TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN"

Transcripción

1 TEMA 4.- ECUACIONES DIFERENCIALES DE PRIMER ORDEN Ecuación diferencial ordinaria de orden n.- Es una relación entre la variable, la función las sucesivas derivadas de ésta, es decir F(,,,,... (n) ) = 0. Una solución es una función = f() que sustituida en la ecuación, la verifica. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Ecuaciones de variables separadas Tienen la forma f ()d = f ()d. La solución es f ()d C f() d Ejemplo: (4 )d d = 0. Integrando (4 )d d C C Ecuaciones de variables separables Tienen la forma f () f ()d = g () g ()d. anteriores dividiendo por f () g (). Se transforma en una de las Ejemplo: ( + e )d ( +)e d = 0. Dividimos por ( + e )( +) queda e d d 0. Integrando ln ( + ) ln ( + e ) = C e Ecuación lineal de primer orden Es de la forma + P() = Q() Para resolverla, hallaremos dos funciones u v (de ) que cumplan = u v. Derivando sustituendo en la ecuación queda: u v + uv + P() uv = Q() [u + P()u]v + uv = Q() (I) u' Hacemos entonces u + P()u = 0, de donde P() u P() d u Sustituendo en (I): P() d P()d P()d v e = Q() v' Q()e v Q()e d Así pues, la solución sería = P() d P()d e Q()e d P() d ln u = e. Ecuaciones diferenciales homogéneas Una función f(.) es homogénea de grado n si f(t, t) = t n f(,) Una ecuación diferencial de la forma P(, ) d + Q(, ) d = 0 es homogénea si P Q son funciones homogéneas del mismo grado. Se resuelven haciendo el cambio = u de donde d = u d + du. Al sustituir se transforma en una de variables separables Ejemplo: ( + ) d d = 0. Es homogénea de grado. Haciendo el cambio mencionado: ( + u )d u (ud + du) = 0. Dividiendo por : ( + u )d u (ud + du) = 0 de donde ( u )d u du = 0 /7

2 d u du 0 u ln + ln( u ) = lnc ln + ln( u ) = lnk ( u ) = K como u = quedaría finalmente = K Ecuaciones diferenciales eactas Una ecuación P(, )d + Q(, )d = 0 es diferencial eacta si eiste una función F F F(,) = C, (que será la solución) cua diferencial es la ecuación, es decir P Q. Supondremos que las primeras derivadas parciales de F son continuas. Luego se cumplirá que P F F Q F Para resolverla, como P Pd C() F (II), donde C() es una constante arbitraria que depende de. Derivando respecto de : Pd C' () Q Pd C' () Q. Integrando respecto de obtenemos C(). Finalmente sustituendo en (II) obtenemos F Ejemplo: (4 ) d + ( 4 ) d = 0, es diferencial eacta pues P Q. Como (4 ) d 4 + C(). Luego 4 = 4 + C () C () = 0 C() = K, luego La solución es 4 = K Factor integrante Supongamos que la ecuación Pd + Qd = 0 no es diferencial eacta pero que podemos encontrar una función = (,) tal que Pd + Qd = 0 sí lo sea. Diremos que es un P Q factor integrante. En este caso se tendrá que P Q (III) En el caso particular que = () dependa sólo de, la epresión (III) queda P Q ' P Q 'Q de donde podemos obtener. Q En el caso particular que = () dependa sólo de, la epresión (III) queda P Q ' Q P 'P de donde podemos obtener. P Ejemplo: Hallar un factor integrante dependiente de para la ecuación diferencial ( + )d d = 0. /7

3 ' P Q ( ) Calculamos Integrando ln ln de aquí Q ln ln de donde. Ecuaciones de Bernoulli Son de la forma + P() = Q() n, donde n entero >. Dividiendo la ecuación por n n n queda. ' P() Q(). Hacemos el cambio n = z derivando ( n) n = = z. Sustituendo en la ecuación queda z' P()z Q(), que es lineal de primer n orden. EJERCICIOS Derivando en la epresión + = C obtenemos: + = 0 = La ecuación diferencial la podemos escribir: ( )d = d e integrando: C + C = 0 Puesto que si = =, se tiene que C =, luego la solución es: + = 0. Es una ecuación lineal de primer orden. Hacemos = u v = u v + uv. Sustituendo en la ecuación: u v + uv = uv ln + v(u` u) + uv = ln +. Una /7

4 solución de u u = 0 es u = e, con lo que la ecuación queda e v = ln + e v = e ln +. Resolviendo por partes se obtiene que v = e ln + C. Luego: = e (e ln + C) = ln + Ce d du du du d Hacemos el cambio = u u u u u. d d d u Integrando: ln C. Sustituendo u: ln C. Para = 5 u C ln 5 tendremos 0 C = +ln5. Luego =. C ln ln 4 Podemos escribir la ecuación de la forma =, que resulta ser una ecuación lineal. Hacemos el cambio = u v sustituendo en la ecuación queda vu' u uv'. Haciendo u' u 0, obtenemos que u =, luego v =, de donde v' v ln C. Así pues la solución de la ecuación diferencial es = ln + C. P Q Q e d sólo depende de luego eiste un factor integrante dependiente de que es () =. Multiplicando por la ecuación queda: (4 4)d 7 d = 0 f(,) = 4 4 d= 4 7 f + C() = = 7 + C () = 7, de donde C () = 0 C() = C. Así pues la solución general de la ecuación diferencial es 4 7 = C. 4/7

5 Q P 4 Puesto que depende sólo de, ha un factor integrante que depende P sólo de. Se tiene que ln() = ln 4 () = 4. Escribimos la ecuación en la forma d + d = 0. Como P Q P d depende sólo de, ha un factor integrante que depende sólo de. Se tiene () e. Luego la ecuación d d 0 es diferencial eacta. Se tendrá que f (, ) d C() f (, ) C'() C () = 0 C() = C. Así pues la solución general de la ecuación es = C Escribamos la ecuación en la forma ( + 9)d d = 0. Puesto que P Q, eiste un factor integrante que depende sólo de, tal que Q ' de donde ln = ln = 9. Así pues, la ecuación d d 0 9 d d 0 es diferencial eacta. Se tendrá que 9 d 9 = C(), luego, derivando respecto de deberá ser C'() de donde 5/7

6 C () = 0 C() = k. Luego la solución de la ecuación diferencial es 9 9 de k = 4 = 0. Así pues 0 = k. El valor Se trata de una ecuación homogénea. Haciendo = u = u + u. Sustituendo: u u u' u du d u u Integrando: ln u ln K ln ln K u K u K u K K u u. Así pues: K Se trata de una ecuación de Bernoulli. Dividimos por 5 ' Hacemos el cambio z = 4 z = = z'. Sustituendo en la 4 ecuación queda z' z 5 que a es una ecuación lineal. Ponemos z = u v 4 z = u v + uv. Sustituendo de nuevo: u' v uv' uv v u' u uv' 5. Hacemos u' u' u 0 log u log u u =. Luego la ecuación queda: v' 5 v = 0 4 v = C. 4 Así pues z = 4 + C, de donde = 4 4 C 6/7

7 Se trata de una ecuación de Bernoulli. Dividimos por = Hacemos el cambio z = z =. Sustituendo en la ecuación queda z z = que a es una ecuación lineal. Ponemos z = u v z = u v + uv. Sustituendo de nuevo: u v uv uv = v( u u) uv =. Hacemos u = u u = e. Luego la ecuación queda: e v = v = e que integrando por partes proporciona v = e + e + C. Así pues z = + + Ce, de donde = Ce 7/7

1.9 Sustituciones diversas 49

1.9 Sustituciones diversas 49 1.9 Sustituciones diversas 49 1.9 Sustituciones diversas En ocasiones tenemos ecuaciones diferenciales que no corresponden a ninguna forma de ecuación conocida, donde, para resolverlas fácilmente recurrimos

Más detalles

EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES

EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES TUTORÍA DE MATEMÁTICAS III (º A.D.E.) e-mail: imozas@el.uned.es EJERCICIOS DE ECUACIONES DIFERENCIALES PROPUESTOS EN EXÁMENES. Sea el precio unitario de venta de un producto, e la oferta de dicho producto.

Más detalles

+ = 0, siendo z=f(x,y).

+ = 0, siendo z=f(x,y). Ecuaciones diferenciales de primer orden ECUACIONES DIFERENCIALES Definición. Se llama ecuación diferencial a toda ecuación que inclua una función, que es la incógnita, alguna de sus derivadas o diferenciales.

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO 2 Métodos de solución de E de primer orden 2.8 Miscelánea En este apartado queremos responder a la pregunta cómo proceder cuando se nos pide resolver una ecuación diferencial ordinaria de primer

Más detalles

Problema de Valor Inicial (PVI):

Problema de Valor Inicial (PVI): Problema de Valor Inicial (PVI): Con frecuencia nos interesan problemas en los que se busca la solución y () de una ecuación diferencial de modo que y () satifaga condiciones adicionales impuestas a la

Más detalles

Unidad 2. Las Ecuaciones Diferenciales de Primer Orden y Sus Soluciones. Definición. Se dice que una ecuación diferencial de primer orden de la forma

Unidad 2. Las Ecuaciones Diferenciales de Primer Orden y Sus Soluciones. Definición. Se dice que una ecuación diferencial de primer orden de la forma Unidad. Las Ecuaciones Diferenciales de Primer Orden Sus Soluciones.1 Ecuaciones Diferenciales de Variables Separables 1 Definición. Se dice que una ecuación diferencial de primer orden de la forma p(

Más detalles

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 2 Clasificación de E. D. de primer orden Ejercicios resueltos

