Optimización de funciones
|
|
|
- ramiro rincon
- hace 9 años
- Vistas:
Transcripción
1 Optimización de funciones Pasos para la resolución de problemas de optimización 1. Se plantea la función que hay que maximizar o minimizar. 2. Se plantea una ecuación que relacione las distintas variables del problema, en el caso de que haya más de una variable. 3.Se despeja una variable de la ecuación y se sustituye en la función de modo que nos quede una sola variable. locales. 4. Se deriva la función y se iguala a cero, para hallar los extremos 5. Se realiza la 2ª derivada para comprobar el resultado obtenido. Ejemplo De todos los triángulos isósceles de 12 m de perímetro, hallar los lados del que tome área máxima. La función que tenemos que maximizar es el área del triángulo: Relacionamos las variables: 1
2 2 x + 2 y = 12 x = 6 y Sustituimos en la función: Derivamos, igualamos a cero y calculamos las raíces. Realizamos la 2ª derivada y sustituimos por 2, ya que la solución y = 0 la descartamos porque no hay un triángulo cuyo lado sea cero. Por lo que queda probado que en y = 2 hay un máximo. La base (2y) mide 4m y los lados oblicuos (x) también miden 4 m, por lo que el triangulo de área máxima sería un triangulo equilatero. 2
3 Problemas de optimización de funciones 1Obtener el triángulo isósceles de área máxima inscrito en un círculo de radio 12 cm. 2Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando un cono. Qué valor debe darse a la base para que el volumen del cono sea máximo? 3Se pretende fabricar una lata de conserva cilíndrica (con tapa) de 1 litro de capacidad. Cuáles deben ser sus dimensiones para que se utilice el mínimo posible de metal? 4Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo sea un mínimo. 5Se tiene un alambre de 1 m de longitud y se desea dividirlo en dos trozos para formar con uno de ellos un círculo y con el otro un cuadrado. Determinar la longitud que se ha de dar a cada uno de los trozos para que la suma de las áreas del círculo y del cuadrado sea mín ima. 6Hallar las dimensiones del mayor rectángulo inscrito en un triángulo isósceles que tiene por base 10 cm y por altura 15 cm. 7Hallar las dimensiones que hacen mínimo el coste de un contenedor que tiene forma de paralelepípedo rectangular sabiendo que su volumen ha de ser 9 m 3, su altura 1 m y el coste de su construcción por m 2 es de 50 para la base; 60 para la etapa y 40 para cada pared lateral. 8Recortando convenientemente en cada esquina de una lámina de cartón de dimensiones 80 cm x 50 cm un cuadrado de lado x y doblando convenientemente (véase figura), se construye una caja. Calcular x para que volumen de dicha caja sea máximo. 3
4 9Una hoja de papel debe tener 18 cm 2 de texto impreso, márgenes superior e inferior de 2 cm de altura y márgenes lateral es de 1 cm de anchura. Obtener razonadamente las dimensiones que minimizan la superficie del papel. 10El beneficio neto mensual, en millones de euros, de una empresa que fabrica autobuses viene dado por la función: B(x)= 1.2x (0.1x) 3 donde x es el número de autobuses fabricados en un mes. 1. Calcula la producción mensual que hacen máximo el beneficio. 2. El beneficio máximo correspondiente a dicha producción. 11Una huerta tiene actualmente 25 árboles, que producen 600 frutos cada uno. Se calcula que por cada árbol adicional plantado, la producción de cada árbol disminuye en 15 frutos. Calcular: 1. La producción actual de la huerta. más. 2. La producción que se obtendría de cada árbol si se plantan x árboles 3. La producción a la que ascendería el total de la huerta si se plantan x árboles más. 4. Cuál debe ser el número total de árboles que debe tener la huerta para qué la producción sea máxima? 12Un sector circular tiene un perímetro de 10 m. Calcular El radio y la amplitud del sector de mayor área. 4
