Aplicaciones de la derivada

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones de la derivada"

Transcripción

1 0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de la vida real se requiere de la optimización de una cantidad. Otras veces, la naturaleza opera de manera que minimiza algo, por ejemplo, la electricidad siempre pasa a través del medio que ofrece mínima resistencia, la luz, al pasar de un medio a otro, siempre sigue una traectoria que hace mínimo el tiempo de traecto de un punto a otro, etc. En este tipo de problemas siempre es recomendable primero identificar la variable que se desea minimizar (o maimizar), luego hacer un modelo matemático del problema relacionando las variables que están involucradas en el problema. Después optimizar (minimizar o maimizar) la cantidad que deseamos. 0.1 Problemas prácticos de máimos mínimos Encuentra dos números que su suma sea 10 su producto sea máimo. Ejemplo 1 Sean e los dos números buscados. Dado que su suma es 10, se cumple: + = 10. De esta ecuación podemos despejar obtener: = 10. En palabras esto nos dice que si un número es el otro debe ser 10. Eso es obvio, pues los dos números suman 10. Queremos que el producto p = sea máimo. Entonces, p = = (10 ) = 10 Para maimizar la función derivamos, igualamos a cero resolvemos para : dp d = 10 = 5 Si la suma de dos números es diez uno de ellos es 5, pues el otro también debe ser cinco. Verifica este resultado calculando los productos de los números enteros positivos que sumados dan diez. Un granjero tiene 50 metros de malla para cercar un corral para caballos. Él desea que el corral sea rectangular que tenga la maor superficie posible. Cuáles son las dimensiones de ese corral? Ejemplo Empezamos haciendo un dibujo para ilustrar la situación:

2 0.1 Problemas prácticos de máimos mínimos A = Ya sabemos que tiene 50 metros de malla. Entonces, el perímetro del corral será esa distancia. Matemáticamente de acuerdo a la figura tenemos: + = 50 + = 15 De esta ecuación podemos despejar obtener: = 15 Esto nos permite reescribir el área del corral como: A = = (15 ) = 15 Nosotros queremos maimizar el área del corral, así que: da d = 15 = 0 = 15 = 6.5 metros. La base del rectángulo, es decir, el largo del corral será de 6.5 metros. La altura del rectángulo, es decir, el ancho del corral será de: = 15 = = 6.5 metros. En otras palabras, el corral que tiene la maor superficie es un cuadrado donde cada lado mide 6.5 metros. El perímetro del corral es: (4)(6.5) = 50 metros. El área del corral es: (6.5)(6.5) = metros cuadrados. Ejemplo Considerando el problema del ejemplo anterior, ahora el granjero decide colocar el corral de manera que una pared que tiene de un granero sirva como una de las paredes para aumentar el área para los caballos en el corral. Qué dimensiones tendrá ahora el corral? Ahora tenemos la siguiente situación geométrica:

3 0.1 Problemas prácticos de máimos mínimos Pared A = Ahora los 50 metros de malla que tiene para cercar tendrán que cubrir los lados indicados en la figura. Entonces, la ecuación del perímetro será ahora: + = 50 = 15 Y la fórmula para el área del corral será: A = = (15 ) = 15 Para calcular el máimo de esta función, derivamos e igualamos a cero: da d Ahora podemos calcular el valor de : = 15 = 0 = 15 metros. Y el área del nuevo corral será: = 15 = = 6.5 metros. Con lo que terminamos. A = = (15)(6.5) = metros cuadrados. Verifica que el punto crítico que hemos encontrado se trata de un máimo. El diseño de la página de un libro contempla un margen alrededor del teto de una pulgada de ancho. Cuáles deben ser las dimensiones de la página para que el área de teto sea la maor posible si el área total de la página será de 10 pulgadas cuadradas? Ejemplo 4 Este problema involucra ahora dos áreas. El área que deseamos maimizar es el área donde estará el teto del libro. La siguiente figura muestra gráficamente la situación:

