Funciones crecientes y decrecientes
|
|
|
- Ernesto Rodrigo Gallego Cuenca
- hace 9 años
- Vistas:
Transcripción
1 Funciones crecientes y decrecientes Ahora estudiaremos el comportamiento de la función a partir de la derivada. Hasta ahora hemos calculado máximos y mínimos de funciones. También sabemos que cuando f (x) > 0 la función es creciente en ese intervalo. Con esta información podemos hacer bosquejos de funciones usando su derivada. Determina los intervalos en los cuales la función: y = x + x 2 6 x Ejemplo 1 es creciente y en los cuales es decreciente. La derivada de la función es: dy = x2 + 2 x 6 En la página?? calculamos los máximos y mínimos de esta función y la graficamos. Ahora vamos a graficar la derivada para determinar los intervalos donde es positiva y donde es negativa y dy y = x + x 2 6 x x Los puntos críticos de la función son: x 1 = 1 19 y x 2 = /7
2 Antes de x 1 la derivada es positiva y un poco después es negativa. Por eso concluimos que la función tiene un máximo en x 1. Entonces, en el intervalo (, x 1 ) la función es creciente. En el intervalo (x 1, x 2 ) la derivada de la función es negativa. Esto nos dice que la función es decreciente en ese intervalo. Para el último intervalo: (x 2, ), la derivada es positiva, lo cual nos indica que la función es creciente ahí. Calcula los intervalos donde la función: Ejemplo 2 y = e x2 es creciente y donde es decreciente. Ya estudiamos esta función en la página??. y y = e x x Su derivada es: dy = 2 xe x2 Dado que la función exponencial es positiva para cualquier valor de su argumento, el signo de la derivada depende exclusivamente del factor 2 x. Cuando x es negativa, la derivada es positiva. Es decir, para x < 0, la función es creciente. Cuando x es positiva la derivada es negativa. En otras palabras, para x > 0, la función es decreciente. 2/7
3 Los intervalos donde la función es creciente nos dirán información acerca del fenómeno que modela la función. En cada caso particular, la interpretación de la gráfica de la función está relacionada con el contexto en el cual se le aplica. Una partícula móvil tiene posición x(t) para cada valor de t de acuerdo a: x(t) = t 6 t t Ejemplo Calcula los intervalos donde su velocidad es positiva y donde es negativa. La velocidad de la partícula se calcula como la derivada de la posición: dt = t2 12 t + 9 Ahora necesitamos calcular los puntos donde la velocidad se hace cero. Eso nos ayudará a conocer dónde la posición tiene un máximo o un mínimo. Esto lo entenderemos como los puntos en los que la partícula se encuentra más alejada (máximo) o cercana (mínimo) al origen. dt = t2 12 t + 9 = (t 2 4 t + ) = (t 1) (t ) Entonces, los puntos críticos de la función están en t = 1, y en t =. Poco antes de t = 1, la derivada es positiva: dt = (0.5) 2 12 (0.5) + 9 =.75 > 0 t=0.5 Esto nos indica que la velocidad es positiva en el intervalo (0, 1). Poco después de t = 1, la derivada es negativa: dt = (2) 2 12 (2) + 9 = < 0 t=2 Entonces, en el intervalo (1, ) la velocidad es negativa. Poco antes de t = la derivada es negativa, pues corresponde al intervalo que acabamos de calcular. Poco después es positiva: dt = (4) 2 12 (4) + 9 = 9 > 0 t=4 /7
4 Ahora podemos hacer una tabla donde incluyamos información acerca de t, x(t) y x (t): t x(t) x (t) t x(t) x (t) La gráfica de la función es la siguiente: x(t) 6 5 x(t) = t 6 t t t La población P(t) (en millones de habitantes) de una ciudad crece de acuerdo a: Ejemplo 4 donde t está medido en años. decrece con el tiempo. P(t) = e 0.044t Encuentra los intervalos donde el tamaño de esa población Primero calculamos la derivada de la función que modela el crecimiento de la población: dp dt = e 0.044t ( e 0.044t ) 2 Ahora vemos que la derivada siempre es positiva. Esto nos indica que la población siempre es creciente. 4/7 Profesor: Sugiera que apliquen la regla para derivar un cociente.