5 Problemas de optimización de funciones 1 Obtener el triángulo isósceles de área máxima inscrito en un círculo de radio 12 cm. 5
6 2 Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando un cono. Qué valor debe darse a la base para que el volumen del cono sea máximo? 6
7 3 Se pretende fabricar una lata de conserva cilíndrica (con tapa) de 1 litro de capacidad. Cuáles deben ser sus dimensiones para que se utilice el mínimo posible de metal? 4 Descomponer el número 44 en dos sumandos tales que el quíntuplo del cuadrado del primero más el séxtuplo del cuadrado del segundo sea un mínimo. 7
8 5 Se tiene un alambre de 1 m de longitud y se desea dividirlo en dos trozos para formar con uno de ellos un círculo y con el otro un cuadrado. Determinar la longitud que se ha de dar a cada uno de los trozos para que la suma de las áreas del círculo y del cuadrado sea mínima. 6 Hallar las dimensiones del mayor rectángulo inscrito en un triángulo isósceles que tiene por base 10 cm y por altura 15 cm. 8
9 Al tener dos triángulos semejantes se cumple que: 7 Hallar las dimensiones que hacen mínimo el coste de un contenedor que tiene forma de paralelepípedo rectangular sabiendo que su volumen ha de ser 9 m 3, su altura 1 m y el coste de su construcción por m 2 es de 50 para la base; 60 para la etapa y 40 para cada pared lateral. 9
10 8 Recortando convenientemente en cada esquina de una lámina de cartón de dimensiones 80 cm x 50 cm un cuadrado de lado x y doblando convenientemente (véase figura), se construye una caja. Calcular x para que volumen de dicha caja sea máximo. 10
11 9 Una hoja de papel debe tener 18 cm 2 de texto impreso, márgenes superior e inferior de 2 cm de altura y márgenes laterales de 1 cm de anchura. Obtener razonadamente las dimensiones que minimizan la superficie del papel. 11
12 10 El beneficio neto mensual, en millones de euros, de una empresa que fabrica autobuses viene dado por la función: B(x)= 1.2x (0.1x) 3 donde x es el número de autobuses fabricados en un mes. 1. Calcula la producción mensual que hacen máximo el beneficio. 2. El beneficio máximo correspondiente a dicha producción. 11 Una huerta tiene actualmente 25 árboles, que producen 600 frutos cada uno. Se calcula que por cada árbol adicional plantado, la producción de cada árbol disminuye en 15 frutos. Calcular: 1. La producción actual de la huerta. Producción actual: = frutos. más. 2. La producción que se obtendría de cada árbol si se plantan x árboles 12
13 x. Si se plantan x árboles más, la producción de cada árbol será: La producción a la que ascendería el total de la huerta si se plantan x árboles más. P(x) = (25 +x)(600 15x) = 15 x x Cuál debe ser el número total de árboles que debe tener la huerta para qué la producción sea máxima? P (x) = 30 x x = 0 x = 7. 5 P (x) = 30 < 0 La producción será máxima si la huerta tiene = 32 ó = 33 árboles 12 Un sector circular tiene un perímetro de 10 m. Calcular El radio y la amplitud del sector de mayor área. 13
14 14
Problemas de optimización de funciones
Problemas de optimización de funciones 1Obtener el triángulo isósceles de área máxima inscrito en un círculo de radio 12 cm. 2Un triángulo isósceles de perímetro 30 cm, gira alrededor de su altura engendrando
Ejercicios de Funciones: Optimización. L'Hôpital
Matemáticas 2ºBach CNyT. Ejercicios Funciones: Optimización. L'Hôpital. Pág 1/8 Ejercicios de Funciones: Optimización. L'Hôpital 1. Obtener el triángulo isósceles de área máxima inscrito en un círculo
EJERCICIOS VERANO. Matemáticas Bachiller 1ºCCSS
EJERCICIOS VERANO Matemáticas Bachiller 1ºCCSS 1ª SESIÓN REPASO Semana:... 2. Representa las siguientes funciones, sabiendo que: a) Tiene pendiente 3 y ordenada en el origen 1. b) Tiene por pendiente 4
Resolución de problemas de optimización con ayuda de la calculadora gráfica.
