2 Unidad II: Ecuaciones Diferenciales de Orden Superior

Tamaño: px
Comenzar la demostración a partir de la página:

Download "2 Unidad II: Ecuaciones Diferenciales de Orden Superior"

Transcripción

1 ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales Reducibles en Orden Una ecuación diferencial ordinaria de segundo orden, como dijimos anteriormente, es una ecuación donde aparece la segunda derivada de una función desconocida y no aparecen derivadas de orden mayor. Una ecuación diferencial de segundo orden es de la forma por ejemplo F (x, y,, d y ) = 0 3x d y + ex seny = 0 En general las ecuaciones de este tipo son muy difíciles de resolver. Sin embargo, para tipos especiales de estas ecuaciones se conocen sustituciones que transforman la ecuación original en una que puede resolverse en forma rápida. un método consiste en hacer una adecuada sustitución para rebajar el orden y, después, tratar de resolver el resultado. Los ejemplos mostrados en la primera sección son de ese tipo. Consideremos los siguientes casos:.1.1 Cuando no aparece la variable dependiente ni su primera derivada La ecuación toma la forma F (x, d y ) = 0 Estas serán expresables siempre como d y = f(x) que se pueden reducir a primer orden haciendo la sustitución z =, lo que implica que = d y. Haciendo este cambio la ecuación toma la forma = f(x) que es una ecuación de primer orden. Se puede escribir como f(x) = 0 es una ecuación exacta cuya solución es z f(x) = C 1

2 o bien z = f(x) + C 1 como z =, reemplazando obtenemos nuevamente una ecuación de primer orden = f(x) + C 1 que se escribe como [ f(x) + C 1 ] = 0 la cual es exacta. Su solución es [ y [ y = ] f(x) C 1 x = C ] f(x) + C 1 x + C Observamos que la solución de la ecuación diferencial de segundo orden tiene una solución que posee dos constantes arbitrarias, C 1 y C, esto se debe a que se tuvieron que realizar dos integraciones para obtener la solución. Para obtener una solución particular, determinando los valores C 1 y C, se requiere de dos condiciones en el problema, condiciones sobre la función desconocida y sus derivadas especificadas en un valor de la variable independiente, llamadas condiciones iniciales. Este tipo de condiciones se manejaron en los ejemplos de la primera parte especificando la posición inicial, x 0, y la velocidad inicial, v 0, en t = 0. O condiciones sobre la función desconocida especificadas en o más valores de la variable independiente, como y(x 0 ) = y 0, y(x 1 ) = y 1, llamadas condiciones frontera. Ejemplo Resolver la ecuación de segundo orden (1 x ) d y + x3 = 0 Como es una ecuación en la cual no parece la variable dependiente, y, ni su primera derivada,, podemos reducirla de orden haciendo z = y por lo tanto = d y. Nota: Usaremos simplemente la letra y para denotar a la función y que depende de x, y no y(x). La ecuación toma la forma (1 x ) + x3 = 0 = x3 1 x + x3 1 x = 0 esto es una ecuación diferencial de primer orden exacta, su solución es z + x 3 1 x = C 1

3 para encontrar la antiderivada que esta indicada, dividimos x 3 entre 1 x obteniendo ( z + x + x ) 1 x = C 1 que se puede escribir como antiderivando z x 1 x 1 x = C 1 z x 1 ln(1 x ) = C 1 z = x + 1 ln(1 x ) + C 1 reemplazando z = = x + 1 ln(1 x ) + C 1 obtenemos nuevamente una ecuación de primer orden exacta [ x + 1 ] ln(1 x ) + C 1 = 0 resolviendo [ x + 1 ] ln(1 x ) + C 1 = C y x3 6 1 ln(1 x ) C 1 x = C podemos resolver la antiderivada que esta indicada haciendo los siguientes pasos 1. integrando por partes ln(1 x ) ln(1 x ) = x ln(1 x ) + u = ln(1 x ) du = dv = x 1 x v = x x 1 x. dividiendo x entre 1 x en la antiderivada del lado derecho de la igualdad: ( ln(1 x ) = x ln(1 x ) ) 1 x = x ln(1 x ) x x 3

4 3. Descomponiendo en fracciones parciales la antiderivada del lado derecho de la igualdad: ( ln(1 x ) = x ln(1 x 1 ) x + 1 x + 1 ) 1 + x = x ln(1 x ) x ln(1 x) + ln(1 + x) = x ln(1 x ) x + ln 1 + x 1 x por lo tanto la solución de la ecuación diferencial es o bien Ejemplo y x3 6 1 [ x ln(1 x ) x + ln 1 + x 1 x ] C 1 x = C y = x3 6 + (C 1 1)x + 1 x ln(1 x ) + 1 ln 1 + x 1 x + C Resolver la ecuación de segundo orden, sujeta a las condiciones iniciales y(1) = 3, y (1) = 1 d y + 6x = 0 Como no aparece la variable dependiente, y, ni su derivada, z =, de donde = d y, tomando la ecuación la forma + 6x = 0 que es una ecuación de primer orden. Se puede escribir como que es exacta. Su solución es + 6x = 0 z + 3x = C 1 reemplazando z = tenemos = C 1 3x usando la condición inicial de que y (1) = 1 tenemos que 1 = C = C 1 por lo tanto la ecuación diferencial puede escribirse como, hacemos el cambio o bien = 4 3x + (3x 4) = 0 4

5 que es una ecuación de primer orden exacta, su solución es con la condición inicial y(1) = 3 tenemos y + x 3 4x = C = C 0 = C por lo tanto la solución particular de la ecuación diferencial que satisface las condiciones iniciales es y = 4x x 3.1. Cuando no aparece la variable dependiente Si una ecuación de segundo orden contiene la primera y la segunda derivada de la variable dependiente y, pero no contiene la y directamente, toma la forma Para estos casos la sustitución F (x, y, y ) = 0 z = rebajará en una unidad el orden de la ecuación = d y F (x, z, z ) = 0 dando una ecuación diferencial de primer orden en z y x. Se resuelve, determinando G(x, z) = C 1 se reemplaza z =, quedando otra ecuación de primer orden se resuelve para tener y en terminos de x Ejemplo Encontrar la solución particular para G(x, y ) = C 1 G(x, y) = C x d y + = 0 y(1) = y(e) = 1 Es una ecuación en la cual no parece la variable dependiente y. = d y tenemos x + z = 0 Haciendo z =, 5

6 que puede escribirse como o bien integrando = z x z + x = 0 ln z + ln x = C ln(z x) = C z x = e C = C 1 reemplazando z = tenemos o sea integrando z = C 1 x = C 1 x C 1 x = 0 y C 1 ln x = C y = C 1 ln x + C condición y = cuando x = 1 = C 1 ln(1) + C = C y = C 1 ln x + condición y = 1 cuando x = e 1 = C 1 ln e + 1 = C 1 por lo tanto la solución particular es y = ln x + y = ln 1 x + Ejemplo Encontrar la solución general de la ecuación (1 + x ) d y + x + x = 0 Como no aparece la variable dependiente y podemos reducirla de orden haciendo z =, z = d y. 6

7 Obtenemos la ecuación integrando (1 + x ) + x z + x = 0 x(z + 1) = 1 + x = + x(z + 1) 1 + x x(z + 1) 1 + x = z + x 1 + x = 0 ln(1 + z) + 1 ln(1 + x ) = C (1 + z) 1 + x = C 1 z = C x 1 reemplazando z = tenemos = C x ( + 1 C ) 1 = x integrando y + x C x = C La integral indicada se puede resolver haciendo una sistitución trigonométrica; x = tan θ y = sec θdθ = 1 + x sec θdθ sec 1 + tan θ = θdθ sec θ = sec θdθ = ln(sec θ + tan θ) = ln( 1 + x + x) por lo tanto la solución es tan θ = x sec θ = 1 + x y + x C 1 ln( 1 + x + x) = C o bien y = x + C 1 ln( 1 + x + x) + C 7

8 .1.3 Cuando no aparece la variable independiente Estas ecuaciones diferenciales son ecuaciones de la forma Si hacemos z = y = d y F (y,, d y ) = 0 obtenemos F (y, z, ) = 0 que es una ecuación que contiene tres variables y, z y x. En estos casos podemos eliminar la variable x, para esto utilizamos la regla de la cadena para las derivadas, y escribimos d y = = = z por lo tanto tendremos una ecuación de primer orden de la forma se resuelve obteniendo F( y, z, ) = 0 pudiendose escribirse como f( y, z) = C 1 z = g(y) + C 1 reemplazando z = tenemos = g(y) + C 1 pudiendose resolverse para x en términos de y Ejemplo x = H(y) Resolver la ecuación diferencial de segundo orden ( ) y d y + = Como podemos observar no aparece la variable independiente x. Hagamos el cambio z = y d y = z, obteniendo la ecuación y z + z = z o bien = z z y z = 1 z y + z 1 = 0 y

9 integrando z 1 + y = 0 z 1 + y = C ln(z 1) + ln y = C ln(z 1)y = C (z 1)y = C 1 reemplazando z = z = C 1 y + 1 = C 1 y + 1 = ( C 1 y + 1) y = 0 C 1 + y y C 1 + y = C si en la primera integral realizamos la división ( 1 C ) 1 = C C 1 + y despejando a x en función de y Ejemplo Resolver y d y + 4y 1 y C 1 ln(c 1 + y) x = C x = y C 1 ln(y + C 1 ) + C ( ) = 0 y(0) = 1 y (0) = Como en la ecuación no aparece la variable independiente x, hacemos obteniendo la ecuación z = y z = d y y z + 4y 1 z = 0 1 = z 4y y z 9

10 = z y y z y z + (y z ) = 0 M y = z tiene un factor integrante que es función de y N V = V f(y) = N z M y M = z z y z = 4 z y z = y multiplicando tenemos ahora F (y) = e y = e ln y = y = 1 y z z + ( y y ) = 0 M y = z y = N z ya es exacta, por lo tanto existe f(y, z) tal que entonces f z f(y, z) = = M(x, y) = z y z + φ(y) y por lo tanto f(y, z) y = z y + φ(y) = z y + φ (y) = N(y, z) z y + φ (y) = z y φ (y) = dφ = dφ = 0 dφ = 0 φ y = 0 φ(y) = y por lo tanto f(y, z) = z y + y 10

11 o bien La solución a la ecuación diferencial es reemplazando z = tenemos z y + y = C z = Cy y ( ) = Cy y usando la condición inicial = cuando x = 0 y y = 1 tenemos ( ) = C(1) (1) quedando la ecuación como C = 16 ( ) = 16y y = = 16y y (1) 16y y 16y y = 16y y = 0 integrando 16y y = C 1 si en la primera integral completamos un trinomio cuadrado perfecto dentro del radical y hacemos la sustitución y 1 = sen θ obtenemos: = 16y y (y y + 1) + = = 1 (y 1) 1 (y 1) = 1 cos θdθ 1 sen θ = 1 dθ = 1 θ = 1 sen 1 (y 1) obtenemos como solución 1 sen 1 (y 1) x = C 1 sen 1 (y 1) = x + C 1 usando la condición inicial y = 1 cuando x = 0 sen 1 0 = C 1 0 = C 1 11

12 obtenemos la solución particular sen 1 (y 1) = x y = sen( x) + 1 Nota: Si en la ecuación (.1) tenemos la raíz negativa, = 16y y, obtenemos la solución Ejercicios y = sen( x) + 1 Resolver las siguientes ecuaciones diferenciales, determinando la constante de integración cuando se den las condiciones iniciales d y = 1x; y = 1 y = cuando x = 0. d y sen x = 1 1 x. d y = x (x +1). 4. x d y + = 0 ; y = y = 3 cuando x = d y = x. ( 6. x d y 1 ) = d y 4 + (. y d y + 3 ) = y d y + 4y d x dt Soluciones ( ) = 0 ; y = 0 y = 4 cuando x = 0. ( dt 1. y = x 3 x + 1. ( ) = 0 ; y = 1, ) = 0 ; x = 0, dt = cuando x = 0 = 6 cuando t = 0.. y = (x 1) ln(x 1) sen x + (C 1 1)x + C ; x > y = C 1 x + C 1 tan 1 x. 4. y = 3 ln x + ; x > y = x (1 + C 1e x )x + C 6. y = 3C 1 (C 1 x 1) 3 + C 7. y = 1 4 x3 4x. x = C 1 y ln y + C 9. y = 1 + sen ( x) 1

1. CÁLCULO DE PRIMITIVAS

1. CÁLCULO DE PRIMITIVAS . CÁLCULO DE PRIMITIVAS. Calcular las siguientes integrales indefinidas:. ( + Es inmediata. ( = (ln ln + + C +. + + + Descomponemos el integrando en fracciones parciales y obtenemos. + + = + arc tg + =

Más detalles

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN TEMA ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN 8 INTRODUCCIÓN: Eisten algunos tipos elementales de ecuaciones diferenciales para los cuales se cuenta con procedimientos canónicos que permiten

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de E de variable separables, llamadas así porque es práctrica

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29

Contenido. 2. Ecuaciones diferenciales de primer orden. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido 2. Ecuaciones diferenciales de primer orden 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/29 29 Contenido: Tema 02 2. Ecuaciones diferenciales de primer orden

Más detalles

Ecuaciones Diferenciales (MA-841)

Ecuaciones Diferenciales (MA-841) Ecuaciones Diferenciales (MA-841) Ecuaciones de Departmento de Matemáticas / CSI ITESM Ecuaciones de Ecuaciones Diferenciales - p. 1/16 Ecuaciones de Iniciaremos nuestras técnicas de solución a ED con

Más detalles

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1

Lista de ejercicios # 1. Ecuaciones diferenciales ordinarias de orden 1 UNIVERSIDAD DE COSTA RICA FCULTAD DE CIENCIAS MA-1005 Ecuaciones Diferenciales ESCUELA DE MATEMÁTICA II Ciclo del 2017 Lista de ejercicios # 1 Ecuaciones diferenciales ordinarias de orden 1 Soluciones

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas).

1. Algunas primitivas inmediatas (o casi inmediatas). Cálculo I. o Matemáticas. Curso 00/0. Cálculo de Primitivas. Algunas primitivas inmediatas (o casi inmediatas). (5x 6) = 5 (5x 6) 5 = 5 (5x 6) + C. Nota: Si f(x) = 5x 6 su derivada es 5. En la primera

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones.

Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. Tema 7: Ecuaciones diferenciales. Conceptos fundamentales. Integración de algunas ecuaciones diferenciales. Aplicaciones. 1. Introducción y ejemplos. Las ecuaciones diferenciales ordinarias, e. d. o.,

Más detalles

Integración por fracciones parciales

Integración por fracciones parciales Integración por fracciones parciales El cociente de dos polinomios se denomina función racional. La derivación de una función racional conduce a una nueva función racional que puede obtenerse por la regla

Más detalles

Problemas resueltos del Boletín 4

Problemas resueltos del Boletín 4 Boletines de problemas de Matemáticas II Problemas resueltos del Boletín 4 Problema 1. Resolver el siguiente sistema de ecuaciones diferenciales: { y = 1 z, z = 1 } y Solución: Lo transformamos como sigue:

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

Integrales indenidas

Integrales indenidas Integrales indenidas Adriana G. Duarte 7 de agosto de 04 Resumen Antiderivación. Integrales indenidas, propiedades. Técnicas de integración: inmediatas,por sustitución, por partes. Ejemplos y ejercicios.

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

1.9 Sustituciones diversas 49

1.9 Sustituciones diversas 49 1.9 Sustituciones diversas 49 1.9 Sustituciones diversas En ocasiones tenemos ecuaciones diferenciales que no corresponden a ninguna forma de ecuación conocida, donde, para resolverlas fácilmente recurrimos

Más detalles

INTEGRACIÓN POR CAMBIO DE VARIABLE

INTEGRACIÓN POR CAMBIO DE VARIABLE INTEGRACIÓN POR CAMBIO DE VARIABLE Propósitos Identificar las operaciones algebraicas que convierten una integral a una forma inmediata (cambio de variable). Utilizar las tablas de integrales inmediatas

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-1-00-017 CURSO: Matemática Intermedia 3 SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer

Más detalles

Ejercicios Departamental de marzo del 2016

Ejercicios Departamental de marzo del 2016 Ejercicios Departamental 06 Ciro Fabián Bermúez Márquez 7 de marzo del 06 El siguiente documento tiene la finalidad de revisar los ejercicios del eamen departamental de cálculo integral que se llevo acabo

Más detalles

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería

Universidad Diego Portales Segundo Semestre 2007 Facultad de Ingeniería Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº Ecuaciones Diferenciales Eactas, Lineales de Primer

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES

UNIVERSIDAD ARTURO PRAT IQUIQUE CHILE DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES DEPARTAMENTO DE CIENCIAS FISICAS Y MATEMATICAS INTEGRALES MARIA ELISA VODNIZZA LIRA e-mail : mvodnizz@cec.unap.cl url : www.unap.cl/~mvodnizz SEPTIEMBRE - 00 INTEGRALES Uno de los problemas importantes

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que:

ene 5 12:59 Está basado en la regla de la cadena. Si F(x) y g(x) son funciones derivables, la regla de la cadena nos dice que: Métodos de integración: 1) Método de descomposición Para calcular una integral indefinida, usamos las propiedades de las integrales y las igualdades que conozcamos para descomponer la integral en otras

Más detalles

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES 58 LECCIÓN 0: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES JUSTIFICACIÓN: Las ecuaciones diferenciales ordinarias de primer orden lineales comprenden una clase especial de las ecuaciones

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3 Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros

Más detalles

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática

CAPITULO 5. Integral Indefinida. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica Escuela de Matemática CAPITULO 5 Integral Indefinida 1 Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr) Créditos

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición

Funciones racionales. Tema 5: Integración. Integrales reducibles a racionales. Primera reducción. Primeros ejemplos. Definición Funciones racionales Funciones racionales Tema 5: Integración. Integrales racionales y reducibles a racionales Análisis Matemático Grado en Física Definición Una función f se dice que es racional si f

Más detalles

2.2 Ecuaciones diferenciales de variables separables

2.2 Ecuaciones diferenciales de variables separables 38 Ecuaciones diferenciales. Considerado a t como la variable independiente: s 0 ds dt s 3ts s 4 9ts.s/.s 3t/.s/.s3 9t/ s 3t s 3 9t ; excepto los puntos que están en la curva s 3 9t 0 en el eje t.s 0/.

Más detalles

Integrales que producen Funciones Trigonométricas Inversas

Integrales que producen Funciones Trigonométricas Inversas Integrales que procen Funciones Trigonométricas Inversas Veremos un grupo de funciones cuyas antiderivadas son funciones trigonométricas inversas. Para comenzar, recuerda que d (sen (x = x Si al derivar

Más detalles

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4.1. Ecuaciones lineales La e.d.o. de primer orden lineal es Si g(x) = 0: ecuación lineal homogénea. a 1 (x) +

Más detalles

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN

TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN e-mail: imozas@el.uned.es https://www.innova.uned.es/webpages/ilde/web/inde.htm TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN Ecuación diferencial ordinaria de orden n.- Es una relación entre la variable,

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

1. Algunas primitivas inmediatas (o casi inmediatas)

1. Algunas primitivas inmediatas (o casi inmediatas) Cálculo o del grado de Matemáticas y doble grado MAT-IngINF. Curso /. Apuntes sobre integración y cálculo de primitivas. Algunas primitivas inmediatas (o casi inmediatas) (5 6) d 5 (5 6) 5 d 5 (5 6) Nota:

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO 2 étodos de solución de E de primer orden 2.7 Factor integrante Como puede observarse en todas las E resueltas hasta ahora, es frecuente que hagamos manipulaciones algebraicas para simplificar

Más detalles

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5

1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5 Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M _SC UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-1-00-2018_SC CURSO: SEMESTRE: Primero CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer Parcial FECHA DE

Más detalles

5.1. Primitiva de una función. Reglas básicas

5.1. Primitiva de una función. Reglas básicas Tema 5 Integración Indefinida 5.1. Primitiva de una función. Reglas básicas En este tema estudiaremos lo que podríamos llamar el problema inverso de la derivación, es decir, dada una función f hallar otra

Más detalles

Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes.

Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes. Ecuaciones Diferenciales Homogéneas de Segundo Orden con Coeficientes Constantes. La ecuación de segundo orden con coeficientes constantes se escribe como: d y d dy p q y f p y q son constantes d Si f

Más detalles

Sistemas no lineales

Sistemas no lineales Tema 4 Sistemas no lineales Dpto. Matemática Aplicada I E.T.S. de Arquitectura Universidad de Sevilla Curso 2005 2006 Tema 4. Sistemas no lineales 1. Sistemas no lineales de ecuaciones diferenciales. Integrales

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

INTEGRACIÓN POR PARTES

INTEGRACIÓN POR PARTES INTEGRACIÓN POR PARTES Propósitos Reconocer que el método de integración por partes amplía las posibilidades de integrar productos de funciones y saber que se desprende de la derivada de un producto. Utilizar

Más detalles

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática

Unidad 5 - Trabajo Práctico 5 Parte 1 Elementos de Matemática 06 Unidad 5 - Trabajo Práctico 5 Parte Unidad 5 Integral indefinida. Primitivas inmediatas. Uso de tablas de integrales. Integración por descomposición, por sustitución y por partes. Integral definida:

Más detalles

Ecuaciones no resueltas respecto a la derivada

Ecuaciones no resueltas respecto a la derivada 1. Introducción Ecuaciones no resueltas respecto a la derivada Podemos preguntarnos sobre los casos donde no es posible despejar y de la ecuación diferencial ordinaria de primer orden: F[, y), y )] = 0.

Más detalles

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones

Escuela de Matemáticas 6 de Mayo de Examen Parcial # 1. Instrucciones Universidad de Costa Rica MA005 Ecuaciones Diferenciales Escuela de Matemáticas 6 de Mao de 07. Examen Parcial # Instrucciones Cuenta con 3 horas para realizar el examen. El examen cuenta de 7 preguntas

Más detalles

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno:

Un i d a d 7. Objetivos. Al inalizar la unidad, el alumno: Un i d a d 7 métodos de integraión Objetivos Al inalizar la unidad, el alumno: Utilizará los métodos de sustitución directa en la resolución de integrales. Resolverá integrales de funciones trigonométricas,

Más detalles

1. Ecuaciones Exactas. M(x, y)x + N(x, y) = 0 (1.4)

1. Ecuaciones Exactas. M(x, y)x + N(x, y) = 0 (1.4) 1. Ecuaciones Exactas Consideremos la ecuación diferencial M(x, y) + N(x, y)y = 0 (1.1) en donde la variable independiente es x y la variable dependiente es y. Vamos a asociar a esta ecuación diferencial

Más detalles

ECUACIONES DIFERENCIALES DE PRIMER ORDEN

ECUACIONES DIFERENCIALES DE PRIMER ORDEN TEMA N o ECUACIONES DIFERENCIALES DE PRIMER ORDEN En general una ecuación diferencial de primer orden se puede escribir de la siguiente manera: F (; y; y 0 ) = 0 (Forma Implicíta) Sí en está ecuación es

Más detalles

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II

Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Universidad Nacional Experimental Sur del Lago Jesús María Semprum Programa de Contaduría Pública Prof. Pedro Quintela Matemática II Ejercicios Resueltos Ejercicio : Encontrar la pendiente de la recta

Más detalles

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Universidad de Chile Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Profesora Salomé Martínez Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Pauta: Auxiliar

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una

Más detalles

1 Unidad I: Ecuaciones Diferenciales de Primer Orden

1 Unidad I: Ecuaciones Diferenciales de Primer Orden ITESM, Campus Monterrey Departamento de Matemáticas MA-841: Ecuaciones Diferenciales Lectura #6 Profesor: Victor Segura 1 Unidad I: Ecuaciones Diferenciales de Primer Orden 1.3.4 Factores Integrantes Dentro

Más detalles

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca

Prof. J. Contreras S. Prof. C. del Pino O. Método de cambio de variable. U de Talca Sesión Temas Método de sustitución o cambio de variable.. Introducción Capacidades Conocer y comprender el método de cambio de variable. Calcular integrales indefinidas que se pueden obtener aplicando

Más detalles

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM

Integrales indefinidas. Teoremas 2º Bachillerato. Editorial SM Integrales indefinidas. Teoremas º Bachillerato Editorial SM Esquema Primitiva de una función La función G(x) es una primitiva de la función f(x) en un intervalo I si G'(x) = f(x) para todo x del intervalo

Más detalles

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL.

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL. 7 LECCIÓN : SOLUCION DE UNA ECUACIÓN DIFERENCIAL. JUSTIFICACIÓN: Ya que uno de los objetivos generales del curso de Ecuaciones Diferenciales es el de hallar las funciones desconocidas que satisfacen la

Más detalles

Fundamentos de Matemáticas

Fundamentos de Matemáticas Fundamentos de Matemáticas Ecuaciones diferenciales Solución: Tarea 4 (Total: 18 puntos) II.2. Ecuaciones diferenciales de primer orden La ecuación de Ricatti es una ecuación no-lineal = P (x) + Q(x)y

Más detalles

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS

OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS 60 LECCIÓN 3: OBTENCIÓN DE LA ECUACIÓN DIFERENCIAL ASOCIADA A UN HAZ DE CURVAS JUSTIFICACIÓN: En el curso de Análisis Matemático II, cuando se resuelven integrales indefinidas se obtienen primitivas o

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE M UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-1-M-2-00-2017 CURSO: Matemática Intermedia 3 SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN: Primer

Más detalles

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008

Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 2008 Universidad Simón Bolívar Departamento de Matemáticas Puras y Aplicadas Enero - Marzo, 8 MA- Practica: semana y/o Ejercicios sugeridos para la semana y/o. Cubre el siguiente material: Propiedades de la

Más detalles

Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 23 de Abril de Prof: Roberto Cabrales. Ayudante: Iván Martinez.

Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 23 de Abril de Prof: Roberto Cabrales. Ayudante: Iván Martinez. Solución del Certamen 1 de Ecuaciones diferenciales. Jueves 3 de Abril de 016. Prof: Roberto Cabrales. Ayudante: Iván Martinez. Ejercicio 1 (1 puntos). Diga si las siguientes ecuaciones son de variables

Más detalles

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas.