4 0.1 Problemas prácticos de máimos mínimos 4 Margen Teto de la página 1 1 El área de toda la página es: A h = = 10. De aquí podemos despejar para obtener: = 10/. Por otra parte, el área de teto que contendrá el libro es: A t = ( )( ). Ahora sustituimos = 10/ en la fórmula para el área de teto: ( ) 10 A t = ( )( ) = ( ) = = Para calcular las dimensiones de la hoja, debemos derivar la función, igualar a cero resolver para : da t dt = + 40 = 0 = ± La otra variable la calculamos con la fórmula: = 10/: Entonces, la hoja debe ser cuadrada. = 10/ 10 = Ejemplo 5 Se requiere del envío de unos paquetes de esponja para la fabricación de mochilas especiales. Para su envío se deben diseñar construir cajas con 0 metros cuadrados de material en su construcción debe tener al menos una cara cuadrada. Qué dimensiones debe tener la caja para que tenga el máimo volumen? Tenemos la siguiente situación geométrica: V = Necesitamos maimizar el volumen de la caja usando 0 m de superficie de material en su construcción.

5 0.1 Problemas prácticos de máimos mínimos 5 Primero encontramos la superficie que se utiliza en su construcción: A = + 4 = 0 + = 10 Ahora que conocemos cómo están relacionadas las variables e podemos despejar obtenemos: 10 = Este resultado nos será útil, porque si sustituimos este valor en lugar de en la fórmula del volumen de la caja obtenemos una función de una sola variable: ( 10 V = ) = = 5 Ahora podemos calcular la derivada de esta función calcular su máimo: dv d = 5 10 = 0 = ± Como no podemos asignar un valor negativo a una de las dimensiones, tenemos que metros. La otra dimensión es: = 10 = ( ) = ( ) = Es decir, = = 10/ En otras palabras, la caja debe ser un cubo perfecto para que tenga el máimo volumen. Para verificar que en realidad se trata de un máimo, calculamos la segunda derivada evaluamos en = 1.857: d V d = Como > 0, tenemos que < 0: se trata de un máimo. Un profesor de física lanza una moneda al aire de forma que su altura h medida en metros desde el suelo t segundos después de haber sido lanzada, está dada por: h(t) = t t Ejemplo 6 En qué momento la moneda alcanza la máima altura? El problema pide que calculemos el instante en que la moneda alcanza la máima altura. Para eso tenemos que derivar la función e igualar a cero: dh dt 1 = t = 0 t = 1. segundos. 9.81

6 0.1 Problemas prácticos de máimos mínimos 6 Observa que la máima altura que alcanza la piedra es: h(t) = (1.) (1.) =.947 metros. Eso debe ocurrir cuando la piedra deje de subir empiece a bajar. Es decir, cuando la velocidad de la piedra sea cero. Y a sabemos que la velocidad de la piedra se calcula con la derivada de la posición. Entonces, el problema físico se apega al problema geométrico. La pendiente de la recta tangente a la gráfica de la función se hace cero cuando tiene un máimo. Que corresponde a la velocidad de la piedra igual a cero. Para verificar que se trata de un máimo podemos utilizar el criterio de la segunda derivada: Y hemos terminado. d h = 9.81 < 0 es un máimo. dt Se te queda como ejercicio graficar h(t) = t t. Ejemplo 7 Una recta pasa por el punto P(6, ) forma un triángulo en el primer cuadrante con sus vértices en las intersecciones de la recta con los ejes coordinados en los puntos: M(a, 0) N(0, b). Calcula la ecuación de la recta que hace que el área del triángulo sea mínima. Empezamos dibujando la situación en un plano cartesiano: b P(4, ) 4 a Sabemos que las intersecciones de la recta con los ejes son los puntos: M(a, 0) N(0, b).