5 Una buena pregunta consiste en el límite de la población cuando t tiende a infinito. Este valor representa al tamaño de la población límite para esa ciudad. t x(t) x (t) t x(t) x (t) Observa que conforme t crece, los valores de la población tienden a 10, mientras que la derivada de la función que modela la población tiende a cero. Esto nos sugiere que la gráfica de la función tiene por asíntota la recta horizontal y = 10. Para verificarlo, tendremos que graficar la función. Lo cual se te queda como ejercicio. El número de palabras n que puede memorizar un niño en Ruso y su significado en Español en t minutos está dado por: n(t) = 25 (1 e 0.5t ) Cuál es el número máximo de palabras que puede aprender por minuto? Ejemplo 5 Tenemos que calcular la velocidad a la que puede memorizar el niño. Esa velocidad es la derivada de n(t). Después tenemos que calcular los máximos y mínimos de esa velocidad. Empezamos calculando la primera derivada de n(t): dn dt = 8.75 e 0.5t Dado que la primera derivada siempre es positiva, conforme avanza más tiempo el niño puede memorizar más palabras. Pero, qué pasa con el número de palabras por minuto que memoriza? Esa información nos la da la segunda derivada: d 2 n dt 2 =.0625 e 0.5t 5/7
6 La segunda derivada es negativa. Esto nos dice que conforme avanza el tiempo, el niño puede memorizar menos palabras por minuto. En otras palabras, al principio, el niño puede memorizar más rápido que en cualquier otro momento. t x(t) x (t) t x(t) x (t) La primera derivada evaluada en cero nos dice que, en promedio el niño puede memorizar = 7/8 palabras por minuto. En otras palabras, en 8 minutos puede memorizar 7 palabras, suponiendo que memorizara a la velocidad máxima durante esos 8 minutos. Albert Einstein Créditos Todo debe hacerse tan simple como sea posible, pero no más. Este material se extrajo del libro Matemáticas I escrito por Efraín Soto Apolinar. La idea es compartir estos trucos para que más gente se enamore de las matemáticas, de ser posible, mucho más que el autor. Autor: Efraín Soto Apolinar. Edición: Efraín Soto Apolinar. Composición tipográfica: Efraín Soto Apolinar. Diseño de figuras: Efraín Soto Apolinar. Productor general: Efraín Soto Apolinar. Año de edición: 2010 Año de publicación: Pendiente. Última revisión: 01 de agosto de Derechos de autor: Todos los derechos reservados a favor de Efraín Soto Apolinar. México /7
7 Espero que estos trucos se distribuyan entre profesores de matemáticas de todos los niveles y sean divulgados entre otros profesores y sus alumnos. Este material es de distribución gratuita. Profesor, agradezco sus comentarios y sugerencias a la cuenta de correo electrónico: [email protected] 7/7
Derivadas de orden superior
Derivadas de orden superior Ya habrás observado que al derivar una función obtenemos otra nueva función. Por ejemplo, la derivada de la función y = x 2 es y = 2 x. Observa que y es otra función, generalmente
Interpretación gráfica
Interpretación gráfica En la introducción de la sección Sistemas de Ecuaciones Lineales se presentó la interpretación gráfica (o geométrica) de la solución de un S.E.L.. Este tema está relacionado con
Diferenciabilidad en un intervalo
Diferenciabilidad en un intervalo Ahora que conocemos cómo calcular la derivada de una función en un punto conviene hacer la pregunta más general: «Cómo podemos saber si una derivada se puede derivar en
Reglas del producto y del cociente
Reglas del producto y del cociente Al igual que la regla de la potencia, ya calculamos las fórmulas para calcular la derivada de un producto de dos funciones en la página?? y del cociente de dos funciones
Ecuación ordinaria de la hipérbola
Ecuación ordinaria de la hipérbola Empezamos estudiando la ecuación de la hipérbola con centro en el origen, que es la ecuación que se deduce anteriormente. Ahora vamos a utilizarla para calcular ecuaciones
La derivada como razón de cambio instantánea
La derivada como razón de cambio instantánea Observa que la razón de cambio instantánea es un límite: y(t + t) y(t) lim lim t 0 t t 0 t Cuando calculamos la razón de cambio promedio, geométricamente estamos
Interpretación geométrica de la derivada
Interpretación geométrica de la derivada Ya estudiamos una interpretación geométrica de la razón de cambio instantánea. Ahora vamos a profundizar un poco más en este concepto recordando que la derivada
Forma pendiente-ordenada al origen
