE ECUACIONES 1.- Sistemas de ecuaciones lineales Un sistema ( ecuaciones y incógnitas) es un sistema de la forma: a11xa1 y b1 a1xa y b donde a11, a1,
UNIDAD 4.- INECUACIONES Y SISTEMAS (tema 4 del libro)
UNIDAD 4. INECUACIONES Y SISTEMAS (tema 4 del libro) 1. INECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA Definición: Se llama desigualdad a toda relación entre epresiones numéricas o algebraicas unidas por
APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS
APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS
VALOR ABSOLUTO. Definición.- El valor absoluto de un número real, x, se define como:
VALOR ABSOLUTO Cualquier número a tiene su representación en la recta real. El valor absoluto de un número representa la distancia del punto a al origen. Observe en el dibujo que la distancia del al origen
Resolución. Resolución gráfica de problemas de optimización
Resolución de problemas de optimización Para resolver mente un problema de optimización como éste empezamos representando sus restricciones con igualdad. (0, 4) (0, 4) (4, 0) Para resolver mente un problema
La lección de hoy es sobre como encontrar la pendiente. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.6
LF.3 A1.6 Fining Slope-Student Learner Expectation. La lección de hoy es sobre como encontrar la pendiente. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.6 Primero hablaremos de
GEOMETRÍA EN EL PLANO. Dos rectas perpendiculares tienen las pendientes inversas y de signo contrario. Calculamos la pendiente de la recta dada:
GEOMETRÍA EN EL PLANO. La ecuación de la recta que pasa por el punto A(4, 6) y es perpendicular a la recta 4x y + = 0 es: A) x + y + 8 = 0 B) 6x 4y 48 = 0 C) x + y = 0 (Convocatoria junio 00. Examen tipo
LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA
LA LÍNEA RECTA ÁNGULO DE INCLINACIÓN Y PENDIENTE DE UNA RECTA Definimos una línea recta como una sucesión infinita de puntos consecutivos que se extienden en una misma dirección. Ahora, nuestros esfuerzos
UNIDAD DIDÁCTICA 5: Geometría analítica del plano
UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del punto medio de un segmento 4. La
Vectores y rectas. 4º curso de E.S.O., opción B. Modelo de examen (ficticio)
demattematicaswordpresscom Vectores y rectas º curso de ESO, opción B Modelo de examen (ficticio) Sean los vectores u = (,5) y v = (, ) a) Analiza si tienen la misma dirección No tienen la misma dirección
GEOMETRÍA ANALÍTICA DEL PLANO
GEOMETRÍA ANALÍTICA DEL PLANO 1 UNIDAD DIDÁCTICA 5: Geometría analítica del plano 1. ÍNDICE 1. Sistemas de referencia y coordenadas puntuales 2. Distancia entre dos puntos del plano 3. Coordenadas del
LECCIÓN 9 5 PROBLEMAS RESUELTOS
LECCIÓN 9 PROBLEMAS RESUELTOS Problema. El largo de un rectángulo mide 8 m y su ancho mide 2 m. Cuál de las siguientes es la mayor longitud de una varilla que cabe exactamente tanto en el largo como en
Clasificación y transformación de funciones
Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación
Ejemplo 1: Representar las siguientes rectas. = 3 =2 2
Ejemplo 1: Representar las siguientes rectas. =3 =22 =2 Para definir una recta es necesario calcular al menos dos puntos de ella. Para calcular dichos puntos vamos a hacer una tabla de valores. Para hacer
EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA
MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la
Aplicaciones de la derivada
0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de
UNIDAD DE APRENDIZAJE II
UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS
CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos
