Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Se calcula cada término de la igualdad por separado y a continuación se iguala. Lím f. x 1"

Transcripción

1 Modelo. Ejercicio A. Caliicación máima: puntos. Dada la unción < a ; e > se pide: a) ( punto) Determinar el valor de a para que sea continua en. b) ( punto) Para ese valor de a, estudiar la derivabilidad de en. c) ( punto) Hallar, las tiene, las asíntotas de la gráica y (). a. Para que la unción sea continua en, se debe cumplir: Para que eista límite de una unción en un punto, deben eistir los límites laterales y ser iguales, por lo que la deinición de continuidad se puede escribir de la guiente orma: Se calcula cada término de la igualdad por separado y a continuación se iguala. e e e e Igualando: a a b. Para que la unción sea derivable en debe eistir el límite, deberán eistir los laterales y ser iguales. ( ) ( ) e * L H ( ) e ( ) e ( ), y para que eista el e e e * a la indeterminación se aplica directamente el teorema de L Hopital, el cociente no solo no se mpliica no que aumenta el grado del denominador, por ello se nos debe ocurrir cambiar a la indeterminación. / La unción no es derivable en c. La unción no tiene asíntotas verticales debido a que el dominio de la unción es todo R. Asíntotas Horizontales. L R ± Hacia la unción no tiene asíntota horizontal.

2 e e e Hacia la unción tiene una asíntota horizontal en y. Asíntota Oblicua. Puesto que hacia la unción no tiene asíntota horizontal hay que probar tiene asíntota oblicua. m Lim y m n : ( ) 5 5 m Lim Lim Lim 5 Hacia hay una asíntota oblicua en y 5. Septiembre. Ejercicio A. Caliicación máima: puntos. Dada la unción A > se pide: a) ( punto) Hallar el valor de A para que () sea continua. Es derivable para ese valor de A? b) ( punto) Hallar los puntos en los que (. c) ( punto) Hallar el máimo absoluto y el mínimo absoluto de () en el intervalo [, 8]. a. La unción () esta deinida por epreones polinómicas, que por deinición son continuas en sus respectivos intervalos, por lo tanto, para que la unción sea continua, deberá ser continua en el punto rontera ( ). Para que la unción sea continua en se debe cumplir: se tiene en cuenta que para que una unción tenga límite en un punto debe tener límites laterales en ese punto y además que estos sean iguales, la condición de continuidad en queda: Calculando por separado cada termino de la igualdad e igualando, se calcula el valor del parámetro A. ( ) ( A) A 9 A A 9 A Igualando: 9 A ; A 8 8 > Para que la unción () sea derivable, deberá ser derivable en, y por tanto: ( 8) < < ( ) > > ( ) ( )

3 ( ) ( ) () no es derivable en. b. De las dos epreones que tiene la unción derivada, solo una se puede hacer cero. < ; ; 5 > c. Para calcular los etremos absolutos de la unción en el intervalo [, 8], habrá que tener en cuenta que en este intervalo la unción es una parábola abierta hacia, y que en el intervalo alcanza su vértice ( 5 máimo absoluto). Máimo absoluto. La unción alcanza su máimo absoluto en el vértice de la parábola ( 5) y toma un valor de ( 5) 5 5 Mínimo absoluto. Por ser una parábola abierta hacia, el mínimo se alcanza en alguno de los etremos del intervalo. ( ) ; ( 8) 8 8 Mínimo absoluto ; Máimo absoluto Septiembre. Ejercicio A. Caliicación máima: puntos. a) ( punto) Calcula los límites: y ( e ) b) ( punto) Calcula la integral d ( e ). Hallar el c) ( punto) Halla el dominio de deinición de la unción 9 conjunto de puntos donde la unción tiene derivada c. Dominio 9 { R 9 } 9 : < > La unción tiene derivada en los puntos donde la derivada sea continua 9 D 9 ; 9 > > 9 ( ) ( ) : < < : Dominio[ ] (, ] [, ) La unción tiene derivada en (, ) (, ) ; Septiembre 9. Ejercicio A. Caliicación máima: puntos. Dada la unción: Ln( a) b a > y se pide: a) (,5 puntos). Hallar los valores de los parámetros a, b para los cuales la unción es continua en. b) (,5 puntos). Para a b, estudiar la unción es derivable en aplicando la deinición de derivada.

