PROBLEMAS METRICOS. r 3
|
|
|
- Nicolás Andrés Cruz Maidana
- hace 9 años
- Vistas:
Transcripción
1 PROBLEMAS METRICOS 1. Hallar el área del triángulo de vértices A(1,1), B(2,3) y C(5,2). 2. Halla las ecuaciones de las bisectrices determinadas por las rectas y=3x e y=1/3 x. Comprueba que ambas bisectrices son perpendiculares. sea. 3. Halla la ecuación de una recta r, perpendicular a x +3y +9 =0 y cuya distancia al punto P(3, 1) Calcula la ecuación de la mediatriz del segmento de extremos A( 4,2) y B(1,3). 5. Halla el área del triángulo definido por las rectas: 3 8 = 5 + t r 1 y=x r 2 y = x r y = 1+ t 6. Hallar el radio de la circunferencia centrada en el origen, que es tangente a la recta r 2x+3y 6=0. 7. Determina c para que la recta 3x 4y +c =0 diste del punto P(5,2) tres unidades. 8. Dado el triángulo de vértices A( 3,1), B(2,2) y C( 4,2) a) Ecuación de la recta AB b) Perímetro del triángulo c) Mediana del vértice A d) Altura correspondiente al vértice A e) Baricentro f) Ortocentro g) Circuncentro h) Incentro 9. Un rombo tiene un vértice en el punto (6,1), una diagonal sobre la recta 2x +y 3 =0 y sabemos que su área vale 20 u². Hallar los restantes vértices del rombo y la longitud de sus lados. 10. Un rombo tiene un vértice en el punto (3,6), una diagonal sobre la recta x+5y-7=0 y sabemos que su área vale 208 u². Hallar los restantes vértices del rombo y la longitud de sus lados. 11. Averiguar si el cuadrilátero A(-2,3), B(3,8), C(4,1), D(1,-4) es un cuadrado. 12. Dos vértices consecutivos de un cuadrado son A(5,1) y B(1,3). Hallar su área. 13. Clasificar el triángulo A(4,-3), B(3,0) y C(0,1). 14. Hallar a con la condición de que los puntos A(0,a) y B(1,2) disten la unidad. 15. Hallar m con la condición de que los puntos A(3,1), B(1,5) y C(2,m) estén alineados. 16. Hallar la longitud de la perpendicular trazada desde el origen a la recta 4x +3y =12. de 60º. 17. Hallar la ecuación de las rectas que distan 2 unidades del origen y forman con OX un ángulo
2 18. Sea el triángulo ABC rectángulo en B. Si BC está sobre la recta 2x +7y 11 =0, calcula la recta sobre la que se encuentra el lado AB sabiendo que A(1,1). Calcula la longitud de ese cateto, así cómo los ángulos del triángulo. 19. Dos lados de un cuadrado están sobre las rectas r 5y =3x +10, s 3x 5y =5. Hallar su área. 20. Hallar k para que la recta 8x +15y +k =0 diste 5 unidades del punto (2,3). 21. Desde un punto P(2, 3) se traza una perpendicular a la recta 3x 4y +6 =0. A qué distancia pasa del punto Q(6,8)?. 22. Hallar el área del rectángulo limitado por las rectas x 2y =3; x 2y = 4; 2x +y +2 =0 y 2x + y 4 = Ecuación de la recta que pasa por el origen y forma un ángulo de 45º con la recta 2x y +2 = Ecuación del lugar geométrico de los puntos del plano que equidistan de (3,2), 2 unidades. 25. Determinar el lugar geométrico de los punto P del plano que equidista de los ejes coordenados. 26. Ecuación del lugar geométrico de los puntos del plano que equidistan de los extremos del segmento AB, siendo A( 3,1) y B(5, 2). 27. Lugar geométrico de los puntos del plano, cuya diferencia de cuadrados de distancia a los puntos A(3,5) y B( 2,0) es constante e igual a 8 unidades. 28. Ecuación de las alturas del triángulo de vértices A(1,5), B(4,-2), C(-2,-1). Hallar su ortocentro. 29. Sea la recta r: x + y =1. Hallar la ecuación del lugar geométrico de los puntos del primer cuadrante tales que el cuadrado de su distancia a la recta r sea igual al producto de sus distancia a los ejes. 30. Lugar geométrico de los puntos del plano que distan de A(2,0) el doble que de B(5,3). 31. Halla un punto C de la recta 2x + y + 2 =0, que junto con los puntos A(3,0) y B(1,3) forme un triángulo rectángulo en A. Determinar las ecuaciones de las mediatrices del triángulo y probar que se cortan en un punto (circuncentro del triángulo). π rad Qué valor ha de tener a para que la recta 3x 4y + a =0, pase a una distancia 3 del punto A(5,2). 33. Calcular el valor de a para que las rectas x +ay +2 =0 y 3 x + 3y = 0, formen un ángulo de 34. Sea un cuadrado de vértices consecutivos ABCD. Se sabe que A( 2,3) y que el lado CD está sobre la recta x 3y +1 =0. Encontrar los vértices B, C, D y el área del cuadrado. 35. Dado un triángulo de vértices A(0,1), B(2,3) y C(3,0). Hallar su baricentro, su circuncentro, la longitud de la altura correspondiente al vértice C, el coseno del ángulo A y el área. 36. Hallar la ecuación de la recta perpendicular a 2x-3y+7=0 y que pasa por el punto medio del segmento que forma r con los ejes coordenados. C(9,6). 37. Hallar los vértices B y D del cuadrado que tiene por diagonal el segmento AC, tal que A(1,2) y
3 38. Hallar el valor de a para que el triángulo de vértices: A(0,0), B(3,2) y C(a,1) tenga área Un triángulo isósceles tiene por base el segmento AB, con A(1,2) y B(6,3). El otro vértice está sobre la recta 3x y +8 =0. Calcular las coordenadas de C, la altura y el área. 40. Hallar la distancia del punto medio del segmento que une los puntos A(3,2) y B(4, 6) a la recta 3x +4y 6 = Dadas las rectas: r: 4x +3y +1 =0 y s: 2x y +3 =0. Hallar: a) El coseno del ángulo que forman. b) Un punto de s que diste 6 unidades de r. 42. Ecuaciones de las tres mediatrices del triángulo de vértices: A=(3,1), B=(7,5), C=(5,-1). Hallar el circuncentro del triángulo. 43. Hallar las ecuaciones de las tres alturas del triángulo anterior. Obtener las coordenadas del ortocentro de este triángulo. 44. Distancia del punto P=(1, 1) a la recta x = Área del triángulo de vértices A=(1,2), B=(7,4) y C=(2,7). 46. Coordenadas del punto P, simétrico del P =(1, 2) respecto de la recta 3x 4y = Distancia entre las rectas, r: 3x 4y +2 =0 y s: 6x 8y +11 = Dos vértices opuestos de un cuadrado son los puntos A=(1,1) y C=(5,3). Hallar las coordenadas de los otros dos vértices y la longitud del lado. 49. Las rectas de ecuaciones ax y =4; x +b =y, son perpendiculares y cortan al eje de abscisas en dos puntos distantes 5 unidades. Halla a y b. 50. Un segmento tiene por extremos ( 3, 1) y (4,3). Halla un punto de dicho segmento tal que la razón a los extremos sea Halla las ecuaciones de las rectas que pasan por el punto ( 3,0) y forman con la recta de ecuación 3x 5y +9 =0 un ángulo cuya tangente vale Halla las coordenadas del punto simétrico del origen respecto de la recta 4x +3y = La recta 4x 3y =12 es mediatriz del segmento AB. Sabiendo que las coordenadas de A son (1,0), hallar las de B. 54. Determinar el área del paralelogramo OABC y las ecuaciones de los lados AB y BC sabiendo que OA es la recta de ecuación x 2y =0, OC tiene de ecuación 3x +y =0 y las coordenadas de B son (3,5). 55. Los puntos B( 1,3) y C(3, 3) son los vértices de un triángulo isósceles que tiene el tercer vértice A en la recta x +2y 15 =0, siendo AB y AC los lados iguales. Calcula las coordenadas de A y las tres alturas del triángulo.
4 56. Por el punto A(2,6) se trazan dos rectas perpendiculares a las bisectrices del primer cuadrante y del segundo cuadrante. Hallar: (a) Las ecuaciones de dichas rectas. (b) Las coordenadas de los vértices del triángulo formado por la recta 3x-13y-8=0 con dichas rectas. 57. Halla la ecuación de la recta que, pasando por el punto P(2,-3), forma un ángulo de 45º con la recta 3x 4y +7 = Dados los puntos A(4,-2) y B(10,0), hallar el punto de la bisectriz de los cuadrantes 2ª y 4ª que equidista de los dos. 59. Halla un punto de la recta 2x y +5 =0 que equidiste de A(3,5) y B(2,1). 60. Encuentra un punto C de la recta de ecuación 2x y +5 =0 que equidiste de A(3,5) y B(2,1). 61. Calcula el pie de la perpendicular trazada por el punto P( 1,2) a la recta 3x 5y 21 =0, y la distancia de dicho pie al punto en que esta recta corta al eje OX. 45º. 62. Hallar el valor de k para que las rectas = 2 λ r y y = 2λ = 1+ 2µ s formen un ángulo de y = 2 + kµ 63. Halla la ecuación de la recta que corta al eje OX en el punto de abscisa 3 y forma con él un ángulo de 60º. 64. Dados los puntos A(2,1), B( 3,5) y C(4,m), calcula m para que el triángulo ABC tenga de área Halla el área del cuadrilátero de vértices A(2, 2), B(4,2), C(4,0) y D( 3,2). 67. Halla la longitud de la altura del triángulo A(2,-1), B(5,1) y C(0,3), que parte del vértice C, y halla el área del triángulo. 68. Calcula las ecuaciones de las rectas que pasando por el punto A(1,-2) disten dos unidades del punto B(3,1). 69. Halla las ecuaciones de las rectas perpendiculares a las bisectrices de los ejes y que distan del origen 3 unidades. 70. Una recta determinada tiene de ecuación cos60º x + sen60º y 5 =0, e intercepta entre los ejes coordenados un segmento. Halla: (a) La ecuación de la mediatriz del segmento. (b) Las coordenadas del baricentro del triángulo que la recta determina con los ejes. (c) El área del triángulo anterior. (d) La bisectrices de dicho triángulo. 71. Dado el triángulo de vértices A(0,1), B(2,3) y C(3,0) calcula: el baricentro, el circuncentro, el Incentro y el ortocentro. 72. Dadas las familias de rectas representadas por las ecuaciones (a 1)x 2ay 5=0 y ax (2a 1)y =0, hallar el lugar geométrico del punto de intersección de las dos familias. 73. Desde el punto F(5,10) parte un rayo luminoso que se refleja en la recta de ecuación 3x +4y =30 y después de la reflexión llega al punto A(13,4). En qué punto de la recta dada deber reflejarse el rayo?.
5 74. Sobre una pradera llana hay dos montones de granos situados en los puntos A(3,1) y B(7,4). Desde un hormiguero cercano, las hormigas han marcado sobre el suelo sendos caminos rectilíneos formando un ángulo recto, dirigidos a los dos montones de granos. En qué punto se encuentra el hormiguero, si se sabe que est situado sobre la recta de ecuación x y =4? 75. Juan y Ana parten, respectivamente, de los puntos A( 5,2) y B(2,3). Se encuentran, con gran regocijo, en un punto de la recta y =2x +4. Halla las coordenadas del punto de encuentro, la distancia desde dicho punto a los puntos de partida y el área del triángulo que determinan los tres puntos. 76. Pedro halla el punto B, simétrico de A(1,3), respecto de la bisectriz del primer cuadrante; Pilar halla el punto C, simétrico de B respecto del eje de abscisas, y a continuación Carmen halla D, simétrico del C respecto de la bisectriz del cuarto cuadrante. Santiago dice que se podía pasar de A a D en una sola simetría. Sabrías calcular la ecuación del eje de dicha simetría? área. 77. Un cuadrado tiene un vértice en P(1,12) y el centro en el punto (6,0). Hallar los otros vértices y el
1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-3,1) y su vector de dirección es v = (2,0)
1.- Escribe las ecuaciones paramétricas de las siguientes rectas: a) Pasa por el punto A(-,1) y su vector de dirección es v = (,0) b) Pasa por el punto P(5,-) y es paralela a : x = 1 t y = t c) Pasa por
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es
EJERCICIOS BLOQUE III: GEOMETRÍA
EJERCICIOS BLOQUE III: GEOMETRÍA (00-M-A-4) (5 puntos) Determina el centro y el radio de la circunferencia que pasa por el origen de coordenadas, tiene su centro en el semieje positivo de abscisas y es
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS ) Dadas las coordenadas del punto A(, ). Hallar la ecuación de la recta (r) paralela al eje por dicho punto. Hallar la ecuación de la recta (p) paralela al eje por dicho punto. )
8.- GEOMETRÍA ANÁLITICA
8.- GEOMETRÍA ANÁLITICA 1.- PROBLEMAS EN EL PLANO 1. Dados los puntos A = (1, 2), B = (-1, 3), C = (3, 4) y D = (1, 0) halla las coordenadas de los vectores AB, BC, CD, DA y AC. Solución: AB = (-2, 1),
RELACION DE PROBLEMAS DE GEOMETRIA. Problemas propuestos para la prueba de acceso del curso 1996/97.
RELACION DE PROBLEMAS DE GEOMETRIA Problemas propuestos para la prueba de acceso del curso 996/97. º. - Explica cómo se puede hallar el área de un triángulo, a partir de sus coordenadas, en el espacio
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO PRÁCTICO DE GEOMETRÍA ANALÍTICA AÑO 014 CURSO PREPARATORIO DE INGENIERÍA CPI-014 TRASLACIÓN Y/O
MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA
1 MATEMÁTICAS II PROBLEMAS DE GEOMETRÍA PAU ANDALUCÍA Ejercicio 1. (Junio 2006-A) Considera el plano π de ecuación 2x + y z + 2 = 0 y la recta r de ecuación x 5 z 6 = y =. 2 m (a) [1 punto] Halla la posición
GEOMETRIA EUCLIDEA. 3.-Determinar m para que el producto escalar de u=(m,5) y v=(2,-3) sea la unidad.
PRODUCTO ESCALAR GEOMETRIA EUCLIDEA 1.-Dados los vectores u,v y w tales que u*v=7 y u*w=8, calcular: u*(v+w); u*(2v+w); u*(v+2w) 2.-Sea {a,b} una base de vectores unitarios que forman un ángulo de 60.
Geometría Analítica Enero 2016
Laboratorio #1 Distancia entre dos puntos I.- Halle el perímetro del triángulo cuyos vértices son los puntos dados 1) ( 3, 3), ( -1, -3), ( 4, 0) 2) (-2, 5), (4, 3), (7, -2) II.- Demuestre que los puntos
APUNTES DE MATEMÁTICAS 1º BACHILLERATO TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS
APUNTES DE MATEMÁTICAS TEMA 5: GEOMETRÍA AFÍN PROBLEMAS MÉTRICOS º BACHILLERATO ÍNDICE. ECUACIONES DE LA RECTA EN EL PLANO.... 4.. SISTEMAS DE REFERENCIA... 4.. COORDENADAS DE UN PUNTO... 4.3. COORDENADAS
Boletín de Geometría Analítica
Boletín de Geometría Analítica 1) Si las coordenadas de los vectores a y b son (3,5) y (-2,1) respectivamente, obtén las coordenadas de: a) -2 a + 1/2 b b) 1/2 ( a +b ) - 2/3 ( a -b ) 2) Halla el vector
LA RECTA. Ax By C 0. y y m x x. y mx b. Geometría Analítica 2 ECUACIÓN GENERAL. Teorema: ECUACIÓN PUNTO - PENDIENTE .
LA RECTA En geometría definimos a la recta como la sucesión infinita de puntos uno a continuación de otro en la misma dirección. En el plano cartesiano, la recta es el lugar geométrico de todos los puntos
GEOMETRÍA ANALÍTICA PLANA
GEOMETRÍA ANALÍTICA PLANA I. VECTORES LIBRES 1. Dada la siguiente figura, calcula gráficamente los siguientes vectores: a. AB BI b. BC EF c. IH 2BC d. AB JF DC e. HG 2CJ 2CB 2. Estudia si las siguientes
PROBLEMAS RESUELTOS GEOMETRÍA
PROBLEMAS RESUELTOS GEOMETRÍA ) Uno de los vértices de un paralelogramo ABCD es el punto A(, ) y dos de los lados están sobre las rectas r : 3x -y- =, s : 6x -7y- =. Calcula los demás vértices. Como el
TEMA 8 GEOMETRÍA ANALÍTICA
Tema 8 Geometría Analítica Matemáticas 4º ESO TEMA 8 GEOMETRÍA ANALÍTICA RELACIÓN ENTRE PUNTOS DEL PLANO EJERCICIO : Halla el punto medio del segmento de extremos P, y Q4,. Las coordenadas del punto medio,
EJERCICIOS de RECTAS
EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur (1, 2), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
FIGURAS GEOMÉTRICAS PLANAS
FIGURAS GEOMÉTRICAS PLANAS 1.- Es posible construir un triángulo equilátero y rectángulo? Razona tu respuesta. 2.- Dibuja un triángulo equilátero. Cómo son sus ángulos? 3.- Construye, con regla, compás
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
1. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado:
CAPÍTULO. GEOMETRÍA AFÍN.. Problemas. Determinar las ecuaciones paramétricas y la ecuación continua de las rectas que pasan por el punto A y con el vector de dirección dado: a) A(,, ), v = (,, ) ; b) A(0,
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto).
1.- Punto: Intersección de dos rectas. No tiene dimensiones (ni largo, ni ancho, ni alto). 6.- Espacio: Conjunto de puntos con tres dimensiones: largo, ancho y alto. Es infinito, sin límites. 2.- Recta:
Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2.
Wilson Herrera 1 Guía de Rectas en el plano. Prof. Wilson Herrera. 1. Hallar la ecuación de la recta que pasa por el punto a(1, 5) y tiene de pendiente 2. 2. Hallar la ecuación de la recta que pasa por
GEOMETRÍA ANALÍTICA. 32) Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y- 6=0.
GEOMETRÍA ANALÍTICA 30) Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3); {x=3+2t; y=2+3t}; (x-3)/2=(y-2)/3 31) Cuál
Tema 5: Polígonos. Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio.
Tema 5: Polígonos 5.1 Elementos Fundamentales de Geometría Mediatriz de un segmento : Es la recta perpendicular trazada en su punto medio. A P * B Cualquier punto P de la mediatriz equidista de los extremos
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
EJERCICIOS DE GEOMETRÍA PLANA. 1. Hallar las ecuaciones paramétricas de la recta r que pasa por el punto ( 2, 2) tiene como vector director el vector
EJERCICIOS DE GEOMETRÍA PLANA Hallar las ecuaciones paramétricas de la recta r que pasa por el punto (, ) tiene como vector director el vector v i j A y x a + vt La ecuación paramétrica de una recta es
95 EJERCICIOS de RECTAS
9 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
Resuelve. Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I. m = (7, 3) El embarcadero. \ Solución: P = (8, 6) Página 187
Resuelve Página 87 El embarcadero A Tenemos dos pueblos, A y B, cada uno a un lado de un canal. Se desea construir un embarcadero situado exactamente a la misma distancia de los dos pueblos. Dónde habrá
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2)
1. Halla la ecuación de la recta r, sabiendo que pasa por A(1,-2) y B(-1,2) 2. Halla la ecuación de la recta r, sabiendo que es paralela a y=2x-3 y pasa por el punto (1,3). 3. Halla la ecuación de la recta
Página 209 PARA RESOLVER. 44 Comprueba que el triángulo de vértices A( 3, 1), B(0, 5) y C(4, 2) es rectángulo
44 Comprueba que el triángulo de vértices A(, ), B(0, ) y C(4, ) es rectángulo y halla su área. Veamos si se cumple el teorema de Pitágoras: AB = (0 + ) + ( ) = AC = (4 + ) + ( ) = 0 BC = 4 + ( ) = 0 +
101 EJERCICIOS de RECTAS
101 EJERCICIOS de RECTAS Forma paramétrica: 1. Dado el punto A(5,3) y el vector director ur = (1, ), se pide: a) Hallar las ecuaciones paramétricas de la recta r que determinan. b) Obtener otros tres puntos
Figuras Planas. 100 Ejercicios para practicar con soluciones. 1 Comprueba si los siguientes ángulos son complementarios: a) 72 + 35.
Figuras Planas. 100 Ejercicios para practicar con soluciones 1 Comprueba si los siguientes ángulos son complementarios: a) 7º y 35 b) 6º y 64º a) 7 + 35 = 107 90 No son complementarios. b) 6 + 64 = 90
Segmento : porción de recta comprendida entre dos de sus puntos, llamados extremos.
ÍNDICE Elementos fundamentales Ángulos Triángulos y cuadriláteros Áreas y volúmenes Poliedros ELEMENTOS FUNDAMENTALES DE GEOMETRÍA Conceptos fundamentales Punto Recta Plano Semirecta : porción de recta
EJERCICIOS Nº 10: GEOMETRIA ANALITICA. se extiende hacia cada extremo en una longitud igual a su longitud original. Halle las coordenadas de
EJERCICIOS Nº 1: GEOMETRIA ANALITICA 1) Determine x si el punto A (x,3) equidista de B ( 3, ) y de C (7,4) Respuesta ) Determine los puntos de trisección del segmento de recta AB donde A( 6, 9), B(6,9)
GEOMETRÍA Y TRIGONOMETRÍA
GEOMETRÍA Y TRIGONOMETRÍA 1 Conceptos básicos 1. Una figura geométrica es un conjunto de puntos. 2. Puntos colineales son cualesquiera puntos que están exactamente en una recta. 3. La distancia entre un
1. Polígonos. 1.1 Definición
1.1 Definición 1. Polígonos Es toda figura plana, cerrada, limitada por un número finito de lados rectos. De acuerdo al número de lados, los más utilizados se clasifican en: Triángulos 3 lados Cuadriláteros
Matemáticas II - Geometría
PAU Matemáticas II - Geometría 2008.SEPTIEMBRE.1.- Dados los dos planos π 1 : x + y + z = 3 y π 2 : x + y αz = 0, se pide que calculeis razonadamente: a) El valor de α para el cual los planos π 1 y π 2
A = 180-90 - 62 = 28. 8 GEOMETRíA DEL PLA 8 = 720-145 - 125-105 - 130-160 = 55. b) 720 = 90: ~ B- 110 + 8+ 150 + 90 = 440 + 28 ==> B = 140 C
8 GEOMETRíA DEL PLA EJERCCOS PROPUESTOS Calcula la medida del ángulo que falta en cada figura. a) b) a) En un triángulo, la suma de las medidas de sus ángulos es 180, A = 180-90 - 6 = 8 El ángulo mide
EJERCICIOS PROPUESTOS
EJERCICIOS PROPUESTOS 1) En cada ejercicio hallar la ecuación de la circunferencia que cumple: 1) El radio es igual a 6 y las coordenadas de su centro son ( 1, 2). 2) Su centro es el origen de coordenadas
Hoja de problemas nº 7. Introducción a la Geometría
Hoja de problemas nº 7 Introducción a la Geometría 1. Un rectángulo tiene de área 135 u 2 a. Si sus lados miden números enteros, averigua cuáles pueden ser sus dimensiones. b. Cortamos los vértices como
GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS
8 GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 88 PARA EMPEZAR, REFLEXIONA Y RESUELVE Punto medio de un segmento ;;;;;; Toma los puntos P (, ), Q (0, ) y represéntalos en el plano: ;;;;;; P
ÁLGEBRA LINEAL II Práctica 3.1-3.2
ÁLGEBRA LINEAL II Práctica 3.1-3.2 Geometría afín. (Curso 2014 2015) 1. En el espacio afín IR 3 se considera la referencia canónica R y la referencia R = (1, 0, 1); (1, 1, 0), (1, 1, 1), (1, 0, 0)}. Denotamos
x-z = 0 x+y+2 = [2012] [EXT-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
x = 1+t 1. [014] [EXT-A] Considera los puntos A(1,1,) y B(1,-1,-) y la recta dada por y = t. z = 1 a) Halla la ecuación general del plano que que contiene a r y es paralelo a la recta que pasa por A y
16. Dados los puntos A(-1,3), B(2,0) y C(-2,1). Halla las coordenadas de otro punto D para que los vectores y sean equivalentes.
TEMA 5. VECTORES 5.1. Vectores en el plano. - Definición. - Componentes de un vector. - Módulo. - Vectores equivalentes. 5.2. Operaciones con vectores. - Suma y resta. - Multiplicación por un número real.
EJERCICIOS DE GEOMETRÍA RESUELTOS
EJERCICIOS DE GEOMETRÍA RESUELTOS 1.- Dada la recta r: 4x + 3y -6 = 0, escribir la ecuación de la recta perpendicular a ella en el punto de corte con el eje de ordenadas. : - Hallamos el punto de corte
sen sen sen a 2 a cos cos 2 a
BLOQUE I: TRIGONOMETRÍA Y TRIÁNGULOS.- Sabiendo que tg g y cot, calcular tg y cos( ).- Demostrar razonadamente las fórmulas del seno, coseno y tangente del ángulo mitad.- Demostrar las siguientes igualdades:
Unidad 8. Geometría analítica. BACHILLERATO Matemáticas I
Unidad 8. Geometría analítica BACHILLERATO Matemáticas I Determina si los puntos A(, ), B (, ) y C (, ) están alineados. AB (, ) (, ) (, ) BC (, ) (, ) ( 8, ) Las coordenadas de AB y BC son proporcionales,
lasmatematicas.eu Pedro Castro Ortega materiales de matemáticas 16. Geometría analítica Matemáticas I 1º Bachillerato 0,2
lasmatematicaseu Pedro astro Ortega 16 Geometría analítica Matemáticas I 1º achillerato 1 Escribe las ecuaciones vectorial paramétricas de la recta que pasa por tiene dirección paralela al vector u 7 u
TRIÁNGULOS. TEOREMA DE PITÁGORAS.
TRIÁNGULOS. TEOREMA DE PITÁGORAS. Un triángulo ABC es la figura geométrica del plano formada por 3 segmentos llamados lados cuyos extremos se cortan a en 3 puntos llamados vértices. Los vértices se escriben
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
Propiedades y clasificación de triángulos
MT-22 Clase Propiedades y clasificación de triángulos Síntesis de la clase Ángulos Polígonos convexos Clasificación de ángulos Relaciones angulares Regulares Irregulares 0º < Agudo < 90 Recto = 90 90º
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. 1 PÁGINA 241 EJERCICIOS Clasificación. Propiedades 1 Observa el siguiente diagrama: cuadriláteros 4 rectángulos trapecios rombos 2 1 3 5 paralelogramos 6 Qué figura geométrica corresponde al recinto?
4. Si dos rectas son paralelas, qué condición cumplen sus vectores directores? Y sus vectores normales? Y si la rectas son perpendiculares?
. Si u=(,4) es un vector director de la recta r, indicar si el vector v también lo es:. v=(-,-4). v=(0,). v=(,). Dado un vector director de una recta, calcular un vector normal:. v=(,). v=(,). v=(-,) 4.
TRANSFORMACIONES DEL PLANO
PROBLEMAS DE GEOMETRÍA. TRANSFORMACIONES DEL PLANO 1. Un producto de dos simetrías axiales de ejes perpendiculares A qué transformación corresponde? En qué se transforma un segmento vertical? ( ) 2. Cuál
x-z = 0 x+y+2 = [2012] [SEP-B] Halla el punto simétrico del P(2,1,-5) respecto de la recta r definida por
1. [01] [SEP-B] Halla el punto simétrico del P(,1,-5) respecto de la recta r definida por x-z = 0 x+y+ = 0.. [01] [SEP-A] Sean los puntos A(0,0,1), B(1,0,-1), C(0,1,-) y D(1,,0). a) Halla la ecuación del
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
Clasificación de triángulos: Un triángulo es un polígono de tres lados. Un triángulo está determinado por:
Un triángulo es un polígono de tres lados. Un triángulo está determinado por: 1. Tres segmentos de recta que se denominan lados. 2. Tres puntos no alineados que se llaman vértices. Los vértices se escriben
ALGUNAS PROPIEDADES DEL TRIÁNGULO
CAPÍTULO III 13 ALGUNAS PROPIEDADES DEL TRIÁNGULO Conocimientos previos: - Suponemos conocido lo siguiente: a) El lugar geométrico de los puntos del plano que equidistan de dos puntos dados A y B, es una
MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA. 3. Determinar analíticamente cuando dos rectas son paralelas o perpendiculares.