Autor: José Manuel Jiménez Cobano Correo: [email protected] D.N.I.: 14317912-K Palabras Clave: Calculadora gráfica, nuevas tecnologías, matemáticas, problemas, aplicaciones. Resumen Este pequeño artículo,
Problemas Tema 3 Enunciados de problemas de Derivabilidad
página / Problemas Tema 3 Enunciados de problemas de Derivabilidad Hoja. Calcula la derivada de f ()= +3 8 +9 +3. Encuentra tres números no negativos que sumen 4 y tales que uno sea doble de otro y la
EJERCICIOS PARA VERANO. MATEMÁTICAS I 1º BACH
Desarrollar los siguiente valores absolutos f(x) = x² + 5x 4 - x - 2 f(x) = x² -4x + 3 + x - 3 f(x) = x x f(x) = x / x Resolver las ecuaciones exponenciales: Resolver los sistemas de ecuaciones exponenciales:
Jueves 17 de noviembre, Clase #11 y Tarea UTN ISOA. UTN Cálculo I Prof. Milagro Tencio. Clase 11
UTN ISOA Cálculo I Prof. Milagro Tencio Clase 11 Problemas de Optimización Introducción a Integrales 1 Clase #11 y Tarea UTN Cálculo I Prof. Milagro Tencio Problemas de Optimización Máximos y mínimos 2
Aplicaciones de la derivada Ecuación de la recta tangente
Aplicaciones de la derivada Ecuación de la recta tangente La pendiente de la recta tangente a una curva en un punto es la derivada de la función en dicho punto. La recta tangente a una curva en un punto
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES.
APLICACIÓN DE DERIVADAS: PROBLEMAS DE OPTIMIZACIÓN CON 2 VARIABLES. 001 Hallar 2 números cuya suma es 20, sabiendo que su producto es 002 003 004 005 Halla dos números cuya suma sea 25, tales que el doble
S = x y = x(500 2x) = 500x 2x 2
.7. OPTIMIZACIÓN 09.7. Optimización Problema 4 Tenemos 500 metros de alambre para vallar un campo rectangular, uno de cuyos lados da a un río. Calcular la longitud que deben tener estos lados para que
TEMA 4: APLICACIONES DE LAS DERIVADAS.
TEMA 4: APLICACIONES DE LAS DERIVADAS. 1.- REGLA DE L HôPITAL La regla de L hôpital sirve para resolver indeterminaciones del tipo. Para aplicar la regla de L'Hôpital hay que tener un límite de la forma
PROBLEMAS DE RECTA TANGENTE. 6 en el punto de abscisa 2. Halla la ecuación de la recta tangente a. ( en el punto de abscisa. x 3x
PROBLEMAS DE RECTA TANGENTE º Bachillerato CCSS Halla la ecuación de la recta tangente a ( ) 6 en el punto de abscisa Halla la ecuación de la recta tangente a Halla la ecuación de la recta tangente a (
PROBLEMAS DE OPTIMIZACIÓN
1 PROBLEMAS DE OPTIMIZACIÓN Planteamiento y resolución de los problemas de optimización Se quiere construir una caja, sin tapa, partiendo de una lámina rectangular de cm de larga por de ancha. Para ello
12. Una caja con base cuadrada y parte superior abierta debe tener un. 14. Un recipiente rectangular de almacenaje con la parte superior
328 CAPÍTULO 4 APLICACIONES DE LA DERIVACIÓN 4.7 EJERCICIOS 1. Considere el problema siguiente. Encuentre dos números cuya suma es 23 y cuyo producto es un máximo. (a) Formule una tabla de valores, como
MATEMÁTICAS 1º BAC Aplicaciones de las derivadas
. Queremos construir una caja abierta, de base cuadrada y volumen 56 litros. Halla las dimenones para que la superficie, y por tanto el coste, sea mínimo.. Entre todos los rectángulos de área 6 halla el
APLICACIONES DE LAS DERIVADAS. 1. Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican:
Matemáticas Aplicaciones de las derivadas APLICACIONES DE LAS DERIVADAS Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican: 5 a) f, c) f lntg, en en 8 b) f, en d)
1) ( ) 2 ( 1) 2) ( ) ( 2 )( ) 3) ( ) 4 4) ( ) = 8 5) ( ) = 4 6) ( ) = 4. 6 x
MATEMÁTICA II (MECÁNICA) EXAMEN II I PARTE: APLICAR EL CRITERIO DE LA PRIMERA DERIVADA A LAS SIGUIENTES FUNCIONES: Determinar: a.) Intervalos donde la función Crece b.) Intervalos donde la función Decrece.