MATEMÁTICAS ESPECIALES II PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. MATEMÁTICAS ESPECIALES II - 2018 PRÁCTICA 2 Ecuaciones diferenciales lineales de primer orden y ecuaciones que se reducen a ellas. Una ecuación diferencial de primer orden de la forma dy + p(x) y = q(x)

Más detalles

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES

SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES SISTEMAS LINEALES DE ECUACIONES DIFERENCIALES En esta sección se estudiaran los sistemas de ecuaciones diferenciales lineales de primer orden, así como los de orden superior, con dos o más funciones desconocidas,

Más detalles

TERCER EXAMEN EJERCICIOS RESUELTOS

TERCER EXAMEN EJERCICIOS RESUELTOS MATEMÁTICAS II G. I. T. I.) TERCER EXAMEN 4 EJERCICIOS RESUELTOS EJERCICIO. ) Dibuja la región limitada por la circunferencia de ecuación r = r θ) = senθ) y la lemniscata de ecuación r = r θ) = cosθ).

Más detalles

Diferenciación SEGUNDA PARTE

Diferenciación SEGUNDA PARTE ANÁLISIS I MATEMÁTICA 1 ANÁLISIS II (Computación) Práctica 4 - Primer Cuatrimestre 009 Diferenciación SEGUNDA PARTE Regla de la Cadena 1 Sean f(u, v, w) = u + v 3 + wu y g(x, y) = x sen(y) Además, tenemos

Más detalles

Antidiferenciación. Métodos de integración.

Antidiferenciación. Métodos de integración. Capítulo 1 Antidiferenciación. Métodos de integración. 1.1. Antidiferenciación Definición 1 Sea las funciones f y F definidas en un intervalo I, entonces F es una antiderivada de f sobre I ssi: F (x) =

Más detalles

( ) " f $ ( x) integramos a ambos

( )  f $ ( x) integramos a ambos Guia No Calculo Integral Grupo UNAD Escuela de Ciencias Básicas Tecnologías e Ingeniería Métodos de Integración Integración por partes Funciones trigonometricas Sustitución trigonometricas Fracciones parciales

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden. Ecuaciones diferenciales de variables separables El primer tipo de E que presentamos es el de variables separables, porque con frecuencia se intenta separar

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, septiembre 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N.

Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Cálculo Diferencial e Integral - Antiderivada. Prof. Farith J. Briceño N. Objetivos a cubrir Antiderivadas. Integral indefinida. Propiedades de la integral indefinida. Notación sigma. Sumas especiales

Más detalles

LÍMITES. Ing. Ronny Altuve

LÍMITES. Ing. Ronny Altuve UNIVERSIDAD ALONSO DE OJEDA FACULTAD DE CIENCIAS ADMINISTRATIVAS Unidad Curricular: Matemática II LÍMITES Elaborado por: Ing. Ronny Altuve Ciudad Ojeda, Enero de 2016 INDICADOR DE LOGRO Aplicar la definición

Más detalles

Integración por Partes II. Integrales Cíclicas

Integración por Partes II. Integrales Cíclicas Integración por Partes II Integrales Cíclicas Para este tema utilizamos la misma fórmula de integración por partes, no hay casi nada nuevo. Para comenzar con esta sección usaré un ejemplo. Ejemplo 1: Integra

Más detalles

DEF. Se llaman ecuaciones en variables separadas a las ecuaciones diferenciales de primer orden de la forma: y Q(y)dy = P (x) y dy

DEF. Se llaman ecuaciones en variables separadas a las ecuaciones diferenciales de primer orden de la forma: y Q(y)dy = P (x) y dy Ecuaciones diferenciales de 1 o orden Ampliación de Cálculo 1. Ecuaciones en variables separables DEF. Se llaman ecuaciones en variables separadas a las ecuaciones diferenciales de primer orden de la forma:

Más detalles

Ecuaciones diferenciales en la Química. Modelos.

Ecuaciones diferenciales en la Química. Modelos. Capítulo 1 Ecuaciones diferenciales en la Química. Modelos. 1.1 Introducción. Muchos fenómenos naturales (físicos, químicos, biológicos, etc. ) responden, en sus resultados, a formulaciones matemáticas

Más detalles

Ecuaciones Diferenciales Ordinarias EDO

Ecuaciones Diferenciales Ordinarias EDO Ecuaciones Diferenciales Ordinarias EDO Contenido temático Primer orden o Variables Separables o Lineales y Bernoulli o Exactas y factor integrante o Homogéneas o Aplicaciones con Modelado Decaimiento

Más detalles

Tema 3. Cálculo de primitivas Conceptos generales.