ESTUDIO ANALÍTICO DE LA LÍNEA RECTA Y APLICACIONES SEMESTRE II VERSIÓN 03 FECHA: Septiembre 29 de 2011 MUNICIPIO DE MEDELLÍN ÁREA DE MATEMÁTICAS: GEOMETRÍA ANALÍTICA LOGROS: 1. Hallar la dirección, la
hallar; a) Ecuación del plano que pasa por r y por (1, 3, 8) b) Distancia desde el origen al plano anterior
x 1 y 1. Distancia entre la recta = = z y el plano (x, y, z) = (0, 1, 0) + τ(, 5, 1) + λ(1, 0, ) 3 5. Distancia del punto (, 3, 5) a la recta x 1 z = y = x + z y 3. Distancia entre las rectas r = y = y
EJERCICIOS SOBRE CIRCUNFERENCIA
EJERCICIOS SOBRE CIRCUNFERENCIA 1. En una C(O; r) se trazan un diámetro AB y un radio OC perpendicular a AB ; se prolonga AB a cada lado y en el exterior de la circunferencia en longitudes iguales AE=BD;
GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS
GEOMETRÍA ANALÍTICA. PROBLEMAS AFINES Y MÉTRICOS Página 7 REFLEXIONA Y RESUELVE Punto medio de un segmento Toma los puntos P(, ), Q(0, ) y represéntalos en el plano: P (, ) Q (0, ) Localiza gráficamente
1. ESQUEMA - RESUMEN Página 2. 2. EJERCICIOS DE INICIACIÓN Página 8. 3. EJERCICIOS DE DESARROLLO Página 20. 5. EJERCICIOS DE REFUERZO Página 36
1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 8 3. EJERCICIOS DE DESARROLLO Página 20 5. EJERCICIOS DE REFUERZO Página 36 1 1. ESQUEMA - RESUMEN Página 1.1. POLÍGONOS 2 1.2. TRIÁNGULOS
1. Ángulos en la circunferencia
1. Ángulos en la circunferencia Ángulo central. Es el que tiene el vértice en el centro de la circunferencia. Se identifica con el arco, de modo que escribiremos α = Figura 1: Ángulo central, inscrito
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
Las Figuras Planas. Vértice. Ángulo. Diagonal. Lado. Los polígonos. El Polígono. CEPA Carmen Conde Abellán Matemáticas II
Las Figuras Planas Melilla Los polígonos Te has fijado alguna vez en el metro que usan los carpinteros? Está formado por segmentos de madera que se pliegan con facilidad. Este instrumento tiene forma de
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 015 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
GEOMETRÍA. 1. Líneas y ángulos. Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO.
1. Líneas y ángulos Partimos de la existencia de infinitos puntos cuyo conjunto llamamos ESPACIO. Los puntos del espacio se consideran agrupados en conjuntos parciales de infinitos puntos llamados PLANOS.
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS Razones trigonométricas de los ángulos de un triángulo rectángulo eran esas relaciones entre los lados de dicho triángulo rectángulo. Seno: Se define el seno del ángulo como el
RELACIONES MÉTRICAS Y ÁREAS EN EL PLANO
RELACIONES MÉTRICAS Y ÁREAS EN EL PLANO 1. LUGARES GEOMÉTRICOS: MEDIATRIZ Y BISECTRIZ Se denomina lugar geométrico a la figura que forman un conjunto de puntos del plano que cumplen una determinada propiedad.
Polígonos y circunferencia
826464 _ 055-070.qxd 12/2/07 09:22 Página 55 Polígonos y circunferencia INTRODUCCIÓN RESUMEN DE LA UNIDAD Nos introducimos en el estudio de los polígonos, recordando contenidos trabajados por los alumnos
GEOMETRÍA. (x 1) 2 +(y 2) 2 =1. Razónalo. x y + z = 2. :3x 3z +1= 0 es doble de la distancia al plano π 2. : x + y 1= 0. Razónalo.
GEOMETRÍA 1. (Junio, 1994) Sin resolver el sistema, determina si la recta x +3y +1= 0 es exterior, secante o tangente a la circunferencia (x 1) +(y ) =1. Razónalo.. (Junio, 1994) Dadas las ecuaciones de
Created with novapdf Printer (www.novapdf.com)
GEOMETRÍA LONGITUDES Longitud de la circunferencia Es una línea curva cerrada que equidistan todos sus puntos del centro. Radio Centro: punto situado a igual distancia de todos los puntos de la circunferencia.
Ángulos. Semejanza. ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la. n 2 180º. En la circunferencia:
GEOMETRÍA Ángulos En la circunferencia: ABE ˆ, ACE ˆ o ADE ˆ son ángulos inscritos en la circunferencia y son todos iguales. AOE ˆ es el ángulo central correspondiente y su medida es dos veces la medida
1 Indica cuál es el valor de los ángulo Â, Bˆ. en las siguientes figuras: a) b) 2 Calcula los ángulos dados por letras:
1 Indica cuál es el valor de los ángulo Â, Bˆ y Ĉ en las siguientes figuras: a) b) Calcula los ángulos dados por letras: 3 Calcula el valor del ángulo A. 4 Dados los ángulos los mismos. a 45 0 30.y b 6
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO
Colegio LOPE DE VEGA Luis de Medina, 12 28805 Alcalá de Henares DIBUJO TÉCNICO II EJERCICIOS DE APOYO 1º.- Deducir razonadamente el valor del ángulo α marcado en la figura sabiendo que esta representa
GEOMETRÍA (Selectividad 2014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2014
GEOMETRÍA (Selectividad 014) 1 ALGUNOS PROBLEMAS DE GEOMETRÍA PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 014 1 Aragón, junio 014 Dados el punto P (1, 1, 0), y la recta: x+ z 1= 0 s : 3x y 3= 0 Ax + By
LUGAR GEOMÉTRICO. Ejemplos
LUGAR GEOMÉTRICO Un lugar geométrico es un conjunto de puntos que satisfacen determinadas propiedades geométricas. Cualquier figura geométrica se puede definir como el lugar geométrico de los puntos que
8Soluciones a las actividades de cada epígrafe PÁGINA 168
8Soluciones a las actividades de cada epígrafe PÁGINA 68 Pág. Para manejarse por el centro de Roma Eva y Clara han construido sobre el plano un sistema de referencia cartesiano tomando como centro de coordenadas
TEMA 6. ECUACIONES DE LA RECTA
TEMA 6. ECUACIONES DE LA RECTA Dados un punto y un vector, vamos a hallar las ecuaciones de la recta r que pasa por el punto A y es paralela al vector. Sea consideramos los vectores un punto cualquiera
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
PROFR.: JULIO C. JIMÉNEZ RAMÍREZ GRUPOS: TODOS LOS ALUMNOS IRREGULARES EPOEM No.16 TRUNO: VESPETINO
Ecuación vectorial de la recta Ecuaciones paramétricas de la recta Ecuación continua de la recta Pendiente Ecuación punto-pendiente de la recta Ecuación general de la recta Ecuación explícita de la recta
SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA.
CUADERNILLO DE GEOMETRIA I.- SUBRAYE LA RESPUESTA CORRECTA EN CADA PREGUNTA. 1.- SON LOS TRIÁNGULOS QUE TIENEN TODOS LOS ÁNGULOS IGUALES. A) EQUILÁTERO B) ACUTÁNGULO C) ISÓSCELES D) ESCALENO E) RECTÁNGULO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 3: ESPACIO AFIN Y EUCLIDEO Junio, Ejercicio 4, Opción A Junio, Ejercicio 4, Opción B Reserva 1, Ejercicio 4, Opción A Reserva 1, Ejercicio
B7 Cuadriláteros. Geometría plana
Geometría plana B7 Cuadriláteros Cuadrilátero es un polígono de cuatro lados. Lados opuestos son los que no tienen punto común. Ejemplo AB y CD, AD y BC. Lados contiguos son los que tienen un extremo común.
Fundación Uno. Ejercicio Reto. ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS:
ENCUENTRO # 50 TEMA: Triángulos.Cuadriláteros.Circunferencia. Propiedades. CONTENIDOS: 1. Triángulos.Rectas notables. Propiedades. 2. Cuadriláteros. Propiedades. 3. Polígonos. Propiedades. 4. Circunferencia.
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN. 6. Geometria analítica en el plano
Evaluación NOMBRE APELLIDOS CURSO Y GRUPO FECHA CALIFICACIÓN 4 Dados los vectores: u (, ) v, w (4, 6) z (/, ) x (, ) Cuáles de las siguientes afirmaciones son ciertas? a) Los vectores u y v son paralelos.
Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),
Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los
LA RECTA Y SUS ECUACIONES
UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS
1º ESO GEOMETRÍA PLANA: ÁNGULOS Y TRIÁNGULOS 1.- ÁNGULOS Un ángulo es la porción de plano limitada por dos semirrectas o rayos que tienen el mismo origen. Los lados del ángulo son las semirrectas que lo
Conjugados Armónicos
Conjugados Armónicos Sofía Taylor Febrero 2011 1 Puntos Conjugados Armónicos Sean A y B dos puntos en el plano. Sea C un punto en el segmento AB y D uno sobre la prolongación de AB tal que: donde k es
Dicho punto fijo se llama centro, a la distancia de cualquier punto de la circunferencia al centro se acostumbra a llamar radio.
GEOMETRIA ANALITICA Capítulo 9 La Circunferencia 9.1. Definición Se llama circunferencia al lugar geométrico de los puntos de un plano que equidistan de un punto fijo del mismo plano. Dicho punto fijo
GUÍA DE GEOMETRÍA N 2. Triángulos
Liceo Benjamín Vicuña Mackenna Departamento de matemática Triángulo: Es un polígono de tres lados; está determinado por tres segmentos de recta que se denominan lados, o tres puntos no alineados que se
b) Halle el punto de corte del plano π con la recta que pasa por P y P.
GEOMETRÍA 1- Considere los puntos A(1,2,3) y O(0,0,0). a) Dé la ecuación de un plano π 1 que pase por A y O, y sea perpendicular a π 2 : 3x-5y+2z=11. b) Encuentre la distancia del punto medio de A y O
1.- Efectúa las siguientes operaciones con cantidades expresadas en notación científica. Expresa el resultado también en notación científica:
Pàgina 1 de 6 Alumnes suspesos: fer tot el treball obligatòriament. Altres alumnes: Es recomana que realitzeu aquells apartats on heu tingut més dificultats durant el curs. 1.- Efectúa las siguientes operaciones
Espacios vectoriales. Vectores del espacio.
Espacios vectoriales. Vectores del espacio. Consideremos un paralelepípedo de bases ABCD y EFGH, siendo A(1,1,1), B(2,1,1), C(2,4,1) y E(1,2,7). Halla: a) el área de una de las bases; b) el volumen del
EXAMEN GEOMETRÍA. 5. Halla el perímetro y el área de un triángulo isósceles cuyos lados miden 5, 5 y 8 cms., respectivamente.
1. Supongamos una circunferencia de radio 90/ð cms. y un ángulo cuyo vértice coincida con el centro de la circunferencia. Halla: a) La longitud de arco de circunferencia que abarca un ángulo de 501. b)
1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a la recta x + 7y + 1 = 0
Universidad Técnica Federico Santa María Departamento de Matemática Campus Santiago Geometría Analítica 1. Determine el valor de la constante k para que la recta kx + (3 k)y + 7 = 0 sea perpendicular a