Bloque IV. Ecuaciones Diferenciales de primer orden Tema 2 Clasificación de E. D. de primer orden Ejercicios resueltos Bloque IV. Ecuaciones Diferenciales de primer orden Tema Clasificación de E. D. de primer orden Ejercicios resueltos IV.-1 Resolver las siguientes ecuaciones diferenciales separables: d 1 d d d d d 1 1

Más detalles

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL

LECCIÓN 11: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL 86 LECCIÓN : ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN REDUCIBLES A LINEAL JUSTIFICACIÓN: Muchas ecuaciones diferenciales pueden ser reducidas a ecuaciones diferenciales lineales mediante un

Más detalles

Tema 8 Ecuaciones diferenciales

Tema 8 Ecuaciones diferenciales Tema 8 Ecuaciones diferenciales 1. ECUACIONES DIFERENCIALES ORDINARIAS Definición 1.1: Ecuación diferencial Se llama ecuación diferencial de orden n a una ecuación que relaciona la variable independiente

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina

Más detalles

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma

xy si corresponde a la diferencial de alguna función f ( x, y ). Una ecuación diferencial de primer orden de la forma E.D.O para Ingenieros CAPITULO ECUACIONES EXACTAS La sencilla ecuación d + d 0 es separable, pero también equivale a la diferencial del producto de por ; esto es, d + d d( ) 0 Al integrar obtenemos de

Más detalles

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 =

Problemas Resueltos. 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 = Problemas Resueltos 1. La distribución de la temperatura en una placa metálica, viene dada por la función: 70 T (, ) =, donde T está medida en grados centígrados,,z en metros. 1+ + + z En qué dirección

Más detalles

2.4 Ecuaciones diferenciales de Bernoulli

2.4 Ecuaciones diferenciales de Bernoulli .4 Ecuaciones diferenciales de Bernoulli 3 Ejercicios.3. Ecuaciones diferenciales lineales. Soluciones en la página 4 Resolver las siguientes ecuaciones diferenciales lineales.. y 0 C 00y D 0.. x 0 0x

Más detalles

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES

LECCIÓN 10: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES 58 LECCIÓN 0: ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN LINEALES JUSTIFICACIÓN: Las ecuaciones diferenciales ordinarias de primer orden lineales comprenden una clase especial de las ecuaciones

Más detalles

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables)

6.4 Método de solución de las ecuaciones diferenciales parciales (directos, equiparables con las ordinarias, separación de variables) 6.4 Método de solución de las ecuaciones diferenciales parciales(directos, equiparables con las ordinarias, separación de variables) 439 6.4 Método de solución de las ecuaciones diferenciales parciales

Más detalles

2.5 Ecuaciones diferenciales homogéneas

2.5 Ecuaciones diferenciales homogéneas .5 Ecuaciones diferenciales homogéneas 59.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de sus variables..

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

Tema 7. Factores de integración

Tema 7. Factores de integración Tema 7. Factores de integración 7. QUÉ ES UN FACTOR DE INTEGRACIÓN? En general, la ecuación diferencial (7.) M(,)d + N(,)d 0 no es eacta. Ocasionalmente, sin embargo, es posible transformar (7.) en una

Más detalles

4.2 Reducción de orden

4.2 Reducción de orden 4. educción de orden 87 Un conjunto de funciones f y ; y g que cumple con la condición anterior se llama un conjunto fundamental de soluciones. Es decir, un conjunto f y ; y g será un conjunto fundamental

Más detalles

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN

TEMA 2 ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN TEMA ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN 8 INTRODUCCIÓN: Eisten algunos tipos elementales de ecuaciones diferenciales para los cuales se cuenta con procedimientos canónicos que permiten

Más detalles

3 Aplicaciones de primer orden

3 Aplicaciones de primer orden CAPÍTULO 3 Aplicaciones de primer orden 3.7.1 Traectorias ortogonales Si consideramos la familia de curvas C c; con c > 0; podemos decir que esta familia es el conjunto de las circunferencias de radio

Más detalles

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS

APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS APLICACIONES DE LAS ECUACIONES DIFERENCIALES ORDINARIAS DE PRIMER ORDEN A PROBLEMAS DE TRAYECTORIAS 5 TRAYECTORIAS DE UN HAZ DE CURVAS: Se dice que una familia de curvas T(,, k) 0 (k una constante arbitraria)

Más detalles

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de "x" y viene dado por

ecuación quede de la forma y' + A(x) y = B(x) 2- Buscar el factor integrante, el cual depende solo de x y viene dado por 76 por el factor integrante resulta donde µ () = e e dy + A () e y d = e B () d e dy + A () e y d = d ( e y) = d (µ () y) Abran sus guías en la página 6 y leamos la información que allí aparece acerca

Más detalles

Métodos de solución de ED de primer orden

Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de ED de primer orden.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos

Más detalles

2.3 Ecuaciones diferenciales lineales

2.3 Ecuaciones diferenciales lineales .3 Ecuaciones diferenciales lineales 45.3 Ecuaciones diferenciales lineales Las ecuaciones diferenciales ordinarias de primer orden pueden ser lineales o no lineales. En esta sección centraremos la atención

Más detalles

2 Unidad II: Ecuaciones Diferenciales de Orden Superior

2 Unidad II: Ecuaciones Diferenciales de Orden Superior ITESM, Campus Monterrey Departamento de Matemáticas MA-41: Ecuaciones Diferenciales Lectura # Profesor: Victor Segura Flores Unidad II: Ecuaciones Diferenciales de Orden Superior.1 Ecuaciones Diferenciales

Más detalles

4 Ecuaciones diferenciales de orden superior

4 Ecuaciones diferenciales de orden superior CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.

Más detalles

Contenidos. Grupo EDUMATICUS. Departamento de Matemática Aplicada. Universidad de Málaga 2

Contenidos. Grupo EDUMATICUS. Departamento de Matemática Aplicada. Universidad de Málaga 2 Tema 2 Ecuaciones diferenciales ordinarias de primer orden Definiciones generales Problema de Cauchy Contenidos Resolución de ecuaciones diferenciales ordinarias de primer orden Resolución de ecuaciones

Más detalles

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción

CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Introducción CAPITULO 4. ECUACIONES DIFERENCIALES DE PRIMER ORDEN 4.. Introducción Se denomina ecuación diferencial ordinaria a toda ecuación en la que aarecen una o varias derivadas de una función. Cuando las derivada

Más detalles

Ecuaciones diferenciales

Ecuaciones diferenciales 5 Ecuaciones diferenciales 5.1. Qué es una ecuación diferencial Una ecuación diferencial es una ecuación en la que la incógnita a despejar no es un número sino una función. Las operaciones que intervienen

Más detalles

CALCULO DIFERENCIAL E INTEGRAL II. dy 2

CALCULO DIFERENCIAL E INTEGRAL II. dy 2 CALCULO DIFERENCIAL E INTEGRAL II TEMA Nº 10 (Última modificación 8-7-015) ECUACIONES DIFERENCIALES En muchos problemas físicos, geométricos o puramente matemáticos, se trata de hallar una función = F()

Más detalles

Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de primer orden Tema 8 Ecuaciones diferenciales de primer orden Las ecuaciones diferenciales tuvieron un origen de carácter puramente matemático, pues nacieron con el cálculo infinitesimal. El destino inmediato de esta

Más detalles

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y

1. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: y' y Elaborado por: Jhonn Choquehuanca Lizarraga Ecuaciones Diferenciales de Primer orden Aplicaciones. Grafique la familia de curvas que representa la solución general de la ecuación diferencial: ' 0 Solución:

Más detalles

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales

Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2016 Licencia Creative Commons 4.0 Internacional J.

Más detalles

1. ECUACIONES DIFERENCIALES ORDINARIAS

1. ECUACIONES DIFERENCIALES ORDINARIAS 1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y

Más detalles

Ejercicios de Integrales resueltos

Ejercicios de Integrales resueltos Ejercicios de Integrales resueltos. Resuelve la integral: Ln Ln Llamemos I Ln u du Aplicamos partes: dv v I Ln t t 4 t t t 4 t t 4 t 4 4 4t 4 t t t A t B t A( t) B( t) A ; B 4 t t Ln t Ln t t C Deshaciendo

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

ECUACIÓN DE CAUCHY-EULER 2013

ECUACIÓN DE CAUCHY-EULER 2013 ECUACIÓN DE CAUCHY-EULER 3 LA ECUACIÓN DE CAUCHY-EULER Se trata de una ecuación con coeficientes variables cua solución general siempre se puede epresar en términos de potencias, senos, cosenos, funciones

Más detalles

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II

4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4 Algunos métodos de resolución de ecuaciones diferenciales ordinarias de primer orden II 4.1. Ecuaciones lineales La e.d.o. de primer orden lineal es Si g(x) = 0: ecuación lineal homogénea. a 1 (x) +

Más detalles

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ).

y( x ) es solución de la ecuación ( I ) si y solo si lo es de la ecuación ( II ). EDO ara Ingenieros CAPITULO 4 FACTORES ITEGRATES Suongamos que aora que nos dan una ecuación diferencial M (, ) + (, ) d = 0 ( I) Que no es eacta Eiste alguna forma de acerla eacta? Con más recisión, Eistirá

Más detalles

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL.

LECCIÓN 2: SOLUCION DE UNA ECUACIÓN DIFERENCIAL. 7 LECCIÓN : SOLUCION DE UNA ECUACIÓN DIFERENCIAL. JUSTIFICACIÓN: Ya que uno de los objetivos generales del curso de Ecuaciones Diferenciales es el de hallar las funciones desconocidas que satisfacen la

Más detalles

INTRODUCCIÓN Y MÉTODOS GENERALES DE RESOLUCIÓN DE EDOS

INTRODUCCIÓN Y MÉTODOS GENERALES DE RESOLUCIÓN DE EDOS Capítulo 7 INTRODUCCIÓN Y MÉTODOS GENERALES DE RESOLUCIÓN DE EDOS Problema 7.. Halla la ecuación diferencial que satisfacen las siguientes familias de curvas: (a) las cardioides r = a( cos θ), (b) las

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales Ecuaciones Diferenciales Definición de Ecuación diferencial. A toda igualdad que relaciona a una función desconocida o variable dependiente con sus variables independientes y sus derivadas se le conoce

Más detalles

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales

Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales Lección Técnicas analíticas para las Ecuaciones diferenciales de primer orden: Ecuaciones Separables y Lineales.1. Introducción Tal y como hemos visto en el capítulo anterior la forma general de las ecuaciones

Más detalles

1 Ecuaciones diferenciales

1 Ecuaciones diferenciales 1 Ecuaciones diferenciales La solución a una ecuación algebraica es un número, o un conjunto de números que satisfacen la ecuación. Por ejemplo las soluciónes de x 2 4x + 3 = 0 son x 0 = 1 y x 1 = 3. Las

Más detalles

Soluciones de ecuaciones de primer orden

Soluciones de ecuaciones de primer orden GUIA 2 Soluciones de ecuaciones de primer orden Dada una ecuación diferencial, la primera pregunta que se presenta es cómo hallar sus soluciones? Por cerca de dos siglos (XVIII y XIX ) el esfuerzo de los

Más detalles

Ecuaciones diferenciales exactas

Ecuaciones diferenciales exactas Definición 1: sea f, una región del plano, Ecuaciones diferenciales eactas una función con derivadas parciales de primer orden continuas en Llamamos diferencial total de f, f f df, definida por: df, d

Más detalles

Lecturas Ecuaciones Diferenciales Ordinarias (I) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso

Lecturas Ecuaciones Diferenciales Ordinarias (I) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso 1 / 34 Lecturas Ecuaciones Diferenciales Ordinarias (I) Ampliación de Matemáticas. Grado en Ingeniería Civil Curso 2012-13 Octubre 2012 2 / 34 Motivación: Existen infinidad de problemas en Ciencia e Ingeniería

Más detalles

ACTIVIDADES DE ECUACIONES MATRICIALES. 2º BACHILLERATO Profesor: Félix Muñoz Jiménez

ACTIVIDADES DE ECUACIONES MATRICIALES. 2º BACHILLERATO Profesor: Félix Muñoz Jiménez TIVIDDES DE EUIONES MTRIILES. º HILLERTO Profesor: Féli Muño Jiméne Las relaciones del equilibrio de dos mercados e Y vienen dadas en función de sus precios de equilibrio P P por las siguientes ecuaciones:

Más detalles

dx orden 2 e y' dx dx GUIA Nº 2 Ecuaciones Diferenciales Ordinarias (EDO)

dx orden 2 e y' dx dx GUIA Nº 2 Ecuaciones Diferenciales Ordinarias (EDO) GUIA Nº Ecuaciones Diferenciales Ordinarias (EDO) El concepto de ecuación se asocia a una igualdad que sólo se satisface cuando la variable es sustituida por un valor numérico, llamado solución de la ecuación.

Más detalles

ECUACIONES DIFERENCIALES

ECUACIONES DIFERENCIALES ECUACIONES DIFERENCIALES DEFINICIÓN Ecuación Diferencial es una ecuación que contiene las derivadas o diferenciales de una función de una o más variables. 1. Si hay una sola variable independiente, las

Más detalles

1.2 Definición de una ecuación diferencial

1.2 Definición de una ecuación diferencial 4 Ecuaciones diferenciales 4. Una parte importante del proceso de solución es tener presente ciertas condiciones, como la velocidad inicial la altura inicial del cuerpo en el ejemplo anterior, que quedarán

Más detalles

Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 26 de octubre de 2014

Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 26 de octubre de 2014 Ecuaciones diferenciales ordinarias lineales Félix Redondo Quintela, Roberto C. Redondo Melchor. Universidad de Salamanca 6 de octubre de 014 En el análisis de redes eléctricas y en otras partes de la

Más detalles

TEMA 5: INTEGRAL INDEFINIDA.

TEMA 5: INTEGRAL INDEFINIDA. TEMA : INTEGRAL INDEFINIDA.. Primitivas: propiedades. Integral indefinida.. Integración por partes.. Integración de funciones racionales (denominador con raíces reales simples y múltiples, denominador

Más detalles

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente.

La recta se define como el lugar geométrico de todos los puntos de un plano que al tomarse de dos en dos se obtiene la misma pendiente. Formas de la ecuación de una recta. Hasta el momento, se han dado algunas características de la recta tales como la distancia entre dos puntos, su pendiente, su ángulo de inclinación, relación entre ellas,

Más detalles

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal

9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 9 Ecuaciones diferenciales ordinarias. Ecuaciones diferenciales de primer orden en forma normal 9.1 Definición Se llama ecuación diferencial ordinaria

Más detalles

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1

1 Repaso. Cálculo I. 1 o Matemáticas. Curso 2002/2003. Cálculo de Primitivas. (5x 6) f(x) 1 2 f (x) dx, que es inmediata: + 1 x 1 Cálculo I. o Matemáticas. Curso /. Cálculo de Primitivas Repaso (5 6) d = 5 (5 6) 5 d = 5 (5 6) + C. Nota: Si f() = 5 6 su derivada es 5. En la primera igualdad multiplicamos y dividimos por 5. Así tenemos

Más detalles

1. ECUAC. DIFERENCIALES ORDINARIAS

1. ECUAC. DIFERENCIALES ORDINARIAS 1 1. ECUAC. DIFERENCIALES ORDINARIAS Variables separables. 1. Hallar la solución general de la ecuación de variables separables (x 2 + 4) dy dx = xy. Al separar variables, queda la expresión 1 y dy = ambos

Más detalles

2 Métodos de solución de ED de primer orden

2 Métodos de solución de ED de primer orden CAPÍTULO Métodos de solución de E de primer orden.5 Ecuaciones diferenciales homogéneas Al tratar con polinomios de más de una variable, se define el grado de cada término como la suma de los grados de

Más detalles

Tabla de contenido. Página

Tabla de contenido. Página Tabla de contenido Página Ecuaciones dierenciales Teoría preliminar Clasiicación de las ecuaciones dierenciales 4 Por tipo 4 Por orden 5 Por linealidad 6 Solución de una ecuación dierencial 7 Deinición

Más detalles

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior

Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior Tema 16: Ecuaciones diferenciales II: Ecuaciones lineales de orden superior 1. Ecuaciones diferenciales lineales de orden mayor que 1 Una ecuación diferencial lineal (en adelante ecuación lineal) de orden

Más detalles

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales

Álgebra Lineal. Tema 5 Ecuaciones diferenciales lineales Álgebra Lineal. Tema 5 Dep. Matemática Aplicada. UMA Tasa relativa de crecimiento Si x(t representa alguna cantidad física como el volumen de una sustancia, la población de ciertas especies, o el número

Más detalles

La ecuación de segundo grado.

La ecuación de segundo grado. La ecuación de segundo grado. Sean números reales Se denomina ecuación de segundo grado (o ecuación cuadrática) en la variable a la ecuación cuya forma canónica es Ejemplos. Son ecuaciones cuadráticas:

Más detalles

Hasta el momento (semestre ) el contenido de la primera unidad es el que sigue: UNIDAD I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Hasta el momento (semestre ) el contenido de la primera unidad es el que sigue: UNIDAD I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Hasta el momento (semestre 01-) el contenido de la primera unidad es el que sigue: UNIDAD I. ECUACIONES DIFERENCIALES DE PRIMER ORDEN Capítulo 1: INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES. Lección 1:

Más detalles

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5

Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/ HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 Matemática Aplicada - Licenciatura de Farmacia - Curso 2005/2006 - HOJA 5 1 SOLUCIONES DE LOS EJERCICIOS DE LA HOJA 5 1) A continuación diremos de qué tipo son las ecuaciones diferenciales ordinarias (e.

Más detalles

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA

GEOMETRÍA ANALÍTICA LA CIRCUNFERENCIA LA CIRCUNFERENCIA CONTENIDO. Ecuación común de la circunferencia Ejemplos. Ecuación general de la circunferencia. Análisis de la ecuación. Ejercicios Estudiaremos cuatro curvas que por su importancia aplicaciones

Más detalles

Ecuaciones diferenciales de variables separables.

Ecuaciones diferenciales de variables separables. Ecuaciones diferenciales de variables separables. Una ecuación diferencial ordinaria separable es una ecuación diferencial que puede escribirse de la forma u( ) g u o más brevemente, considerando a como

Más detalles

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012

Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Universidad de Chile Ecuaciones Diferenciales Ordinarias Facultad de Ciencias Físicas y Matemáticas Profesora Salomé Martínez Departamento de Ingeniería Matemática Semestre de Otoño, 2012 Pauta: Auxiliar

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común.