Forma pendiente-ordenada al origen Si una recta corta el eje de las ordenadas (eje y) en el punto B(0, b), entonces decimos que la ordenada al origen de la recta es b. Conociendo este punto es muy sencillo
Ecuación general de la circunferencia
Ecuación general de la circunferencia Hasta aquí hemos calculado la ecuación de la circunferencia dejándola como la suma de binomios al cuadrado igualada a una constante positiva. Ahora vamos a ir un paso
La derivada. Razón de cambio promedio e instantánea
La derivada En esta sección empezamos con el estudio del concepto más importante de este curso. La derivada, la cual vamos a definir más adelante, es una herramienta poderosísima que ayuda a ingenieros,
Teoremas de los límites
Teoremas de los límites Empezamos esta sección dando la definición de límite. Límite Sea y = f (x una función. Si podemos formar la sucesión x 1, x 2,, x n de valores de la variable x tales que cada uno
Máximos y mínimos usando la segunda derivada
Máimos mínimos usando la segunda derivada Ahora que sabemos que la segunda derivada nos da información acerca de la primera derivada, vamos a utilizarla para calcular los máimos mínimos de funciones. Ya
Integración de funciones trigonométricas
Integración de funciones trigonométricas Ya vimos las reglas para calcular integrales de funciones trigonométricas. Ahora vamos a considerar productos de funciones trigonométricas y potencias. Para este
Ecuaciones ordinarias de la parábola
Ecuaciones ordinarias de la parábola En la sección anterior dedujimos la ecuación de la parábola en su forma ordinaria. Ahora vamos a utilizar la ecuación. Empezaremos estudiando las parábolas con vértice
Resolución de Ecuaciones de Segundo Grado
Resolución de Ecuaciones de Segundo Grado Ecuación de Segundo Grado Es una ecuación que se puede escribir de la forma: a x 2 + b x + c = 0 () donde a, b, c R, y a = 0. A la ecuación de segundo grado también
Profr. Efraín Soto Apolinar. Variación inversa. entonces,
Variación inversa La función racional más sencilla es: Esta función en palabras nos dice que cuando x crece el valor de y decrece en la misma proporción. Por ejemplo, si el valor de x crece al doble, el
Parábolas con vértice fuera del origen
Parábolas con vértice fuera del origen En este apartado vamos a etender lo que estudiamos en la sección anterior. Ahora vamos a considerar parábolas con vértices fuera del origen. En estos casos, tendremos
Ecuaciones de la tangente y la normal
Ecuaciones de la tangente la normal Ahora que sabemos cómo calcular la pendiente de una recta tangente a una curva dada su ecuación, independientemente de que ésta sea una función o no lo sea, podemos
Ecuaciones exponenciales y logaritmicas
Ecuaciones exponenciales y logaritmicas Cuando hacemos preguntas relacionadas a funciones exponenciales o logaritmicas generalmente obtendremos una ecuación logarimica o exponencial. Elevé el número 3
Técnicas de integración. Cambio de variable
Técnicas de integración En matemáticas, cada tipo de problema sugiere un tipo de solución. Para calcular la derivada de una función, en general, el problema es muy sencillo, pues solamente se requiere
Profr. Efraín Soto Apolinar. Forma normal
Forma normal Todavía nos falta una última forma de la ecuación de la recta que nos ayudará a estudiar el último tema de esta unidad. Ecuación de la recta en su forma normal La ecuación de la recta en su
Distancia entre un punto y una recta
Distancia entre un punto una recta Frecuentemente en geometría nos encontramos con el problema de calcular la distancia desde un punto a una recta. Distancia de un punto a una recta La fórmula para calcular
Método de Sustitución
Método de Sustitución El nombre de este método nos indica qué es lo que vamos a hacer: para resolver el S.E.L. de dos ecuaciones con dos incógnitas vamos a «despejar» una de las incógnitas de una de las
Ángulos formados por dos rectas paralelas y una secante
Ángulos formados por dos rectas paralelas y una secante Cuando dos rectas paralelas son cortadas por una tercer recta que no es paralela a ellas, se forman varios ángulos de interés. La secante a una curva
Integral indefinida de funciones algebraicas
Integral indefinida de funciones algebraicas En esta sección vamos a empezar a practicar el cálculo de integrales indefinidas de funciones. ( 1) d Ejemplo 1 Empezamos aplicando la regla (i) para separar
Centro fuera del origen