7 0.1 Problemas prácticos de máimos mínimos 7 Con ellos podemos calcular la pendiente de la recta: m = 1 1 = b a Ahora podemos calcular la ecuación de la recta, dado que a conocemos su pendiente su ordenada al origen: = m + b = b a + b ( = b 1 ) ( ) a = b a a Como pasa por el punto P(4, ), se cumple: = ( ) a 4 b a a a 4 = b El área del triángulo es A = a b, porque la base es a su altura b. Entonces, ( ) a A = a b = a = a a 4 a 4 Para encontrar la mínima área derivamos resolvemos para a. Definimos: u = a, v = a 4. Entonces, du = 4 a dv = 1. Sustituendo estos resultados en la regla para derivar un cociente, obtenemos: da db = (a 4) (4a) ( a ) (1) (a 4) = 4 a 16 a a (a 4) = a 16 a (a 4) = 0 a = 16 a a = 8 Ahora que conocemos el valor de a podemos calcular el de b: b = a a 4 = (8) 8 4 = 4 Entonces, la ecuación de la recta es que pasa por el punto P(4, ) que forma un triángulo en el primer cuadrante con mínima área es: = = La gráfica de esta recta es la siguiente:

8 0.1 Problemas prácticos de máimos mínimos P(4, ) = Ejemplo 8 Qué número ecede a su cuadrado en la maor cantidad? Si observas, para > 1, >, por lo que no esperamos que el resultado de este problema sea un número mao a 1. Por otra parte, si está entre cero uno, entonces, <. La función que calcula el ecedente de un número con su cuadrado es: = Necesitamos calcular su máimo: d d = 1 = 1 Entonces, = 0.5 es el número que ecede a su cuadrado en la maor cantidad. Verifica este resultado realizando los cálculos con unos cuantos valores diferentes entre cero uno. Ejemplo 9 Encuentra los dos números, tales que + = 10, además la suma de sus cuadrados: M = + es mínima. Como los dos números suman 10, si uno de ellos es, el otro es: 10. Queremos minimizar la suma: M = + = + (10 ) = =

9 0.1 Problemas prácticos de máimos mínimos 9 Para calcular el mínimo de esta suma, derivamos respecto a, igualamos a cero resolvemos: dm d = 4 0 = 0 = 5 Entonces, = 5, el mínimo valor que toma M es: M = = 50. Se desea dibujar un rectángulo con perímetro P con maor área posible. Demuestra que dicho rectángulo es un cuadrado. Ejemplo 10 Sean el largo el ancho del rectángulo: P = + A = Su perímetro P = +. De donde: = P El área del rectángulo es: ( ) P A = = = P Para calcular el largo del rectángulo con máima área, derivamos A() respecto de, igualamos a cero resolvemos: da d = P = 0 = P 4 Es decir, el largo es igual a la cuarta parte del perímetro. El ancho del rectángulo es: = P = P P 4 = P 4 Entonces, el largo el ancho miden eactamente igual. En otras palabras, el rectángulo tiene sus cuatro lados iguales es un cuadrado.