Recurrencias. Si a 0, a 1, a 2, es una progresión geométrica, entonces a 1 /a 0 = a 2 /a 1 = = a n+1 /a n = r, la razón común. Recurrencias Def. Progresión geométrica. Es una sucesión infinita de números, como: 5, 45, 135, donde el cociente de cualquier término entre su predecesor es una constante, llamada razón común. (Para nuestro

Más detalles

CURSO DE MATEMÁTICA. Repartido Teórico 4

CURSO DE MATEMÁTICA. Repartido Teórico 4 CURSO DE MATEMÁTICA. Repartido Teórico 4 Mariana Pereira Noviembre, 2007 1. Ecuaciones Diferenciales Una ecuación diferencial es una ecuación donde la incógnita es una fución de una variable, y la ecuación

Más detalles

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D)

Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A y B) Bartolo Luque (grupos C y D) Ecuaciones diferenciales Profesores: Eusebio Valero (grupos A B) Encargado de responder a todas las preguntas de la asignatura de todas las tutorías. Bartolo Luque (grupos C D) Este no tiene ni idea. No

Más detalles

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia

1. PRIMITIVA DE UNA FUNCIÓN 2. PROPIEDADES DE LA INTEGRAL INDEFINIDA 3. INTEGRALES INMEDIATAS Ejemplos de integrales inmediatas tipo potencia Cálculo de primitivas MATEMÁTICAS II. PRIMITIVA DE UNA FUNCIÓN. PROPIEDADES DE LA INTEGRAL INDEFINIDA. INTEGRALES INMEDIATAS.. Ejemplos de integrales inmediatas tipo potencia.. Ejemplos de integrales inmediatas

Más detalles

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x

tiene por límite L cuando la variable independiente x tiende a x , y se nota por L, cuando al acercarnos todo lo que queramos a x lím( x UNIDAD 8: LÍMITES DE FUNCIONES. CONTINUIDAD. LÍMITE DE UNA FUNCIÓN Diremos que una función y f () tiene por ite L cuando la variable independiente tiende a, y se nota por f ( ) L, cuando al acercarnos

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Nivelación de Matemática MTHA UNLP EDO 1 Ecuaciones Diferenciales Ordinarias 1. Introducción Una ecuación diferencial ordinaria es una ecuación de la forma: F (x, y, y,..., y (n) ) = 0 que expresa una

Más detalles

MATEMÁTICAS I: 1º BACHILLERATO Capítulo 2: Álgebra

MATEMÁTICAS I: 1º BACHILLERATO Capítulo 2: Álgebra MATEMÁTICAS I: º BACHILLERATO Capítulo : Autores: José Antonio Encabo de Lucas Eduardo Cuchillo Índice SISTEMAS DE ECUACIONES LINEALES.. RESOLUCION POR EL MÉTODO DE GAUSS. DISCUSION DE SISTEMAS APLICANDO

Más detalles

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento.

Ecuaciones diferenciales lineales: definición y método general de solución. Modelos de un compartimento. : definición y método general de solución. Modelos de un compartimento. 1 1 Departamento de Matemáticas. Universidad de Alcalá de Henares. Contenidos 1 Introducción 2 3 4 Índice 1 Introducción 2 3 4 Introducción

Más detalles

70 Ecuaciones diferenciales. ln e/ D e.0 1/ D e ) C D e: D e: y. y ln. 11..x 2 8xy 4y 2 / dy D.x 2 C 2xy 4y 2 / dx.

70 Ecuaciones diferenciales. ln e/ D e.0 1/ D e ) C D e: D e: y. y ln. 11..x 2 8xy 4y 2 / dy D.x 2 C 2xy 4y 2 / dx. 70 Ecuaciones diferenciales Considerando la condición inicial.1/ D e: ( ) 1 C D e ln D e.ln 1 e ln e/ D e.0 1/ D e ) C D e: Por lo tanto, la solución del PVI es ln ( ) x D e: Ejercicios 2.5.1 Ecuaciones

Más detalles

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli

Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli de aplicación económica Análisis Dinámico: Ecuaciones diferenciales no lineales de primer orden: la ecuación de Bernouilli Jesús Getán y Eva Boj Facultat d Economia i Empresa Universitat de Barcelona Marzo

Más detalles

Ecuaciones diferenciales en la Química. Modelos.

Ecuaciones diferenciales en la Química. Modelos. Capítulo 1 Ecuaciones diferenciales en la Química. Modelos. 1.1 Introducción. Muchos fenómenos naturales (físicos, químicos, biológicos, etc. ) responden, en sus resultados, a formulaciones matemáticas

Más detalles

Integral. F es primitiva de f F (x) = f(x)

Integral. F es primitiva de f F (x) = f(x) o Bachillerato, Matemáticas II. Integración. Integrales indefinidas. Métodos de integración. Primitiva de una función. Integral indefinida. Sean f y F dos funciones reales definidas en un mismo dominio.

Más detalles

PROBLEMAS RESUELTOS del espacio vectorial curso

PROBLEMAS RESUELTOS del espacio vectorial curso PROBLEMAS RESUELTOS del espacio vectorial curso - - Consideremos el conjunto R formado por todas las parejas () de números reales Se define en R la operación interna ()( )( ) una de las operaciones eternas

Más detalles

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares

Métodos Numéricos: Ejercicios Resueltos Tema 1: Preliminares Métodos Numéricos: Ejercicios Resueltos Tema : Preliminares Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07 Febrero 2007, versión.

