Integración de funciones trigonométricas

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Integración de funciones trigonométricas"

Transcripción

1 Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este tema vamos a requerir el formulario de identidades trigonométricas. Calcula la integral indefinida: cos x dx Ejemplo 1 Utilizamos la siguiente identidad: 1 + cos( x cos x = Así, nuestra integral se convierte en la siguiente: cos x dx = 1 (1 + cos( x dx = 1 dx + 1 cos( x dx Ya podemos calcular la primera integral. Para la segunda, hace falta completar la diferencial: cos x dx = 1 dx + 1 cos( x ( dx = x sin( x Y terminamos. En la sección anterior calculamos la integral sin x dx utilizando integración por partes. Se te queda como ejercicio calcularla utilizando la identidad trigonométrica: cos x = 1 cos( x La siguiente integral no utiliza el mismo artificio. Sino el hecho de que la derivada de la función seno es la función coseno. Calcula la integral indefinida: cos x dx Ejemplo 1/7

2 Utilizando la identidad: sin x + cos x = 1 podemos reescribir la integral de la siguiente forma: ( cos x dx = 1 sin x cos x dx = cos x dx sin x cos x dx La primera integral es inmediata. Para la segunda, vamos a definir: u(x = sin x, luego, u (x = cos x. Esto nos dice que podemos hacer el cambio de variable: cos x dx = = sin x cos x dx sin x cos x dx [u(x] u (x dx = sin x [u(x] = sin x sin x El artificio de sustituir cos x = 1 sin x nos sirve para simplificar integrales cuyo integrando consista de la función cos x elevada a una potencial impar. Por ejemplo, para integrar cos x reescribimos este integrando de la siguiente manera: ( cos x = cos 4 x cos x = 1 sin x cos x ( = 1 sin x + sin 4 x cos x Después podemos definir u = sin x y proceder como en el ejemplo que acabamos de resolver. En algunos productos de potencias de las funciones sin x y cos x también podemos aplicar el mismo artificio matemático. Solamente debemos recordar que la diferencial debe estar completa. Ejemplo Calcula la integral: sin x cos x dx Podemos reescribir la integral de la siguiente manera: sin x cos x dx = = = sin x cos x cos x dx ( sin x 1 sin x cos x dx ( sin x sin x cos x dx /7

3 Ahora definimos: u(x = sin x, y haciendo el cambio de variable, obtenemos: ( sin x cos x dx = sin x sin x cos x dx = sin x cos x dx sin x cos x dx = [u(x] u (x dx [u(x] u (x dx = [u(x]4 4 = sin4 x 4 [u(x]6 6 sin6 x 6 Observa que decidimos sustituir: cos x = 1 sin x, pero también pudimos sustiuir: sin x = 1 cos x y poder calcular la integral. Se te queda como ejercicio calcular la misma integral haciendo esta sustitución. Para integrar potencias de la función tangente o secante usaremos la identidad: sec x = 1 + tan x Calcula la integral indefinida: tan x dx Ejemplo 4 Usando la identidad mencionada, la integral puede reescribirse como: tan x dx = (1 sec x dx = dx sec x dx Ambas integrales son inmediatas: tan x dx = x tan x Calcula la siguiente integral indefinida: tan x dx Ejemplo El integrando puede reescribirse como: tan x dx = (sec x 1 tan x dx = sec x tan x dx tan x dx Ahora observa que si definimos: u(x = tan x, entonces, u (x = sec x. Entonces, al hacer el cambio de variable, obtenemos: tan x dx = u(x u (x dx tan x dx = [u(x] = tan x sin x cos x dx sin x cos x dx /7

4 Para calcular la integral faltante, vamos a definir: v = cos x. Entonces, dv = sin x dx. Así, podemos aplicar la regla (v de integración: tan x dx = tan x = tan x = tan x = tan x sin x cos x dx dv v + ln v + ln cos x En algunos casos vamos a tener que aplicar otros métodos de integración para poder calcular una integral de potencias trigonométricas. Ejemplo 6 Calcula: sec x dx Podemos reescribir la integral de la siguiente forma: sec x dx = sec x sec x dx = (1 + tan x sec x dx Al separar en dos integrales obtenemos: sec x dx = sec x dx + tan x sec x dx La primera integral es inmediata: sec x dx = ln sec x + tan x + tan x sec x dx Para la integral que falta usaremos la regla de integral por partes. Así que definimos: u = tan x du = sec x dx dv = sec x tan x dx v = sec x Sustituyendo estos valores en la integral faltante nos da: sec x dx = ln sec x + tan x + sec x tan x sec x dx Ahora obtuvimos la integral que queremos calcular. Como es negativa, podemos pasarla del otro lado: sec x dx = ln sec x + tan x + sec x tan x 1 4/7