10 0.1 Problemas prácticos de máimos mínimos 10 Ejercicios 0.1 Resuelve cada uno de los siguientes problemas. 1) Encuentra dos números cua suma sea 0 cuo producto sea máimo ) Qué número ecede a su cubo en la maor cantidad? ) Encuentra dos números positivos cuo producto sea 0 la suma de sus cuadrados sea mínima. 4) Sea un número positivo. Demuestra que + 1/ nunca será menor a. 5) Un granjero dispone de 1 00 metros de cerca para limitar un terreno rectangular contiguo a un río de curso rectilíneo. No se requiere cercar en la orilla del río. Cuáles son las dimensiones del terreno con área máima? 6) Un pedazo de estambre de 50 centímetros de largo se corta en dos partes; una parte se dobla para formar un cuadrado, la otra para formar una circunferencia. A qué distancia de una de las orillas se debe hacer el corte para que la suma de las áreas del cuadrado de la circunferencia sea el máimo? 7) Cuáles son las dimensiones de un campo rectangular de área A = 400 m que requiere la menor cantidad de cercado? 8) Demuestra que de todos los rectángulos con un área fija A, el de menor perímetro es el cuadrado. 9) Una página impresa debe contener 4 cm de material impreso. Debe tener margenes de cm a los lados de cm arriba abajo. Cuáles han de ser las dimensiones de la página para que la cantidad del papel usado sea mínima? 10) Una hoja de volante debe contener 50 pulgadas cuadradas de material escrito, con un margen superior e inferior de cm otro a cada lado de 1 cm. Calcula las dimensiones de la hoja que requiere la menor cantidad de papel. 11) Calcula las dimensiones de la caja con maor volumen que se puede construir de una pieza cuadrada de cartón de 100 centímetros de lado cortando cuadrados iguales de cada esquina doblando hacia arriba para obtener las otras caras de la caja. 1) Calcula las dimensiones de la caja con maor volumen que se puede construir de una pieza rectangular de cartón de 10 cm 150 cm cortando cuadrados iguales de cada esquina doblando hacia arriba para obtener las otras caras de la caja. 1) Se requiere fabricar una lata cilíndrica para almacenar 0 L de aceite. Encontrar las dimensiones que minimizan el costo del metal requerido para hacer el envase. Nota: 1 L = cm = 1 dm. 14) Encuentra el volumen máimo que puede tener un cilindro circular recto para que ocupe 10 m de lámina en su construcción. 15) Se hace una caja abierta de una hoja metálica rectangular de 60 centímetros cuadrados, cortando de cada esquina cuadrados iguales pegando hacia arriba para obtener las otras caras de la caja. Calcula las dimensiones de la caja con maor volumen que se puede construir. 16) Se va a construir una ventana en forma de rectángulo coronado por un semicírculo cuo diámetro es igual al ancho del rectángulo. Si el perímetro de la ventana es 6 metros, qué dimensiones admitirán la maor iluminación?

11 0.1 Problemas prácticos de máimos mínimos 11 17) Se necesita una caja sin tapa con una capacidad de 500 cm. El largo de la caja debe ser el triple del ancho. Calcula las dimensiones de la caja que requieren la menor cantidad de material. 18) Encuentra el punto de la parábola 4 = que está más próimo al punto P(0, 4). 19) Encuentra los puntos de la elipse = 45 que están más cerca del punto P(, 0). 0) Encuentra el área máima de un rectángulo inscrito en un semicírculo de radio r = 10 cm. 1) Se va a construir un embalaje con tapa para naranjas para contener 1 m. Se va a dividir en dos partes mediante una separación paralela a sus etremos cuadrados. Encuentra las dimensiones del embalaje que requiere la menor cantidad de material. ) Se va a construir un calentador para agua en forma de un cilindro circular recto con eje vertical, usando para ello una base de cobre lados de hojalata. Si el cobre cuesta 5 veces lo que vale la hojalata, calcule la razón de la altura h al radio r que hará que el costo sea mínimo cuando el volumen V es constante. ) Un triángulo tiene dos de sus lados de longitudes a b un ángulo γ comprendido entre ellos. Determine el valor de γ para que el área del triángulo sea máima. 4) Demuestra que el maor posible valor de sin θ cos θ es. Sugerencia: Los valores de sin θ cos θ se hacen iguales cuando θ = 45, 15, 5 15 grados. Créditos Todo debe hacerse tan simple como sea posible, pero no más. Albert Einstein Este material se etrajo del libro Matemáticas V escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 010 Año de publicación: Pendiente. Última revisión: 01 de agosto de 010.