Centro fuera del origen Ya conoces la ecuación de la circunferencia que tiene su centro en el origen. Si trasladamos el centro de la circunferencia h unidades a la derecha k unidades hacia arriba, obtenemos
Denominadores con factores lineales
Denominadores con factores lineales uando al sumar dos fracciones algebraica obtenemos una nueva fracción con denominador que se puede factorizar hasta tener factores lineales, significa que los denominadores
1 Razones y proporciones
1 Razones y proporciones Es muy importante que el estudiante comprenda por qué deben realizarse de esa manera los procedimientos. Por ejemplo, frecuentemente se explica la regla de tres cuando estudiamos
Definición y Clasificación de Polígonos. Definición
Definición y Clasificación de Polígonos Además del triángulo hay una gran cantidad de otras figuras geométricas delimitadas por segmentos de recta que son importantes en geometría. Definición Polígono
Profr. Efraín Soto Apolinar. Función logarítmica
Función logarítmica Ya hemos definido la función eponencial. Supongamos que sabemos que =, deseamos conocer qué valor debe tener para que la igualdad sea verdadera. En otras palabras, deseamos conocer
Profr. Efraín Soto Apolinar. Forma general
Forma general La forma general de la ecuación de la recta es la que considera todos los casos de las rectas: horizontales, verticales e inclinadas. En otros casos no siempre es posible escribir la ecuación
Triangulación de polígonos. Perímetros y áreas
Triangulación de polígonos Para calcular el área de un polígono de n lados nos apoyaremos en la fórmula para calcular el área de un triángulo. Empezamos dibujando n diagonales que partan de un mismo vértice:
Int. indefinida de funciones exponenciales
Int. indefinida de funciones exponenciales Ahora vamos a calcular integrales indefinidas de funciones exponenciales de la forma: y = e v y y = a v Para este fin, vamos a estar utilizando las reglas de
Clasificación y transformación de funciones
Clasificación transformación de funciones En esta sección vamos a conocer la forma en como se han clasificado las funciones para su estudio. También vamos a conocer ciertas funciones que «hacen la transformación
Profr. Efraín Soto Apolinar. La función racional
La función racional Ahora estudiaremos una extensión de las funciones polinomiales. Las funciones racionales se definen a partir de las funciones polinomiales. Esta generalización es semejante a la que
La diferencial como aproximación al incremento
La diferencial como aproximación al incremento Ahora vamos a utilizar la diferencial para hacer aproximaciones. Esta aproximación está basada en la interpretación geométrica que acabamos de dar de la diferencial.
Funciones especiales
Funciones especiales En esta sección estudiaremos algunas funciones que son muy importantes en el estudio del análisis matemático. Empezamos con algunos casos particulares de las funciones polinomiales.
Límites de funciones
Límites de funciones Gracias a las propiedades de los límites podemos resolver problemas de una manera más sencilla. Límites de funciones polinomiales y racionales 2 + 2 2 4 Ejemplo Sin el apoyo de las
Profr. Efraín Soto Apolinar. Lugares geométricos
Lugares geométricos En esta sección estudiaremos el concepto de lugar geométrico, concepto clave para el desarrollo del estudio de los conceptos de este semestre. Lugar geométrico El conjunto de todos
Profr. Efraín Soto Apolinar. Rectas. Podemos determinar de una manera única a una recta de varias formas:
Rectas Podemos determinar de una manera única a una recta de varias formas: a partir de su ecuación, a partir de dos de sus puntos a partir del ángulo que forma con uno de los ejes su distancia al origen,
Gráficas de las funciones racionales
Gráficas de las funciones racionales Ahora vamos a estudiar de una manera geométrica las ideas de comportamiento de los valores que toma la función cuando los valores de crecen mucho. Es importante que
S.E.L.: 3 ecuaciones con 3 incógnitas
1 S.E.L.: 3 ecuaciones con 3 incógnitas Ahora vamos a generalizar el procedimiento que hemos utilizado para resolver sistemas de una ecuación con una incógnita y de 2 ecuaciones con dos incógnitas. Para
Solución de un sistema de desigualdades
Solución de un sistema de desigualdades En la sección anterior tuvimos oportunidad de resolver desigualdades de dos variables. En el último ejemplo vimos nuestro primer sistema de desigualdades, que aunque
Aplicaciones en ciencias naturales, económico-administrativas y sociales
Aplicaciones en ciencias naturales, económico-administrativas y sociales Ya hemos resuelto algunos problemas aplicados a las ciencias naturales, así que aquí nos enfocaremos más a problemas de economía,
Circunferencia que pasa por tres puntos
Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,
1 Ecuaciones y propiedades de la recta
Ecuaciones propiedades de la recta Ecuaciones propiedades de la recta En esta sección estudiaremos la caracterización de la recta desde el punto de vista algebraico. A partir del concepto de pendiente
Método de Igualación
Método de Igualación Ya vimos que la solución del S.E.L. debe ser tal que cuando sustituyamos los valores de las variables en cada ecuación obtengamos una igualdad verdadera. Entonces, el valor de x que
Conversión de la forma general a la forma ordinaria
Conversión de la forma general a la forma ordinaria Ahora que ya conocemos las formas ordinaria y general de la ecuación de la circunferencia y que ya hemos hecho conversiones de la forma ordinaria a la
Profr. Efraín Soto Apolinar. Suma de ángulos
Suma de ángulos En esta sección vamos a demostrar algunos teoremas que nos ayudarán a resolver problemas más adelante. La suma de los ángulos internos de un polígono de n lados es igual a 180 (n 2). Teorema
Congruencia de triángulos
Congruencia de triángulos Como habrás observado, la idea de que dos segmentos o dos ángulos tienen la misma medida sirve mucho para demostrar teoremas en geometría. Igualmente, cuando dos triángulos tienen
Profr. Efraín Soto Apolinar. Método de despeje
Método de despeje Cuando tenemos una ecuación cuadrática incompleta es muy buena idea hacer un despeje para resolverla. Este método es el más sencillo para este tipo de ecuaciones. Resuelve la siguiente
Ec. rectas notables en un triángulo
Ec rectas notables en un triángulo omo recordarás del curso de geometría plana (segundo semestre), las rectas notables de un triángulo son: Medianas: Una mediana es la recta que pasa por el punto medio
Coordenadas de un punto
Coordenadas de un punto En esta sección iniciamos con las definiciones de algunos conceptos básicos sobre los cuales descansan todos los demás conceptos que utilizaremos a lo largo del curso. Ejes Coordenados
Problemas geométricos y algebraicos. Reglas de los exponentes
Problemas geométricos y algebraicos Aquí empezamos a estudiar los conceptos que más vamos a utilizar en los cursos de matemáticas. Los temas de esta unidad son los conceptos de álgebra que no debes olvidar.
Series y sucesión lineal
Series y sucesión lineal En la naturaleza muchas veces aparecen las sucesiones de números. Por ejemplo, cuando el hombre tuvo la necesidad de contar, tuvo que inventar un conjunto de números que le sirviera
Operaciones con polinomios
1 Operaciones básicas Operaciones con polinomios Cuando realizamos la suma de dos o más polinomios sumamos términos semejantes con términos semejantes. El estudiante al escuchar esto puede causarle confusión
Triángulos. Definición y clasificación
Profr. Efraín Soto polinar. Triángulos En esta sección empezamos el estudio de las figuras geométricas planas creadas de segmentos de rectas. uando la figura está formada por tres segmentos de recta y
Profr. Efraín Soto Apolinar. Productos notables
Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido
Profr. Efraín Soto Apolinar. Polígonos
Polígonos En esta sección vamos a utlizar las fórmulas que a conocemos para calcular perímetros áreas de polígonos. Para esto es una buena idea recordar las fórmulas de áreas de los polígonos. alcula el
Método de fórmula general
Método de fórmula general Ahora vamos a utilizar el método infalible. La siguiente fórmula, que llamaremos «fórmula general» nos ayudará a resolver cualquier ecuación cuadrática. Fórmula General La fórmula
Aplicaciones de la derivada
0.1 Problemas prácticos de máimos mínimos 1 Aplicaciones de la derivada En esta sección vamos a dedicarnos a calcular los máimos mínimos de funciones con diferentes propósitos. En muchas situaciones de
APLICACIONES DE LAS DERIVADAS
TEMA 7 7.1 DERIVADA DE UNA FUNCIÓN EN UN PUNTO 7.2 FUNCIÓN DERIVADA 7.3 REGLAS DE DERIVACIÓN 7.4 ESTUDIO DE LA DERIVABILIDAD DE UNA FUNCIÓN DEFINIDA D A TROZOS APLICACIONES DE LAS DERIVADAS 7.5 RECTA TANGENTE
Se desea estudiar el comportamiento de una función a medida independiente x se aproxima a un valor específico.