5 Y el resultado es: sec x dx = 1 ln sec x + tan x + 1 sec x tan x Calcula la integral: cot 6 x dx Ejemplo 7 Ahora utilizaremos la identidad: csc x = 1 + cot x para transformar el integrando las veces que sea necesaria. Empezamos haciendo la primera transformación: ( cot 6 x dx = cot 4 x csc x 1 dx = cot 4 x csc x dx cot 4 x dx Ahora definimos: u(x = cot x, con lo que u (x = csc x. Entonces, cot 6 x dx = = = cot x cot 4 x csc x dx [u(x] 4 u (xdx cot x cot 4 x dx ( csc x 1 cot x csc x dx + cot x dx dx Aplicando la definición u(x = cot x de nuevo, obtenemos: Y terminamos. cot 6 x dx = cot x = cot x = cot x = cot x = cot x cot x csc x dx + cot x dx ( [u(x] u (x dx + csc x 1 dx cot x cot x cot x ( + csc x 1 dx + csc x dx dx + cot x x Cuando las potencias de tan x y de sec x son impares, conviente factorizar tan x sec x y utilizarlo como du, definiendo u = sec x. /7

6 Todos los tan x se transforman a sec x utilizando la identidad: sec = 1 + tan x Ejemplo 8 Calcula: tan x sec x dx Empezamos factorizando tan x sec x: tan x sec x dx = tan 4 x sec x [tan x sec x dx] Ahora podemos usar la identidad: sec = 1 + tan x: tan x sec x dx = [sec x 1] sec x [tan x sec x dx] Definimos: u = sec x y sustituimos en la integral para obtener: tan x sec x dx = [u 1] u du = [u 4 u + 1] u du = u 6 du u 4 du + u du = u7 7 u + u = sec7 x 7 sec x + sec x Observa que en cada integral utilizamos siempre una identidad que involucre a la función en cuestión y a su derivada. Por ejemplo, para la función sin x usamos la identidad: porque ahí aparece su derivada, que es: cos x. Por otra parte, para la función tan x usamos: porque la derivada de tan x es sec x. Y para la función cot x utilizamos la identidad: sin x + cos x = 1 sec x = 1 + tan x csc x = 1 + cot x porque la derivada de cot x es la función csc x. En los productos de potencias de las funciones trigonométricas siempre debemos intentar sustituir las identidades de manera que obtengamos una forma integrable. 6/7

7 Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 010 Año de publicación: Pendiente. Última revisión: 07 de agosto de 010. Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: efrain@aprendematematicas.org.mx 7/7

Reglas del producto y del cociente

Reglas del producto y del cociente Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones

Más detalles

Int. indefinida de funciones exponenciales

Int. indefinida de funciones exponenciales Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de

Más detalles

Ecuación general de la circunferencia

Ecuación general de la circunferencia Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso

Más detalles

S.E.L.: 3 ecuaciones con 3 incógnitas

S.E.L.: 3 ecuaciones con 3 incógnitas 1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para

Más detalles

Método de Sustitución

Método de Sustitución Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las

Más detalles

Profr. Efraín Soto Apolinar. Forma normal

Profr. Efraín Soto Apolinar. Forma normal Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su

Más detalles

Profr. Efraín Soto Apolinar. Variación inversa. entonces,

Profr. Efraín Soto Apolinar. Variación inversa. entonces, Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el

Más detalles

Solución de un sistema de desigualdades

Solución de un sistema de desigualdades Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque

Más detalles

Distancia entre un punto y una recta

Distancia entre un punto y una recta Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

Ecuaciones de la tangente y la normal

Ecuaciones de la tangente y la normal Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos

Más detalles

La diferencial como aproximación al incremento

La diferencial como aproximación al incremento La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.