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras

Más detalles

Ecuaciones Diferenciales

Ecuaciones Diferenciales 1.- Resolver la siguiente ecuación diferencial: (x + y -4) dx + (5y -1) dy=0.- Obtener la solución general de la ecuación diferencial (x-1) y dx + x (y+1) dy = 0. Hallar la solución particular que pasa

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 8. Introducción a la integración INTEGRAL INDEFINIDA INTEGRAL INDEFINIDA CONCEPTOS BÁSICOS: PRIMITIVA E INTEGRAL INDEFINIDA El cálculo de integrales indefinidas de una función es un proceso inverso del cálculo de derivadas ya que se trata de encontrar una

Más detalles

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z =

Soluciones de las actividades. d) 2x 2 3x + 1 = 0 Δ = 9 8 = 1 > 0 Dos soluciones distintas. 6. Las soluciones son: a) z = b) z = c) z = d) z = e) z = Soluciones de las actividades Página 7. Si a 0 y b 0, no tiene solución. Si a 0 y b 0, tiene infinitas soluciones. Si a 0, tiene una única solución, -b / a.. Las soluciones son a) 0 + 8; ; / b) + 8 ; ;

Más detalles

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74

2.5 Dependencia Lineal, Independencia Lineal, Wronskiano 74 .5 Dependencia Lineal, Independencia Lineal, Wronskiano 74.5 Dependencia Lineal, Independencia Lineal, Wronskiano Dependencia Lineal Definición.5. Se dice que un conjunto de funciones f, f,... fn ( ) es

Más detalles

Tema 6 Lenguaje Algebraico. Ecuaciones

Tema 6 Lenguaje Algebraico. Ecuaciones Tema 6 Lenguaje Algebraico. Ecuaciones 1. El álgebra El álgebra es una rama de las matemáticas que emplea números y letras con las operaciones aritméticas de sumar, restar, multiplicar, dividir, potencias

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II Saberes procedimentales 1. Interpreta adecuadamente la relación de dependencia que se establece entre dos variables, así como la razón de cambio entre sus valores. 2. Define en

Más detalles

APUNTE N o 2 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES

APUNTE N o 2 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES INGENIERÍA VESPERTINA EN AUTOMATIZACIÓN INDUSTRIAL APUNTE N o 2 INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES MATEMÁTICA II PROFESOR RICARDO SANTANDER BAEZA 23 Ricardo Santander Baeza Universidad de Santiago

Más detalles

Tema 2 Polinomios y fracciones algebraicas 1

Tema 2 Polinomios y fracciones algebraicas 1 Tema Polinomios y fracciones algebraicas 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS EJERCICIO 1 : Desarrolla y simplifica: b) 4 1 a) 1 5 5 4 c) 1 4 1 d) 1 6 1 1 5 4 4 5 4 a) 1 5 1 5 5 6 5 4 4 5 4 4 b)

Más detalles

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea?

Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (12y - 6x + 1) dy = 0. Será ésta una ecuación diferencial reducible a homogénea? 82 Analicemos ahora el siguiente ejemplo: (2x 4y) dx + (2y - 6x + ) dy = 0 Será ésta una ecuación diferencial reducible a homogénea? Si observamos la ecuación diferencial, tenemos que 2x 4y = 0 2y 6x +

Más detalles

2.2 Ecuaciones diferenciales de variables separables

2.2 Ecuaciones diferenciales de variables separables 38 Ecuaciones diferenciales. Considerado a t como la variable independiente: s 0 ds dt s 3ts s 4 9ts.s/.s 3t/.s/.s3 9t/ s 3t s 3 9t ; excepto los puntos que están en la curva s 3 9t 0 en el eje t.s 0/.

Más detalles

Límite de una función Funciones continuas

Límite de una función Funciones continuas Límite de una función Funciones continuas Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 2014-2015 1 LÍMITE CUANDO LA VARIABLE TIENDE A INFINITO. 3 1. Límite cuando la variable tiende

Más detalles

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss.

Unidad 1: Sistemas de Ecuaciones lineales. Método de Gauss. Unidad : Sistemas de cuaciones lineales. Método de Gauss. Sistemas de ecuaciones lineales: Una ecuación lineal tiene la forma: a b c dt n,,, t son las incógnitas, a, b, c, d son los coeficientes, n es

Más detalles

ANÁLISIS DE FUNCIONES

ANÁLISIS DE FUNCIONES ANÁLISIS DE FUNCIONES.- Calcula f() de manera que f () = Ln( + ) y que f(0) = 0. (nota: Ln significa logaritmo neperiano). Universidad de Andalucía Se trata de resolver la integral que hemos de hacerlo

Más detalles

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden

UNIDAD 1 Ecuaciones Diferenciales de Primer Orden UNIDAD UNIDAD Ecaciones Diferenciales de Primer Orden Definición Clasificación de las Ecaciones Diferenciales Una ecación diferencial es aqélla qe contiene las derivadas o diferenciales de na o más variables

Más detalles