Problemas de optimización
Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q() en Kg) depende de la temperatura (ºC) según la epresión Q() = ( + 1) 2 (2 ). a) Calcula razonadamente cuál es la temperatura
PAIEP. Valores máximos y mínimos de una función
Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP Universidad de Santiago de Chile Valores máximos y mínimos de una función Diremos que la función f : D R R, alcanza un máximo absoluto en el punto
Problemas de optimización
Problemas de optimización 1º) La producción de cierta hortaliza en un invernadero (Q() en Kg) depende de la temperatura (ºC) según la epresión Q() = ( + 1) 2 (2 ). a) Calcula razonadamente cuál es la temperatura
Profesor: Fernando Ureña Portero
Optimización de funciones P a s o s p a r a l a r e s o l u c i ó n d e p ro b l e m a : 1. S e p l a n t e a l a f u n c i ón que hay que maximizar o minimizar. 2. S e p l a n t e a u n a e c u a c i
RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN
1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren
EXAMEN DE LA UNIDAD 1: POLINOMIOS Y FRACCIONES ALGEBRAICAS. 1. Halla el máximo común divisor y el mínimo común múltiplo de los siguientes polinomios:
COLEGIO SAN ALBERTO MAGNO º BACHILLERATO EXAMEN DE LA UNIDAD : POLINOMIOS Y FRACCIONES ALGEBRAICAS. Halla el máimo común divisor y el mínimo común múltiplo de los siguientes polinomios: 0 ) ( 8 ) ( Q P.
MATEMÁTICAS. TEMA 7 Aplicaciones de la Derivada
MATEMÁTICAS TEMA 7 Aplicaciones de la Derivada ÍNDICE MATEMÁTICAS º BACHILLERATO CCSS. TEMA 7: APLICACIONES DE LA DERIVADA 1. Introducción. Máximos y mínimos. 3. Monotonía (Crecimiento y Decrecimiento).
GEOMETRÍA DEL ESPACIO: PRISMA
FICHA DE TAAJO Nº Nombre Nº orden imestre IV 4ºgrado - sección A C D Ciclo IV Fecha: - - 1 Área Matemática Tema GEOMETÍA DEL ESPACIO: PISMA TEMA: PISMA Es el sólido que se encuentra limitado por dos polígonos
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Crecimiento y decrecimiento. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente en dicho punto: Una función f() es creciente en un punto
a) El beneficio es el resultado de restar los ingresos y gastos. Esto es,
Análisis: Máimos, mínimos, optimización 1. Una multinacional ha estimado que anualmente sus ingresos en euros vienen dados por la función I( ) 8 6000, mientras que sus gastos (también en euros) pueden
TEMA 10 FUNCIÓN DERIVADA. REPRESETACIÓN y aplicaciones.
A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones polinómicas, a) f( = 5 b) g( = 4 c) h( = 7 d) i( = 4 5 e) i( = 3 + 1 f) j( = 5 4 + 3 g) k( = 3 + 4 + h) l( = 5 3 43 5 i) m( = 4 + 3 3 + 4. Calcula
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2017 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 017 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
Ejercicios propuestos
Ejercicios propuestos 1. Encuentre el área total y el volumen de un cubo si la diagonal de una de sus caras mide 6 cm. 2. Encuentre el volumen de un cubo si la longitud de su diagonal mayor mide 8 cm.
TEMA 10. CÁLCULO DIFERENCIAL
TEMA 0. CÁLCULO DIFERENCIAL Problemas que dieron lugar al cálculo diferencial. (Estos dos problemas los resolveremos más adelante) a) Consideremos la ecuación de movimiento de un móvil en caída libre en
A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar.
C URSO: º BACHILLERATO DERIVABILIDAD. A) CÁLCULO DE DERIVADAS. 1. Deriva las siguientes funciones pensando antes que tipo de fórmula hay que utilizar. 9 7 a) f ( 4 1 b) f ( 8 4 c) 4 f ( 1 d) ( ) 7 4 f
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
Calcular la altura del cono de superficie lateral mínima circunscrito a una esfera de radio 4cm.
OPTIMIZACION DE FUNCIONES Calcular la altura del cono de superficie lateral mínima circunscrito a una esfera de radio 4cm. S = пrg Si los triángulos DCO y DAB que son semejantes, pues OC AB y poseen un
Relación Ecuaciones. Ecuaciones de primer grado. Matemáticas. Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 3 5x x + 2 [2] 3 {3
Relación Ecuaciones Matemáticas Ecuaciones de primer grado Resolver las siguientes ecuaciones: 5(x + 1) [1] = x + 5x + 9 + x + 8 [] [(x ) ] } = 1 [] x + 1 x + x + 5 7 [] 5x (x 8) = (x + ) [5] x + [] 5x
PAU: Aplicaciones de la derivada MATEMÁTICAS II 1. 2cos. x 0 x 0
PAU: Aplicaciones de la derivada MATEMÁTICAS II JULIO 0 ESPECÍFICA. Calcule a para que las siguientes funciones: sen a cos f( ) g() tengan el mismo límite en el punto 0. Calculamos cada límite: sen a 0
APLICACIONES DE LA DERIVADA. Cuando una función es derivable en un punto, podemos conocer si es creciente o decreciente
APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente
EJERCICIOS MÓDULO 4. Geometría plana. 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9?