12 0.1 Problemas prácticos de máimos mínimos 1 Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. Méico Espero que estos trucos se distribuan entre profesores de matemáticas de todos los niveles sean divulgados entre otros profesores sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.m

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Centro fuera del origen

Centro fuera del origen Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos

Más detalles

Matemáticas 2 Agosto 2015

Matemáticas 2 Agosto 2015 Laboratorio # 1 Línea recta I.-Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por y Pendiente

Más detalles

Máximos y mínimos usando la segunda derivada

Máximos y mínimos usando la segunda derivada Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya

Más detalles

Cálculo Diferencial y Geometría Analítica Agosto 2016

Cálculo Diferencial y Geometría Analítica Agosto 2016 Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos

Más detalles

Cálculo Diferencial y Geometría Analítica Enero 2015

Cálculo Diferencial y Geometría Analítica Enero 2015 Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Ecuaciones ordinarias de la parábola

Ecuaciones ordinarias de la parábola Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice

Más detalles

Coordenadas de un punto

Coordenadas de un punto Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados

Más detalles

Profr. Efraín Soto Apolinar. Lugares geométricos

Profr. Efraín Soto Apolinar. Lugares geométricos Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos

Más detalles

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x

1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Parábolas con vértice fuera del origen

Parábolas con vértice fuera del origen Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos

Más detalles

TEMA 10. CÁLCULO DIFERENCIAL

TEMA 10. CÁLCULO DIFERENCIAL TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Derivadas de orden superior

Derivadas de orden superior Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente

Más detalles

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0

PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0 PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0

Más detalles

Cálculo Diferencial Agosto 2018

Cálculo Diferencial Agosto 2018 Laboratorio # 1 Desigualdades I.- Encontrar valores de que satisfacen simultáneamente las dos condiciones. 1) [2 3] 9 1 y 2 + 8 + 6 + 3 < 10 2) 3 6 > 1 2 y 2 1 6 3) 1 1 3 y + 1 > 1 4 4) 3 < < 9 y + 5 10

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x

PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x PROBLEMAS DE RECTA TANGENTE º Bachillerato CCSS Halla la ecuación de la recta tangente a ( ) 6 en el punto de abscisa Halla la ecuación de la recta tangente a Halla la ecuación de la recta tangente a (

Más detalles

Interpretación gráfica

Interpretación gráfica Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con

Más detalles

Forma pendiente-ordenada al origen

Forma pendiente-ordenada al origen Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo

Más detalles

Ejercicios de Matemáticas I - Relación 5

Ejercicios de Matemáticas I - Relación 5 Ejercicios de Matemáticas - Relación 5. Calcula y simplifica todo lo que puedas las derivadas de las siguientes funciones: / f./d sen. C 3/ 2/f./D cos 2. 3 / 3/ f./d cos p 5/ f./d 2 C r C 4/ f./d 3p 6/

Más detalles

12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior

12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior 328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como

Más detalles

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente

APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:

Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas: Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,

Más detalles

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =

Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) = JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q() en Kg) depende de la temperatura (ºC) según la epresión Q() = ( + 1) 2 (2 ). a) Calcula razonadamente cuál es la temperatura

Más detalles

Cálculo Diferencial Agosto 2015

Cálculo Diferencial Agosto 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. 1) 2 3 x 3 < 4 6 y x 1 > 1 3 2) 5x 4 > 1 4 y x + 1 2 1 2 3) 7x 7 1 7 y 4x + 4 > 1 4

Más detalles

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es,

a) El beneficio es el resultado de restar los ingresos y gastos. Esto es, Análisis: Máimos, mínimos, optimización 1. Una multinacional ha estimado que anualmente sus ingresos en euros vienen dados por la función I( ) 8 6000, mientras que sus gastos (también en euros) pueden

Más detalles

TEMA 10 FUNCIÓN DERIVADA. REPRESETACIÓN y aplicaciones.

TEMA 10 FUNCIÓN DERIVADA. REPRESETACIÓN y aplicaciones. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones polinómicas, a) f( = 5 b) g( = 4 c) h( = 7 d) i( = 4 5 e) i( = 3 + 1 f) j( = 5 4 + 3 g) k( = 3 + 4 + h) l( = 5 3 43 5 i) m( = 4 + 3 3 + 4. Calcula

Más detalles

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas

MATEMÁTICAS 1º BAC Aplicaciones de las derivadas . Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

S = x y = x(500 2x) = 500x 2x 2

S = x y = x(500 2x) = 500x 2x 2 .7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que

Más detalles

Problemas de optimización

Problemas de optimización Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q() en Kg) depende de la temperatura (ºC) según la epresión Q() = ( + 1) 2 (2 ). a) Calcula razonadamente cuál es la temperatura

Más detalles

Integral indefinida de funciones algebraicas

Integral indefinida de funciones algebraicas Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.

EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress. FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de

Más detalles

Cálculo Diferencial Enero 2015

Cálculo Diferencial Enero 2015 Laboratorio # 1 Desigualdades I.- Determinar los valores de que satisfacen simultáneamente las dos ecuaciones dadas. y y y y II. - Determina los valores de que satisfagan al menos una de las condiciones.

Más detalles

A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar.

A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. C URSO: º BACHILLERATO DERIVABILIDAD. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. 9 7 a) f ( 4 1 b) f ( 8 4 c) 4 f ( 1 d) ( ) 7 4 f

Más detalles

APLICACIONES DE LA DERIVADA CCSS

APLICACIONES DE LA DERIVADA CCSS APLICACIONES DE LA DERIVADA CCSS Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en

Más detalles

Optimización de funciones

Optimización de funciones Optimización de funciones Pasos para la resolución de problemas de optimización 1. Se plantea la función que hay que maximizar o minimizar. 2. Se plantea una ecuación que relacione las distintas variables

Más detalles

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.

APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble

Más detalles

Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h)

Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (h) Construye la gráfica de las funciones propuestas a continuación, y estudia el signo de las mismas: (a) y 6 ; (b) y ( )( ) + ; (c) (e) y + 6 ; + 4; (d) y ( ) 9 + 5 5; (f) 4 y y 9 ; ; (h) y ( + ) ; 4 (g)

Más detalles

1. Optimización sobre intervalos intervalos cerrados

1. Optimización sobre intervalos intervalos cerrados Universidad Autónoma Metropolitana (Iztapalapa) Cálculo Diferencial (CA53-14o) Tarea # 4 1. Optimización sobre intervalos intervalos cerrados Para cada uno de los siguientes dos problemas, el dominio de

Más detalles

Aplicaciones de máximos y mínimos

Aplicaciones de máximos y mínimos MB00004_M3AA1L1_Máimos Versión: Septiembre 01 Aplicaciones de máimos mínimos Por: Sandra Elvia Pérez Calculando números mediante el uso de máimos mínimos En la sección anterior se proporcionó la función

Más detalles

APLICACIONES DE LAS DERIVADAS. 1. Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican:

APLICACIONES DE LAS DERIVADAS. 1. Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican: Matemáticas Aplicaciones de las derivadas APLICACIONES DE LAS DERIVADAS Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican: 5 a) f, c) f lntg, en en 8 b) f, en d)

Más detalles

Programación Matemática. Problemas

Programación Matemática. Problemas Programación Matemática. Problemas. De todas las rectas que pasan por el punto (, ), identifique aquella para la que el área del triángulo que forma con los semiejes positivos es mínima. Buscamos una recta

Más detalles

Funciones crecientes y decrecientes

Funciones crecientes y decrecientes Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f

Más detalles

PROBLEMAS DE OPTIMIZACIÓN

PROBLEMAS DE OPTIMIZACIÓN 1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Ecuación ordinaria de la hipérbola

Ecuación ordinaria de la hipérbola Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones

Más detalles

Constante de integración

Constante de integración Constante de integración Cuando impongamos una condición que deba satisfacer la antiderivada de la función dada, por ejemplo, que pase por un punto dado, tendremos la posibilidad de reducir toda una familia

Más detalles

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones.

EJERCICIOS GRUPO 1 DERIVADAS. 1. Usando la definición calcule la derivada de las siguientes funciones. INSTRUCCIÓN. Resuelve los problemas propuestos del modo siguiente: primero en forma individual, luego en forma grupal y por último preséntalo en forma grupal en un máimo de cinco (05) integrantes. EJERCICIOS

Más detalles

Problemas Tema 3 Enunciados de problemas de Derivabilidad

Problemas Tema 3 Enunciados de problemas de Derivabilidad página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones:

1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: APLICACIONES DE DERIVADAS 1. Halla los máximos, mínimos y puntos de inflexión de las siguientes funciones: a. 6 9 b. c. 2 d. 2 e. f. 1 2. Estudia los intervalos de crecimiento y decrecimiento de las siguientes

Más detalles

La derivada como razón de cambio instantánea

La derivada como razón de cambio instantánea La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSÉ ANTONIO ANZOÁTEGUI EL TIGRE-EDO-ANZOÁTEGUI

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA JOSÉ ANTONIO ANZOÁTEGUI EL TIGRE-EDO-ANZOÁTEGUI damasorojas@gmailcom damasorojas@galeoncom joeldama@ahoocom GUÍA II - MATEMÁTICA II M-Q I PARTE: Trace la graica de una unción que cumpla con las condiciones dadas - " " - " " - " " eist no II PARTE: Realice

Más detalles

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..

Más detalles

Profesor: Fernando Ureña Portero

Profesor: Fernando Ureña Portero Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 05/04/2001 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E0100, TRIMESTRE 01-I, 0/0/001 A) Primer parcial 1) Una compañía que fabrica escritorios los vende a $00 cada uno. Si se fabrican y venden escritorios

Más detalles

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D)

VERSIÓN 31 1, 1. 12y 24 0 es: MATEMÁTICAS V. 1.- La gráfica de la ecuación. 3.- El dominio de la función f x. es: A) B) B), 1 A) 1, E) 1, C) D) 1.- La gráfica de la ecuación MATEMÁTICAS V B) 1y 4 0 es:.- El dominio de la función f 1, B), 1 4 es: 1 1, 1 VERSIÓN 1 C), 1 1, C) 4.- Determina el rango de la función y. y B) y C) 1 y y y 0, 0.- Para

Más detalles

PAIEP. Valores máximos y mínimos de una función

PAIEP. Valores máximos y mínimos de una función Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto

Más detalles

MAXIMOS Y MINIMOS RELATIVOS

MAXIMOS Y MINIMOS RELATIVOS MAXIMOS Y MINIMOS RELATIVOS Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial

Más detalles

MATEMÁTICA Seminario Introductorio 2019 ECUACIÓN CUADRÁTICA

MATEMÁTICA Seminario Introductorio 2019 ECUACIÓN CUADRÁTICA ECUACIÓN CUADRÁTICA Una ecuación como x + 3x 10 = 0 se dice que es de segundo grado porque el exponente de la x (que es la incógnita) está elevado a la dos. La forma general de una ecuación de este tipo

Más detalles

TEMA 8 : APLICACIÓN DE LAS DERIVADAS

TEMA 8 : APLICACIÓN DE LAS DERIVADAS TEMA 8 : APLICACIÓN DE LAS DERIVADAS 1. MONOTONÍA Una función es creciente en un punto 0 cuando para puntos próimos a 0 se cumple que al aumentar también aumenta f() y al disminuir también disminuye f().