4 a. Para que una unción () sea continua en un punto, se debe cumplir: Por deinición de la unción. Para calcular el límite de la unción cuando tiende a cero, se debe tomar la epreón que tiene la unción en las proimidades de cero, no en el punto cero. Ln ( a) b Ln? Para resolver el límite, y teniendo en cuenta que las epreones que orman la unción son derivables en el entorno de cero, se aplica el teorema de L Hopital. a a b ab b Ln( a) b a a a b ab ( a) La solución del límite depende de los valores que tomen a y b, se presentan dos casos dierentes: a b ab a b ab a b * - a b: ± Discontinua ( a) ( a ) - a b: a b ab a a aa a a a a ( a) ( a) ( a) ( a) ( a ). Para que la unción sea continua: a : a : a b ± * El gno de depende el gno de la dierencia a b. b. ( ) Ln Por deinición: > y ( h) h h Dada la orma que tiene la unción, el límite se hace más ácilmente con el guiente cambio de variable: Ordenando la epreón: h : h : Ln ( ) ( ) L H La unción es derivable en y su derivada Modelo 9. Ejercicio A. Caliicación máima: puntos Sea Ln ( ) { Ordenando} 6 ( )

5 5 < a) ( punto). Estudiar la continuidad y derivabilidad de (). b) ( punto). Hallar los máimos y mínimos locales de (). c) ( punto). Dibujar la gráica de (). a. La unción () está deinida por epreones polinómicas, por lo tanto su continuidad y derivabilidad solo hay que estudiarla en el punto rontera ( /). Para que la unción sea continua en /, se debe cumplir: 6 6 La unción es continua. Para que la unción sea derivable en /, se debe cumplir: Hace alta la epreón de la derivada. < : 6 : 6 La unción no es derivable en / b. Una unción alcanza un etremo local o relativo en o ( o ) y ( ), con el guiente criterio: ( ) >, en ( o, ( o )) eiste un mínimo; ( ) <, en ( o, ( o )) eiste un máimo. En los puntos donde la unción no sea derivable, se alcanzará un etremo relativo el gno de ( o ) es distinto al gno de ( o ), con el guiente criterio: ( o ) < y ( o ) >, mínimo; ( o ) > y ( o ) <, máimo. () : : 6 : : < 6 (, ()) la unción presenta un máimo local (, ()) la unción presenta un máimo local. local eiste un máimo l, local eiste un máimo 6, 6

6 6 En /, se dan las condiciones de mínimo local: > < En 6, la unción presenta un mínimo local. a. La gráica de la unción se puede obtener por desplazamientos y deormación de la unción y, y calculando los puntos de corte con los ejes. Modelo 9. Ejercicio B. Caliicación máima: puntos Sea: a) ( punto). Estudiar la continuidad y derivabilidad de en. b) ( punto). Estudiar cuándo se veriica que '(). Puesto que ( l ) (), eiste contradicción con el Teorema de Rolle en el intervalo [,]? a. Para poder trabajar con la unción el primer paso será epresar la unción n el valor absoluto. < Continuidad en. Para que la unción sea continua en se debe cumplir:

7 La unción es continua en. Derivable en. Para que la unción sea derivable en se debe cumplir: Calculo de la derivada: < > ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) < : > ( ) La unción no es derivable en a Modelo 8. B. ( puntos). Se condera la unción () b sí sí < Se pide: a) (,5 puntos). Calcular a y b para que sea continua y derivabe en todo R. b) (,5 puntos). Para los valores de a y b obtenidos en el apartado anterior, calcular el área de la región acotada limitada por la gráica de, el eje horizontal y las rectas,. a. El primer paso será epresar los intervalos n valores absolutos. < < : ± < : : (, ) < : > : [, ) : ± : : (, ] [, ) : : (, ] La epreón de la unción es: a b sí sí sí < < Para que una unción sea continua en un punto, el valor de la unción en el punto debe ser igual al valor del límite de la unción en él, lo cual equivale a que sean iguales los límites laterales en el punto Continúa en : ( ) ( a b) : a( ) b : a b

8 Continúa en : ( a b) : a b : a b En deinitiva se llega a una sola relación. a b La segunda relación se obtiene con la condición de derivabilidad. Una orma sencilla de demostrar la derivabilidad de la unción en un punto rontera (punto donde cambia la epreón de la unción), es demostrar que en dicho punto las derivadas laterales coinciden. La derivada de la unción se obtiene derivando las distintas epreones que la deinen y epresando los intervalos en orma abierta. sí < a sí < < sí > Derivable en ( ) ( ) ( ) ( ) ( ) a ( ) : a Derivable en ( ) ( ) ( ) a a : a ( ) Con la condición de derivabilidad se obtiene el valor de a. a 6 Con el valor de a y la condición de derivabilidad, se obtiene el valor de b. a b : b : b a 6 6 Para que la unción sea continua y derivable en todo R su epreón debe ser: sí sí < sí < < ó 6 6 sí sí Nota: Se debe comprobar que la condición de derivabilidad en y en coinciden, en caso contrario, no hubieran eistido valores de a y b que hiciesen continua y derivable a la unción en todo R. a Septiembre 6. Ejercicio A. ( puntos) 8

9 a) ( punto). Calcular los valores de a y b para que la unción < a cos < π a b π sea continua b) ( punto). Estudiar la derivabilidad de () para los valores de a y b obtenidos en el apartado anterior. a. La unción () está deinida mediante epreones continuas por deinición (polinómicas y trigonométricas tipo coseno), por lo tanto la continuidad solo se debe estudiar en los puntos rontera (,π). Para que una unción sea continua en un punto ( o ), debe cumplir: o Para que una unción tenga límite en un punto ( o ), debe cumplir: Lim o : Lim Lim Lim o o o por lo tanto la condición de continuidad se puede epresar como Lim Lim Lim o Lim o Lim ( ) Lim ( a cos ) a cos a a o o π Lim π Lim π Lim ( π) π ( a cos ) Lim ( a b) a π b π a cos π a π Teniendo en cuenta que a π π b b b Sustituyendo los valores de a y b se obtiene una unción continua. < cos < π π b. En una unción continua en todo R y deinida por intervalos mediante epreones derivables por deinición (Las unciones polimómicas y trigonométricas tipo seno y coseno son continuas y derivables en todo R por deinición), para estudiar su derivabilidad en los puntos rontera ( o ), hay que comprobar las derivadas laterales en estos puntos coinciden. La derivada de la unción es: ( ) ( ) o o sen < < < π > π 9

10 ( ) ( ) : sen En la unción es continua pero no derivable. π ( ) ( ) ( π ) π sen π π : ( π ) ( π ) π π π En π la unción es continua y derivable Septiembre. Ejercicio B. Caliicación máima: puntos Sea la unción () a. ( punto) Estudiar su continuidad y su derivabilidad. b. ( punto) Dibujar su gráica. c. ( punto) Calcular el área del recinto acotado por la gráica y (), las rectas, 5, y el eje OX. Se pide estudiar una unción en cuya epreón aparece el valor absoluto. El primer paso del estudio es epresar la unción por intervalos, generando estos intervalos los valores que anulen la epreón que lleva el valor absoluto. < > : : > < operando y ordenando () ( ) [ ( ) ] < 8 < () 8 a. Continuidad. Se pide estudiar la continuidad de una unción deinida por intervalos mediante epreones polinómicas. Puesto que los polinomios son continuos y derivables en todo R, los únicos puntos de este tipo de unciones donde hay que estudiar la continuidad y la derivabilidad son los puntos rontera, puntos donde cambia la epreón de la unción( ). Para que la unción sea continua en se debe de cumplir que el valor de la unción y el del límite coincidan. () () - () 8 ( 8 ) - () () () ( 8) La unción es continua en todo R Derivabilidad. Para que la unción sea derivable en, debe de eistir el guiente límite: ( h) ( ) ( ) ó h h empleando la segunda epreón

11 8 8 8 L' H : L' H ( ) No eiste el, por lo que la unción no es derivable en. ( ) ( ) ( ) Otra orma menos ortodoa de estudiar la derivabilidad, es comprobar la derivada por la izquierda en cuatro, coincide con la derivada por la derecha en cuatro 8 < ' 8 > ' ( ) 8 Como ' ' ' 8 La unción no es derivable en cuatro. b. 8 () 8 <. Se trata de ramas parabólicas Junio. Ejercicio B. (Puntuación máima: puntos) Sea la unción real de variable real deinida por ( ) Sí () Sí < (a) (,5 puntos) Razonar la unción es continua en toda la recta real. (b) (,5 puntos) Razonar es derivable en toda la recta real. (c) ( punto) Determinar el área encerrada por la gráica de y por las tres rectas y 8,,. Solución a. Continuidad. La condición necesaria y suiciente para que una unción sea continua en un punto o es que () ( o ) o La unción () es continua en los intervalos (, ) y (, ) por estar deinida por epreones polinómicas, por lo tanto, el único punto donde se debe de comprobar su continuidad es en.