Seminario Universitario Matemática EJERCICIOS MÓDULO 4 Geometría plana 1) Cuántos vértices tiene un polígono cuyo número total de diagonales es 9? ) Cuántos lados tiene un polígono en el cual la suma de
(26)2x(3x 4) (1 3x)$(1 +x) = 2
Resuelve las siguientes ecuaciones ECUACIONES, INECUACIONES Y SISTEMAS. (1)25x 4 29x 2 +4 =0 (2)x 4 5x 2 +4 =0 (3)x 4 a(a +b)x 2 +a 3 b =0 (4)(x 2 5)$(x 2 3) =0 (5)x +2 = 4x +13 (6) x 1 12 = 2 x+1 (7)
, hallar su dominio, los puntos de corte con los ejes y la pendiente de la recta x 2-4 tangente a la gráfica de la función en x = 1.
. [04] [ET-A] El beneficio semanal (en miles de euros) que obtiene una fábrica por la producción de aceite viene dado por la función B(x) = -x +6x-8, donde x representa los hectolitros de aceite producidos
2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN
2º BACHILLERATO. EJERCICIOS DE REPASO 1ª EVALUACIÓN 1.) Resuelve las siguientes derivadas: a) b) c) d) e) f) g) h) i) j) k) l) m) n) o) p) q) r) f(x) = arcsen 2.) Resuelve la siguiente derivada, simplificando
Estudio local de una función.
Estudio local de una función. A partir de una cartulina cuadrada de 60 cm de lado, se va a construir una caja de base cuadrada, sin tapa, recortando cuatro cuadrados iguales en las esquinas de la cartulina
. (Nota: ln x denota el logaritmo neperiano de x).
e - si 0. [04] [ET-A] Sea la función f() = k si = 0 a) Determine razonadamente el valor del parámetro k para que la función sea continua para todos los números reales. b) Estudie si esta función es derivable
( ) Para comprobar que el extremo calculado es un máximo, se utiliza el criterio de la segunda derivada. ( ) Máximo
Modelo 01. Problema B.- Calificación máima: puntos) El coste de fabricación de una serie de hornos microondas viene dado por la función C) + 0 + 0000, donde representa el número de hornos fabricados. Supongamos
FORMULARIO (ÁREAS DE FIGURAS PLANAS)
FORMULARIO (ÁREAS DE FIGURAS PLANAS) Rectángulo Triángulo Paralelogramo Cuadrado Cuadrilátero cuyos lados forman ángulos de 90º. Es la porción de plano limitada por tres segmentos de recta. Cuadrilátero
Tema: Aplicaciones de derivadas. Sean x e y las dimensiones del rectángulo. Área del rectángulo: A = x y. 36 x. Luego, el área es A(x) =
JUNIO 0 GENERAL. Halle el rectángulo de mayor área inscrito en una circunferencia de radio. Sean e y las dimensiones del rectángulo. Área del rectángulo: A y El triángulo ABC es rectángulo, sus lados miden,
ECUACIONES DE 1º GRADO =2x-(10-4x) 2. 5(x-1)+10(x+2)= x+3(2x-4)= x-3(x+5)=3x (2-x)=18x (x-3)=3(x+1) 5-2x.
ECUACIONES DE 1º GRADO 1. 0=(10). 5(1)10()=5. 1()=0. (1)= 5. (5)= 0. [(1)]=1 7. (5)=10 8. ()=181 9. 105()=(1) 10. ()=[5()] 11. (1)(11)=9 1. = 1. 8 = 1. 7 = 1 5 5 15. 10 = ( ) 9 1. 5 8 5 ( 0)= 18 7 17.
RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA.