Más detalles

Definición y Clasificación de Polígonos. Definición

Definición y Clasificación de Polígonos. Definición Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono

Más detalles

Series y sucesión lineal

Series y sucesión lineal Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera

Más detalles

1 Razones y proporciones

1 Razones y proporciones 1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos

Más detalles

Profr. Efraín Soto Apolinar. Polígonos

Profr. Efraín Soto Apolinar. Polígonos Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el

Más detalles

Profr. Efraín Soto Apolinar. Método de despeje

Profr. Efraín Soto Apolinar. Método de despeje Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente

Más detalles

Profr. Efraín Soto Apolinar. Suma de ángulos

Profr. Efraín Soto Apolinar. Suma de ángulos Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema

Más detalles

Problemas geométricos y algebraicos. Reglas de los exponentes

Problemas geométricos y algebraicos. Reglas de los exponentes Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.

Más detalles

Funciones especiales

Funciones especiales Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.

Más detalles

Triangulación de polígonos. Perímetros y áreas

Triangulación de polígonos. Perímetros y áreas Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:

Más detalles

Método de Igualación

Método de Igualación Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que

Más detalles

Método de fórmula general

Método de fórmula general Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula

Más detalles

Profr. Efraín Soto Apolinar. Forma general

Profr. Efraín Soto Apolinar. Forma general Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación

Más detalles

Conversión de la forma general a la forma ordinaria

Conversión de la forma general a la forma ordinaria Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la

Más detalles

Aplicaciones en ciencias naturales, económico-administrativas y sociales

Aplicaciones en ciencias naturales, económico-administrativas y sociales Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

Profr. Efraín Soto Apolinar. La función racional

Profr. Efraín Soto Apolinar. La función racional La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que

Más detalles

duv = udv + vdu udv = uv vdu

duv = udv + vdu udv = uv vdu I. INTEGRACIÓN POR PARTES. Si la integración de una función no es posible encontrarla por alguna de las fórmulas conocidas, es posible que se pueda integrar utilizando el método conocido como integración

Más detalles

La función cuadrática

La función cuadrática La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola

Más detalles

1 Ecuaciones y propiedades de la recta

1 Ecuaciones y propiedades de la recta Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente

Más detalles

Ec. rectas notables en un triángulo

Ec. rectas notables en un triángulo Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio

Más detalles

Triángulos. Definición y clasificación

Triángulos. Definición y clasificación Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Desigualdades de dos variables

Desigualdades de dos variables Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.

Más detalles

UNIDAD DE APRENDIZAJE III

UNIDAD DE APRENDIZAJE III UNIDAD DE APRENDIZAJE III Que debo de saber antes de empezar el tema? -Concepto de derivada. -Reglas de derivación para funciones algebraicas. -Regla de la cadena. -Regla del producto. -Regla del cociente.

Más detalles

IDENTIDADES TRIGONOMETRICAS

IDENTIDADES TRIGONOMETRICAS IDENTIDADES TRIGONOMETRICAS. ESTANDARES Modelar situaciones de variaciones de variación periódicas con funciones trigonométricas.. LOGROS.. Deducir las identidades trigonométricas fundamentales.. Demostrar

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

Profr. Efraín Soto Apolinar. Método Gráfico

Profr. Efraín Soto Apolinar. Método Gráfico Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada 0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de

Más detalles

Integrales de algunas funciones trigonométricas

Integrales de algunas funciones trigonométricas Integrales de algunas funciones trigonométricas Temas Integrales de potencias de algunas funciones trigonométricas. Capacidades Conocer algunos tipos de integrales de funciones trigonométricas y técnicas

Más detalles

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA

INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA INSTITUCIÓN EDUCATIVA GABRIEL TRUJILLO CORREGIMIENTO DE CAIMALITO, PEREIRA Lo peor no es cometer un error, sino tratar de justificarlo, en vez de aprovecharlo como aviso providencial de nuestra ligereza

Más detalles

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante.

Unidad II. Si una función f(x) tiene primitiva, tiene infinitas primitivas, diferenciándose todas ellas en unaconstante. Unidad II Integral indefinida y métodos de integración. 2.1 Definición de integral indefinida. Integrar es el proceso recíproco del de derivar, es decir, dada una función f(x), busca aquellas funciones

Más detalles

Unidad 3: Razones trigonométricas.