Tema: Límites de las funciones Objetivos: Comprender el concepto de límite de una función y las propiedades de los límites. Calcular el límite de una función algebraica utilizando las propiedades de los
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2016 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 06 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Desigualdades de dos variables
Desigualdades de dos variables Ahora vamos a estudiar un caso más general. Cuando graficamos la ecuación: obtenemos una recta en al plano. + = 0 Cada punto que está sobre la recta satisface la ecuación.
Cálculo Diferencial en una variable
Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia
Regla de la cadena. Ejemplo 1. y = f (g(x)) Como las funciones son diferenciables son suaves.
1 Regla e la caena Hasta aquí hemos erivao funciones que no son compuestas. El problema surge cuano tenemos una función que es compuesta, por ejemplo, igamos que el precio e la gasolina epene el precio
Profr. Efraín Soto Apolinar. Función exponencial
Función eponencial La función eponencial viene de la generalización de la función polinomial. Si consideramos la función: =, por ejemplo, cabe preguntarnos, «cómo se comportaría la función si cambiamos
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS
1º BACHILLERATO MATEMÁTICAS CIENCIAS SOCIALES TEMA 4.- LÍMITES, CONTINUIDAD Y DERIVADAS 1 1.- LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función f por la izquierda de un punto x = a. Es el valor al
Derivada Aplicaciones. Prof. Alberto Alvaradejo IVº Medio Calculo II 2017
Derivada Aplicaciones Prof. Alberto Alvaradejo IVº Medio Calculo II 2017 I. Función creciente Una función continua f es estrictamente creciente en un intervalo I si cumple x 0 < x 1 < x 2 f (x 0 ) < f
Autoevaluación. Bloque IV. Análisis. BACHILLERATO Matemáticas I. Página Observa la gráfica de la función y = f (x) y a partir de ella responde:
Autoevaluación Página Observa la gráfica de la función y = f () y a partir de ella responde: a) Cuál es su dominio de definición? su recorrido? b) Representa gráficamente: y = f ( + ); y = f () + ; y =
SOLUCIONES ( ) ( ) ( ) 2 ( ) ( ) Fecha: La pendiente de la recta es m = = x = 4. x = 2 2x. Ejercicio nº 1.- Solución: La recta será:
Ejercicio nº.- Halla la ecuación de la recta tangente a la curva que sea paralela a la recta y. SOLUCIONES ' Fecha: La pendiente de la recta es m Cuando, y La recta será: Ejercicio nº.- y ( ) Averigua
x 3 si 10 <x 6; x si x>6;
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E000 A Primer parcial + 1 +8 1 a Trace su gráfica b Determine su dominio, rango y raíces Sean si 10 < 6; f
La función cuadrática
La función cuadrática En primer semestre estudiamos las ecuaciones cuadráticas. También resolvimos estas ecuaciones por el método gráfico. Para esto, tuvimos que convertir la ecuación en una función igualándola
4.2 Tasas de Variación. Sea la función f: Se llama tasa de variación media de la función f en el intervalo [a, b] al cociente:
U.D.4: DERIVADAS 4.1 Ecuaciones de una recta. Pendiente de una recta La pendiente de una recta es una medida de la inclinación de la recta. Es el cociente del crecimiento en vertical entre el crecimiento
Profr. Efraín Soto Apolinar. Método Gráfico
Método Gráfico El último método que estudiaremos es el más sencillo. Se trata de considerar a la ecuación como una máquina que transforma los números. Para eso, crearemos una función. Función (Definición
CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA. 1. Derivabilidad y monotonía. creciente para x en cierto intervalo f es < 0
CÁLCULO DIFERENCIAL E INTEGRAL I APLICACIONES DE LA DERIVADA 1. Derivabilidad y monotonía Tenemos también el resultado: f (x) > 0 creciente para x en cierto intervalo f es Lo cual es claro, pues: Si la
MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 10 de Febrero de 2005.