Más detalles

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS

IES PADRE SUÁREZ MATEMÁTICAS II DEPARTAMENTO DE MATEMÁTICAS Ejercicios de continuidad y derivabilidad. Selectividad de 008, 009, 00 y 0 Anális 008 Ejercicio.- Sean f : R R y g : R R las funciones definidas por f() = + a + b y g() = c e -(+). Se sabe que las gráficas

Más detalles

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. . [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

Diferenciabilidad en un intervalo

Diferenciabilidad en un intervalo Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 007 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Congruencia de triángulos

Congruencia de triángulos Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen

Más detalles

La derivada. Razón de cambio promedio e instantánea

La derivada. Razón de cambio promedio e instantánea La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,

Más detalles

DERIVADA DE FUNCIONES REALES

DERIVADA DE FUNCIONES REALES . Recta tangente a una curva DERIVADA DE FUNCIONES REALES Consideremos la curva y = f() correspondiente a una función continua y en ella dos puntos distintos P( ; y ) y Q( ; y ). PQ es una recta secante

Más detalles

Interpretación geométrica de la derivada

Interpretación geométrica de la derivada Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada

Más detalles

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco

Preparatoria Sor Juana Inés de la Cruz Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Preparatoria Sor Juana Inés de la Cruz 1 Cálculo Diferencial Tutorial: Optimización Ing. Jonathan Quiroga Tinoco Grupo: Físico Matemático, Químico Biológico y Económico Administrativo Diciembre de 2014

Más detalles

, siendo ln(1+x) el logaritmo neperiano de 1+x. x

, siendo ln(1+x) el logaritmo neperiano de 1+x. x Selectividad CCNN 00. [ANDA] [JUN-B] Considera la función f: definida por f() = (+)e -. (a) Halla las asíntotas de la gráfica de f. (b) Determina los etremos de f y los puntos de infleión de su gráfica.

Más detalles

Clasificación y transformación de funciones

Clasificación y transformación de funciones Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias

Guía de Estudio Algebra y Trigonometría Para Ciencias Agropecuarias Guía de Estudio Para Ciencias Agropecuarias Unidad: Geometría Analítica Los siguientes ejercicios están relacionados con los principales temas de Geometría Analítica e involucra todos los conocimientos

Más detalles

RELACIÓN EJERCICIOS ANÁLISIS SELECTIVIDAD MATEMÁTICAS II

RELACIÓN EJERCICIOS ANÁLISIS SELECTIVIDAD MATEMÁTICAS II 1.- Sea f : R R la función definida como f() = e X.( ). (a) [1 punto] Calcula la asíntotas de f. (b) [1 punto] Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos

Más detalles

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO

EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 7-8 Ejercicio º.- Se considera la función f : R R dada por: f ( ) ( ) e a) (,5 puntos) Calcula las asíntotas de f. b) (,5 puntos) Calcula la

Más detalles

Universidad Autónoma de Querétaro

Universidad Autónoma de Querétaro TAREA 1 1. En cada gráfico señala los puntos donde la función no es derivable, explicar por qué. TAREA 1 2. Deriva las siguientes funciones, utiliza la definición geométrica. f(x) = 3x f(x) = x 2 f(x)

Más detalles

x 3 si 10 <x 6; x si x>6;

x 3 si 10 <x 6; x si x>6; CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f

Más detalles

Integración de funciones trigonométricas

Integración de funciones trigonométricas Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este

Más detalles

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN

APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de

Más detalles

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma:

TEMA 9. DERIVADAS. Veamos cómo podemos calcular esa pendiente. Si tenemos una función f(x) y cogemos dos puntos de la misma: TEMA 9. DERIVADAS. DEFINICIÓN DE DERIVADA. Se define la derivada de una función f() en un punto 0 como la pendiente de la recta tangente a f en dico punto, y se designa por f ( 0 ). Veamos cómo podemos

Más detalles

Análisis Matemático. Ejercicios Resueltos. Estudios de Funciones - Problemas de Máximos y Mínimos

Análisis Matemático. Ejercicios Resueltos. Estudios de Funciones - Problemas de Máximos y Mínimos Análisis Matemático Aplicaciones de la Derivada Ejercicios Resueltos Estudios de unciones - Problemas de Máimos y Mínimos 1) Estudio de la función : ( ) 1 Cuadro de resultados Dominio : - -1 1 Observaciones

Más detalles

Técnicas de integración. Cambio de variable

Técnicas de integración. Cambio de variable Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere

Más detalles

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.

RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los

Más detalles