Tema 3. Cálculo de primitivas Conceptos generales. Tema Cálculo de primitivas... Conceptos generales. Una primitiva de una función es otra función que la tiene como derivada y la operación que permite obtener esta primitiva a partir de la función original

Más detalles

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL 86 LECCIÓN : ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL JUSTIFICACIÓN: Muchas ecuaciones diferenciales pueden ser reducidas a ecuaciones diferenciales lineales mediante un

Más detalles

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. ECUACIONES TRIGONOMÉTRICAS. TEORÍA.

GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. ECUACIONES TRIGONOMÉTRICAS. TEORÍA. GYMNÁZIUM BUDĚJOVICKÁ. MATEMÁTICAS. ECUACIONES TRIGONOMÉTRICAS. TEORÍA. ÍNDICE:.- Tipo I: Ecuaciones Elementales..- Tipo II: Polinómicas..- Tipo III: Reducibles a polinómicas..- Tipo IV: Homogéneas. 5.-

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS

Universidad de Chile Integración por partes. Ingeniería Matemática SEMANA 6: PRIMITIVAS FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Cálculo Diferencial e Integral 08- Ingeniería Matemática SEMANA 6: PRIMITIVAS 3.3. Integración por partes Proposición 3. (Fórmula de integración

Más detalles

TEMA 12.- CÁLCULO DE PRIMITIVAS

TEMA 12.- CÁLCULO DE PRIMITIVAS TEMA.- CÁLCULO DE PRIMITIVAS.-.- PRIMITIVA DE UNA FUNCIÓN Definición de Función Primitiva Una función F() se dice que es primitiva de otra función f() cuando F'() f() Ejemplos: F() es primitiva de f()

Más detalles

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de "x" y viene dado por

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de x y viene dado por 76 por el factor integrante resulta donde µ () = e e dy + A () e y d = e B () d e dy + A () e y d = d ( e y) = d (µ () y) Abran sus guías en la página 6 y leamos la información que allí aparece acerca

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de E de primer orden 2.8 Miscelánea En este apartado queremos responder a la pregunta cómo proceder cuando se nos pide resolver una ecuación diferencial ordinaria de primer

Más detalles

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS

Preliminares Problemas de Valor Inicial Problemas de Contorno ECUACIONES DIFERENCIALES ORDINARIAS ECUACIONES DIFERENCIALES ORDINARIAS Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Contenido Preliminares 1 Preliminares 2 3 El Método de Disparo Lineal Preliminares Las ecuaciones

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

Antiderivada o Primitiva

Antiderivada o Primitiva Octubre 2013 En esta Presentación... En esta Presentación veremos: Definición de Antiderivada En esta Presentación... En esta Presentación veremos: Definición de Antiderivada Ejemplos En esta Presentación...

Más detalles

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario

Universidad Nacional Mayor de San Marcos Facultad de Ingeniería Industrial Curso: Matemática II Guía 3 - Solucionario Ciclo:01- Tema: Integrales Indefinidas (Ejercicios Adicionales) En los siguientes ejercicios calcule la integral indefinida por cualquier método de los vistos en clase: 1. xe x Haciendo [u x, dv e x ]

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-107-1-V-1-00-2018 CURSO: CÓDIGO DEL CURSO: 107 SEMESTRE: Primer Semestre JORNADA: Vespertina TIPO DE EXAMEN:

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial

Tema 5. Introducción a las ecuaciones diferenciales ordinarias. senx + C 2. x es solución de la ecuación diferencial 1 Tema 5. Introducción a las ecuaciones diferenciales ordinarias 1.- Comprobar que la función y = C 1 senx + C 2 x es solución de la ecuación diferencial (1 - x cotgx) d2 y dx 2 - x dy dx + y = 0. 2.-

Más detalles

S O L U C I Ó N y R Ú B R I C A

S O L U C I Ó N y R Ú B R I C A ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICAS AÑO 08 PERÍODO PRIMER TÉRMINO MATERIA Cálculo de una variable PROFESORES EVALUACIÓN SEGUNDA

Más detalles

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García

CURSO CERO DE MATEMATICAS. Apuntes elaborados por Domingo Pestana Galván. y José Manuel Rodríguez García INGENIEROS INDUSTRIALES Y DE TELECOMUNICACIONES CURSO CERO DE MATEMATICAS Apuntes elaborados por Domingo Pestana Galván y José Manuel Rodríguez García UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica

Más detalles