MÉTODOS MATEMÁTICOS DE LA FÍSICA II Segunda Parte. 0 de Febrero de 005. Tenéis 3 horas para hacer estos ejercicios. Podéis usar una versión de los apuntes como están en la red, sin ninguna anotación. No
Unidad 8: Derivadas. Técnicas de derivación. Aplicación al estudio y representación de funciones. Primitiva de una función (integración).
representación de funciones Primitiva de una función (integración) 1 Unidad 8: Derivadas Técnicas de derivación Aplicación al estudio y representación de funciones Primitiva de una función (integración)
Tema 5: Funciones. Límites de funciones
Tema 5: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos y es una transformación que asocia a cada elemento del conjunto un único elemento del conjunto. Una función
Estudio de las funciones RACIONALES
Estudio de las funciones RACIONALES 2 o BACH_MAT_CCSS_II Cuaderno de ejercicios MATEMÁTICAS JRM Nombre y apellidos..... Funciones racionales. Página 1 RESUMEN DE OBJETIVOS 1. Cálculo de las raíces, los
DERIVADAS DE FUNCIONES DE UNA VARIABLE
DERIVADAS DE FUNCIONES DE UNA VARIABLE DERIVADAS DE FUNCIONES DE UNA VARIABLE [4.] Estudiar la derivabilidad de la función los puntos en los que esté definida. 3 f( ) y obtener f ( ) en En primer lugar
< La recta y = -4/5 es una asíntota horizontal en +4. < La misma recta es también asíntota en -4. < y asíntota y = -4/5 = -0,8
Ramas infinitas de una curva. Asíntotas horizontales Ejemplo 1. Analizar si la curva tiene o no asíntotas horizontales Análisis del comportamiento de la función en +4 : x 6 +4 < La recta y = -4/5 es una
Lcdo. Eliezer Montoya Matemática I 1. Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas
Lcdo. Eliezer Montoya Matemática I 1 Universidad Nacional Experimental Politécnica de las Fuerzas Armadas Núcleo Barinas Asignatura Matemática I código 114 Primera Versión 14-06-08 Facilitador: Licdo Eliezer
Profr. Efraín Soto Apolinar. Área bajo una curva
Profr. Efraí Soto Apoliar. Área bajo ua curva Nosotros coocemos muchas fórmulas para calcular el área de diferetes figuras geométricas. Por ejemplo, para calcular el área A de u triágulo co base b altura
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD.
TEMA 1.- LÍMITES DE FUNCIONES Y CONTINUIDAD. 1.LÍMITE DE UNA FUNCIÓN EN UN PUNTO El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes por f de puntos x, cuando los originales
Derivadas de orden superior. Segunda derivada
Derivadas de orden superior Segunda derivada La derivada de la derivada de una función se conoce como segunda derivada de la función, es decir, si ff(xx) es una función y existe su primera derivada ff
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E MAYO-2001, 13 H
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0700 2-MAYO-200, H () Dada la función definida por f() = 2, determinar: Intervalos de crecimiento y de decrecimiento; máimos y mínimos locales;
Una función f, definida en un intervalo dterminado, es creciente en este intervalo, si para todo x
Apuntes de Matemáticas II. CBP_ ITSA APLICACIONES DE LA DERIVADA.- CRECIMIENTO Y DECRECIMIENTO DE UNA FUNCIÓN En una función se puede analizar su crecimiento o decrecimiento al mirar la variación que experimentan
1.-Tasa de variación.-
TEMA 3: DERIVADAS 1.-Tasa de variación.- Consideremos una función y = f(x) y consideremos dos puntos próximos sobre el eje de abscisas "a" y "a+h", siendo "h" un número real que corresponde al incremento
CONCAVIDAD. Supongamos que tenemos la siguiente información, referente a una curva derivable: Cómo la graficaríamos?
CAPÍTULO 14 CONCAVIDAD Supongamos que tenemos la siguiente información, referente a una curva derivable: Intervalo Signo de f F (-00,3) + Creciente (3,8) - Decreciente (8, + ) + Creciente Cómo la graficaríamos?
Profr. Efraín Soto Apolinar. Límites
Límites Cada rama de las matemáticas tiene conceptos que resultan centrales para el desarrollo de la misma. Nosotros empezamos el estudio del cálculo infinitesimal, que está compuesto del cálculo diferencial
Tema 4: Funciones. Límites de funciones
Tema 4: Funciones. Límites de funciones 1. Concepto de función Una aplicación entre dos conjuntos A y B es una transformación que asocia a cada elemento del conjunto A un único elemento del conjunto B.
Derivadas. 1. Tasa de variación media La tasa de variación media de una función f(t) en un intervalo [a, b] se define como:
Derivadas Antes de dar la definición de derivada de una función en un punto, vamos a introducir el concepto de tasa de variación media y dos ejemplos o motivaciones iniciales que nos van a dar la medida