RELACIÓN 3a DE EJERCICIOS. MATEMÁTICAS 1. INGENIERÍA QUÍMICA. 1. Sea f : IR IR definida por f() = 2 + 1, IR. Probar, utilizando la definición, que f es derivable en cualquier punto de IR. Encontrar los
EJERCICIOS DE LOS TEMAS 9 y 10.GEOMETRÍA
1.- Dos triángulos ABC y A C son semejantes y la razón de semejanza entre el primero y el segundo es,4. Calcula las longitudes de los lados que faltan sabiendo que AB = 0 cm, BC = 15 cm y A C = 10 cm.
PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 12 y la suma de sus cuadrados es 170.
Problemas algebraicos 1 PROBLEMAS ALGEBRAICOS (SISTEMAS NO LINEALES) 1.- Calcular dos números positivos sabiendo que la diferencia es 1 y la suma de sus cuadrados es 170..- Hallar dos números naturales
Ejercicios de Matemáticas I - Relación 5
Ejercicios de Matemáticas - Relación 5. Calcula y simplifica todo lo que puedas las derivadas de las siguientes funciones: / f./d sen. C 3/ 2/f./D cos 2. 3 / 3/ f./d cos p 5/ f./d 2 C r C 4/ f./d 3p 6/
Derivadas. Problemas de Optimización.
Departamento de Análisis Matemático Derivadas. Problemas de Optimización. Problema 1. Sea f : R + 0 R la función definida por: 2 si 0 < 4 2 E ( ) 6 si 4 Estudiar la continuidad y derivabilidad de f. Problema
Elementos del cilindro
Definición de cilindro Un cilindro es un cuerpo geométrico engendrado por un rectángulo que gira alrededor de uno de sus lados. Desarrollo del cilindro Elementos del cilindro Eje Es el lado fijo alrededor
Matemáticas 3º E.S.O. 2014/15
Matemáticas 3º E.S.O. 2014/15 TEMA 5: Figuras planas Ficha número 16 1.- Calcula la altura del siguiente triángulo: (Sol: 12,12 cm) 2.- En un triángulo isósceles la altura sobre el lado desigual mide 50
2. [2014] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.
cos() - e + a. [04] [ET-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte.. [04] [ET-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima..
PLAN DE RECUPERACIÓN 1º EVALUACIÓN CURSO º BACHILLERATO MODALIDAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS NOMBRE:... CURSO:...
PLAN DE RECUPERACIÓN 1º EVALUACIÓN CURSO 17-18 º BACHILLERATO MODALIDAD DE CIENCIAS DEPARTAMENTO DE MATEMÁTICAS NOMBRE:... CURSO:... CRITERIOS DE EVALUACIÓN Los criterios de evaluación seleccionados para
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2011 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA : FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN Actualizado en el curso 2008/2009
1. Descomponer el número e en dos sumandos positivos de forma que la suma de los logaritmos neperianos de los sumandos sea máxima. Calcular dicha suma. 2. Calcula dos números que cumplan que al sumarlos
2. Obtener la longitud de la base de un triángulo isósceles cuyos lados iguales miden 17 cm y su altura 8 cm.
ACTIVIDAD DE APOYO GEOMETRIA GRADO 11 1. Calcular el valor de la altura del triángulo equilátero y de la diagonal del cuadrado (resultado con dos decimales, bien aproimados): h 6 cm (Sol: 3,46 cm) (Sol:
f (x) = 3(1 + x2 cos x)(x sin x 1) 2 x ( x + 7x) 2/3 cos 4 (tan x) ) 1/5 f (x) = 3x4 + 6x 3 9x 2 + 3x + 3 x(x 3 + 3x 1)
1. Derivar las siguientes funciones: ( ) 3 1 a. f(x) = x sin x f (x) = 3(1 + x cos x)(x sin x 1) x 4 b. f(x) = ( ln[(x cos x) 4 ] ) 7 7 (ln(x cos x)) 6 sec x (cos x x sin x) x 1 + tan x c. f(x) = f (x)
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN
APLICACIONES DE LA DERIVADA Y OPTIMIZACIÓN 1. Calcular, aplicando la definición de derivada: f (), siendo f (x) = 3x 1 1 f ( ), siendo f (x) = x 1 Solución: 1; 4. Determinar el dominio y la expresión de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2009 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Apuntes Matemáticas 2º de bachillerato. Tema 6. Optimización
Apuntes Tema 6 Optimización 6.1 Problemas de optimización El cálculo de máximos y mínimos no solo se usa en Matemáticas, sino en muchas otras disciplinas. Precisamente este tipo de problemas fue el que
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA
RELACIÓN DE EJERCICIOS DE GEOMETRÍA PLANA 1. Halla el perímetro y el área de las siguientes figuras: 2. Entre las dos diagonales de un rombo suman 100 cm, siendo la menor 20 cm más corta que la mayor.