Unidad 3: Razones trigonométricas. Unidad 3: Razones trigonométricas 1 Unidad 3: Razones trigonométricas. 1.- Medida de ángulos: grados y radianes. Las unidades de medida de ángulos más usuales son el grado sexagesimal y el radián. Se define

Más detalles

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral

Figura 1. Círculo unidad. Definición. 1. Llamamos número π (pi) al valor de la integral ANÁLISIS MATEMÁTICO BÁSICO. LAS FUNCIONES TRIGONOMÉTRICAS. La función f(x) = 1 x 2 es continua en el intervalo [ 1, 1]. Su gráfica como vimos es la semicircunferencia de radio uno centro el origen de coordenadas.

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Problemas aritméticos

Problemas aritméticos Problemas aritméticos En las matemáticas los números y los conjuntos son la base de toda la demás teoría. Por eso es importante saber realizar las operaciones básicas con ellos: suma, resta, multiplicación

Más detalles

Derivadas de funciones trigonométricas y sus inversas

Derivadas de funciones trigonométricas y sus inversas Deivadas de funciones tigonométicas y sus invesas Las funciones tigonométicas se definen a pati de un tiángulo ectángulo como sigue: sin α y csc α y y cos α x sec α x α x tan α y x cot α x y Como puedes

Más detalles

Gráficas de las funciones racionales

Gráficas de las funciones racionales Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que

Más detalles

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia.

TRIGONOMETRÍA. MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico. 1.- Ángulos en la Circunferencia. TRIGONOMETRÍA MATEMÁTICAS I 1º Bachillerato Ciencias de la Salud y Tecnológico 1.- Ángulos en la Circunferencia. 2.- Razones Trigonométricas de un Triángulo Rectángulo. 3.- Valores del Seno, Coseno y Tangente

Más detalles

Cálculo de Derivadas

Cálculo de Derivadas Cálculo de Derivadas Sean a, b y k constantes (números reales) y consideremos a: u y v como funciones. Derivada de una constante Derivada de x Derivada de la función lineal Derivada de una potencia Derivada

Más detalles

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales

Las Funciones Trigonométricas. Sección 5.3 Funciones Trigonométricas de números reales 5 Las Funciones Trigonométricas Sección 5.3 Funciones Trigonométricas de números reales Qué hemos visto? Si el lado inicial de un ángulo,, coincide con la parte del eje de x que se encuentra en el primer

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II

UNIVERSIDAD DIEGO PORTALES CALCULO II. Autores: Sara Arancibia C Viviana Schiappacasse C. Universidad Diego Portales CALCULO II UNIVERSIDAD DIEGO PORTALES Autores: Sara Arancibia C Viviana Schiappacasse C PROGRAMA OBJETIVOS Comprender y aplicar los conceptos fundamentales del Cálculo Integral y Series Usar el Cálculo Integral y

Más detalles

Módulo 26: Razones trigonométricas

Módulo 26: Razones trigonométricas INTERNADO MATEMÁTICA 2016 Guía del estudiante Módulo 26: Razones trigonométricas Objetivo: Conocer y utilizar las razones trigonométricas para resolver situaciones problemáticas. Trigonometría Es la rama

Más detalles

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea? 82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +

Más detalles

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes.

Guía para maestro. Representación de funciones trigonométricas. Compartir Saberes. Guía para maestro Guía realizada por Nury Yolanda Espinosa Baracaldo Profesional en Matemáticas nespinosa@colegioscompartir.org La trigonometría es la ciencia encargada de estudiar la relación que hay

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS

SISTEMA DE 2 ECUACIONES LINEALES CON 2 INCÓGNITAS SISTEMA DE ECUACIONES LINEALES CON INCÓGNITAS Debemos tener, al menos, tantas ecuaciones como incógnitas para poder hallar éstas. Cuando al resolver un problema nos encontramos con dos incógnitas relacionadas

Más detalles

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS

SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS SESIÓN 11 DERIVACIÓN DE FUNCIONES TRIGONOMETRICAS INVERSAS I. CONTENIDOS: 1. Función inversa, conceptos y definiciones 2. Derivación de funciones trigonométricas inversas 3. Ejercicios resueltos 4. Estrategias

Más detalles

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos?