x 2-4x+3 si -1 < x < 0 x 2 +a 2. [ANDA] [JUN-B] Se sabe que la función f:(-1,+ ), definida por f(x) = es continua en (-1,+ ). x+1
Selectividad CCNN 004. [ANDA] [JUN-A] Considerar la función f: definida por f() = (+)(-)(-). (a) Hallar las ecuaciones de las rectas tangente y normal a la gráfica de f en el punto de abscisa =. (b) Determinar
EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVABILIDAD 1- Considere la función: 3 2 a) Determine las asíntotas, horizontales, verticales y oblicuas, que tenga la función f(x). b) Determine los intervalos de
Aplicaciones de la derivada
0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 009 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS. Grupo: 1ºB Fecha: 11/06/2009
I.E.S SAN JOSÉ (CORTEGANA) DEPARTAMENTO DE MATEMÁTICAS Examen de Matemáticas (1º E.S.O) UNIDAD 13: ÁREAS Y PERÍMETROS Nombre y Apellidos: Grupo: 1ºB Fecha: 11/06/009 CALIFICACIÓN: Ejercicio nº 1.- Calcula
Problemas y ejercicios de áreas de polígonos
Problemas y ejercicios de áreas de polígonos 1Un campo rectangular tiene 170 m de base y 28 m de altura. Calcular: 1Las hectáreas que tiene. 2El precio del campo si el metro cuadrado cuesta 15. 2 Calcula
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO
EJERCICIOS DE LOS EXÁMENES DE ANÁLISIS MATEMÁTICAS II CURSO 7-8 Ejercicio º.- Se considera la función f : R R dada por: f ( ) ( ) e a) (,5 puntos) Calcula las asíntotas de f. b) (,5 puntos) Calcula la
RESOLVER LAS ECUACIONES DE PRIMER GRADO
RESOLVER LAS ECUACIONES DE PRIMER GRADO 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) PROBLEMAS DE ECUACIONES DE PRIMER GRADO 1 Un padre tiene 35 años y su hijo 5. Al cabo de cuántos años será la
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N 13 CÁLCULO I
UNIVERSIDAD DIEGO PORTALES FACULTAD DE CIENCIAS DE LA INGENIERÍA INSTITUTO DE CIENCIAS BÁSICAS GUÍA N CÁLCULO I Profesor: Carlos Ruz Leiva MÁXIMOS Y MÍNIMOS Criterio de la segunda derivada Supongamos que
Ejercicios de máximos y mínimos de selectividad
1. De entre todos los triángulos rectángulos con hipotenusa 10cm., calcula as longitudes de los catetos que corresponden ó de área máxima b a c segunda A (a)= ( ) = El área A de un triángulo rectángulo
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Derivadas Parciales. Aplicaciones.
RELACIÓN DE PROBLEMAS FUNDAMENTOS MATEMÁTICOS DE LA INGENIERÍA Curso 2004/2005 Escuela Universitaria de Ingeniería Técnica Agrícola Departamento de Matemática Aplicada I Tema 3. Derivadas Parciales. Aplicaciones.
Colegio Agave Matemáticas I
Derivadas y aplicaciones de la derivada (con solución) Problema 1: Se considera la función definida por a) Calcula las asíntotas de la gráfica de f(x) b) Estudia la posición de la gráfica de f(x) respecto
x 2 a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
. [0] [SEP-B] Sea la función f definida por f() = e- para. - a) Estudia las asíntotas de la gráfica de f. b) Halla los etremos relativos (abscisas donde se obtienen y valores que se alcanzan) y los intervalos
Cálculo Diferencial y Geometría Analítica Agosto 2016
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
Cálculo Diferencial y Geometría Analítica Enero 2015
Laboratorio # 1 Línea Recta I.- Determina la ecuación de la recta que satisface las siguientes condiciones y exprésala en la forma general. Pasa por el punto (1,5) y tiene pendiente 2 Pasa por los puntos