2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 1. Qué relaciones ligan las razones trigonométricas de (45º-a) y (45º+a) 2. Cuál es el valor del cociente de la suma entre la diferencia de los senos de dos ángulos? 3. Demostrar la fórmula: 4. Expresar

Más detalles

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas

Trigonometría Analítica. Sección 6.6 Funciones trigonométricas inversas 6 Trigonometría Analítica Sección 6.6 Funciones trigonométricas inversas Funciones Inversas Recordar que para una función, f, tenga inversa, f -1, es necesario que f sea una función uno-a-uno. o Una función,

Más detalles

Resumen sobre mecánica analítica

Resumen sobre mecánica analítica Resumen sobre mecánica analítica Ecuaciones de Lagrange. Supongamos una partícula, cuyo movimiento se puede describir mediante una sóla coordenada x, de modo que en el instante t la posición de la partícula

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes?

21. Círculo y recta Matemáticas II, 2012-II. Por qué el círculo y la recta son tan importantes? . Círculo recta Matemáticas II, -II. Círculo recta Por qué el círculo la recta son tan importantes? Los dos objetos geométricos más importantes aparte del punto son sin duda la recta el círculo. La recta

Más detalles

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS.

LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. 160 LECCIÓN 7: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A HOMOGÉNEAS. JUSTIFICACIÓN En esta lección centraremos nuestro estudio en aquellas ecuaciones diferenciales homogéneas mediante

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común.

APUNTES DE FUNDAMENTOS DE MATEMATICA. CASO I: Cuando todos los términos de un polinomio tienen un factor común. FACTORIZACION DE POLINOMIOS. CASO I: Cuando todos los términos de un polinomio tienen un factor común. Cuando se tiene una expresión de dos o más términos algebraicos y si se presenta algún término común,

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función.

Unidad II. 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Unidad II Funciones 2.1 Concepto de variable, función, dominio, condominio y recorrido de una función. Función En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio)

Más detalles

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores

Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV. María Palma Roselvis Flores Universidad de Oriente Núcleo de Bolívar Unidad de cursos básicos Matemáticas IV Profesor: Cristian Castillo Bachilleres: Yessica Flores María Palma Roselvis Flores Ciudad Bolívar; Marzo de 2010 Movimiento

Más detalles

MATHEMATICA. Trigonometría. Ricardo Villafaña Figueroa

MATHEMATICA. Trigonometría. Ricardo Villafaña Figueroa MATHEMATICA Trigonometría 2 Contenido Trigonometría... 3 Grados y radianes... 3 Gráficas de funciones trigonométricas... 6 Transformaciones de expresiones trigonométricas... 10 Simplificación... 10 Expansión...

Más detalles

Unidad 2: Ecuaciones, inecuaciones y sistemas.

Unidad 2: Ecuaciones, inecuaciones y sistemas. Unidad 2: Ecuaciones, inecuaciones y sistemas 1 Unidad 2: Ecuaciones, inecuaciones y sistemas. 1.- Factorización de polinomios. M. C. D y m.c.m de polinomios. Un número a es raíz de un polinomio es 0.

Más detalles

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS

TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS IES IGNACIO ALDECOA 19 TEMA 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS 4.1 Medida de ángulos. Equivalencias. Un ángulo es la región del plano comprendida entre dos semirrectas con origen común. A las semirrectas

Más detalles

Tema 6: Trigonometría.

Tema 6: Trigonometría. Tema 6: Trigonometría. Comenzamos un tema, para mi parecer, muy bonito, en el que estudiaremos algunos aspectos importantes de la geometría, como son los ángulos, las principales razones e identidades

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

Unidad 5. La derivada. 5.2 La derivada de una función

Unidad 5. La derivada. 5.2 La derivada de una función Unidad 5 La derivada 5. La derivada de una función A continuación trataremos uno de los conceptos fundamentales del Cálculo, que es el de la derivada. Este concepto es un ite que está estrecamente ligado

Más detalles

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,

sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces, Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.

Más detalles

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462)

I.- DATOS DE IDENTIFICACIÓN Nombre de la asignatura Calculo Integral (462) UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA CIVIL SECRETARÍA ACADÉMICA Coordinación de Investigación, Innovación, Evaluación y Documentación Educativas. I.- DATOS DE IDENTIFICACIÓN Nombre

Más detalles

Profr. Efraín Soto Apolinar. Área bajo una curva

Profr. Efraín Soto Apolinar. Área bajo una curva Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura

Más detalles

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II

RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II RESUMEN Y EJERCICIOS DE TRIGONOMETRÍA II Como ya sabemos, uno de los objetivos es que, conocidas las razones trigonométricas (a partir de ahora RT) de unos pocos ángulos, obtener las RT de una gran cantidad

Más detalles

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento.

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento. : definición y método general de solución. Modelos de un compartimento. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice 1 Introducción 2 3 4 Introducción

Más detalles

Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden

Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden CAPÍTULO 5 TEMAS 5.1 Aritmética 5.1.1 Variables y Operaciones Básicas Las operaciones aritméticas básicas en MATLAB son las más sencillas que se pueden realizar en este programa. Si asignamos valores a

Más detalles

1 Razones y Proporciones

1 Razones y Proporciones 1 Razones y Proporciones 1 1 Razones y Proporciones En la vida real surgen muchas ocasiones en las que deseamos comparar dos cantidades. Para compararlas tenemos muchas opciones válidas, pero la que nos

Más detalles

RAZONES TRIGONOMÉTRICAS

RAZONES TRIGONOMÉTRICAS RAZONES TRIGONOMÉTRICAS.- PRIMERAS DEFINICIONES Se denomina ángulo en el plano a la porción de plano comprendida entre dos semirrectas con un origen común denominado vértice. Ángulo central es el ángulo

Más detalles

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES

DERIVACIÓN DE LAS FUNCIONES ELEMENTALES DERIVACIÓN DE LAS FUNCIONES ELEMENTALES 2 El procedimiento mediante el cuál se obtiene la derivada de una función se conoce como derivación. Llamaremos funciones elementales a las funciones polinómicas,

Más detalles

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene:

Integración por partes VIII INTEGRACIÓN POR PARTES. Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: VIII INTEGRACIÓN POR PARTES Área Supóngase que se tiene la función producto y = uv. Si se deriva con respecto de x se obtiene: dy d = uv dx dx dy dv du = u + v dx dx dx Multiplicando toda la igualdad por

Más detalles

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos

Las Funciones Trigonométricas. Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos 5 Las Funciones Trigonométricas Sección 5.2 (parte 1) Funciones Trigonométricas de Angulos Triángulos Rectos Un triángulo es recto (triángulo rectángulo) si uno de sus ángulos internos mide 90 o. La suma

Más detalles

GUIA DE TRIGONOMETRÍA

GUIA DE TRIGONOMETRÍA GUIA DE TRIGONOMETRÍA Los ángulos se pueden medir en grados sexagesimales y radianes Un ángulo de 1 radián es aquel cuyo arco tiene longitud igual al radio - 60º = radianes (una vuelta completa) - Un ángulo

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

27/01/2011 TRIGONOMETRÍA Página 1 de 7

27/01/2011 TRIGONOMETRÍA Página 1 de 7 β 27/01/2011 TRIGONOMETRÍA Página 1 de 7 Notación en un triángulo: En un triángulo cualquiera llamaremos a, b y c a sus lados y A, B y C a sus vértices de forma que A sea el vértice formado por los lados

Más detalles

Análisis Dinámico: Ecuaciones diferenciales

Análisis Dinámico: Ecuaciones diferenciales Análisis Dinámico: Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo de 2014 Jesús Getán y Eva Boj Análisis Dinámico: 1 / 51 Introducción Solución genérica Solución de

Más detalles

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA

ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones ECUACIONES NO POLINÓMICAS CON UNA INCÓGNITA Una ecuación no polinómica es, en general, más difícil de resolver que una

Más detalles

TEMA 1: Funciones elementales

TEMA 1: Funciones elementales MATEMATICAS TEMA 1 CURSO 014/15 TEMA 1: Funciones elementales 8.1 CONCEPTO DE FUNCIÓN: Una función es una ley que asigna a cada elemento de un conjunto un único elemento de otro. Con esto una función hace

Más detalles