12 Para que la unción sea continua en, se deberá cumplir: () () Se calculan los dos términos de la epreón por separado () ( ) () Lim( ) ( ) () : () () () () Lim Teniendo en cuenta lo anterior () () la unción es continua en y por tanto en todo R. b. Derivabilidad. La condición necesaria y suiciente para que una unción sea derivable en un punto o es que eista el ( o h) ( o ) h h h o h o () ( o ) o o Para que la unción sea derivable en deberá eistir: () () y para que eista este límite, deberán eistir y ser iguales sus límites laterales en. () () () () calculando los limites por separado y teniendo en cuenta las distintas epreones de la unción a la izquierda y derecha del punto, se obtiene: - por la izquierda ( ) 6 ( )( 5 ) () () ( 5 ) ( 5 )

13 - por la derecha () () ( ) ( ) como lo límites laterales son distintos, no eiste el () (), y por tanto, la unción no es derivable. El punto uno es lo que se denomina un punto vértice ó punto anguloso. Se puede hacer la demostración de una orma más sencilla, pero menos ortodoa, y es comprobando las derivadas laterales en el punto en cuestión coinciden o no. Sí ( ) ( ), la unción es derivable en, en caso contrario no. ' () ( ) Sí Sí < > ( ) ' : ' ' No derivable en '( ) Junio 999. A. Caliicación máima: puntos. Se condera la unción e Sí () ² Sí > contestar razonadamente a las guientes preguntas: a) ( punto) Es continua en el punto? b) ( punto) Es derivable en el punto? c) ( punto) Alcanza algún etremo? a. Para que la unción sea continua en : ( e ) e ( ) : Coinciden Continua en e b. Para que la unción sea derivable en se debe cumplir que ( ) ( ) e () Sí Sí >.

14 ( ) e e : ( ) c. Teniendo en cuenta que > R tiene un mínimo absoluto en. ( ) ( ) No es derivable en, la unción no presenta etremos relativos, pero Modelo 999. Ejercicio A. Caliicación máima: puntos. sen Sea k a) ( puntos) Hay algún valor de k para el cual () sea continua en? b) ( punto) Hay algún valor de k para el cual () sea derivable? c) ( punto) Determinar sus asíntotas. a. Para que la unción sea continua en : sen k Teniendo en cuenta el álgebra del calculo de límites: sen sen ( sen ) cos cos L H sen sen k b. Para que una unción sea derivable en un punto, debe ser continua, por lo tanto el único poble valor k para el que la unción puede ser derivable es para el que es continua, por lo tanto se pide estudiar sen la unción es derivable en. Para que la unción sea derivable en, debe eistir el guiente límite: sen sen ( ) ( ) cos sen L H L H sen sen R el límite Es derivable c. Teniendo en cuenta que es continua en todo R, la unción no presenta asíntotas verticales. sen sen Asíntota horizontal: ( ± ) k ± ± ± ± * sen ( ± ) [,] Asíntota oblicua no tiene por tener horizontal Septiembre 99. A. ((Puntuación máima: puntos) Sea la unción () Se pide: a) Hacer un dibujo aproimado de la gráica de la unción. b) Estudiar la derivabilidad de la unción en. c) Calcular el área limitada por la gráica de la unción (), el eje de abscisas y las rectas ;.

15 5

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x

= 1. x = 3: Lím = Asíntota vertical en x = 3: = 0 ; No se anula nunca. Punto de corte con OY es (0, 3) 3 x Modelo 4. Problema A.- (Calificación máima: puntos) 4 si Se considera la función real de variable real f ( ) si > a) Determínense las asíntotas de la función y los puntos de corte con los ejes. a. Asíntotas

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas CVS0. El precio del billete de una línea de autobús se obtiene sumando dos cantidades, una fija y otra proporcional a los kilómetros recorridos. Por un

Más detalles

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación media (T.V.M.) de una unción, y = () en un intervalo

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES 8 REPRESENTACIÓN DE FUNCIONES Página 86 Descripción de una gráfica. Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos y sin mirar la gráfica que aparece al principio, representa esta

Más detalles

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x

REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN.. Se pide: x 1 REPRESENTACIÓN GRÁFICA DE UNA FUNCIÓN IBJ05 1. Se considera la función f ( ). Se pide: a) Encontrar los intervalos donde esta función es creciente y donde es decreciente. ( puntos) b) Calcular las asíntotas.

Más detalles

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS

I. E. S. ATENEA. SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL. PRIMERA EVALUACIÓN. ANÁLISIS Eamen Global Análisis Matemáticas II Curso 010-011 I E S ATENEA SAN SEBASTIÁN DE LOS REYES EXAMEN GLOBAL PRIMERA EVALUACIÓN ANÁLISIS Curso 010-011 1-I-011 MATERIA: MATEMÁTICAS II INSTRUCCIONES GENERALES

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Página 5 REFLEXIONA Y RESUELVE Descripción de una gráfica Copia en tu cuaderno los datos encuadrados en rojo. A partir de ellos, y sin mirar la gráfica que aparece al principio,

Más detalles

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente:

DERIVADAS. TVM (a, b) = = h. La tasa de variación media se puede interpretar como la pendiente de la recta AB de la figura siguiente: Tasa de variación media DERIVADAS La tasa de variación media TVM de una unción ( en un intervalo (x, x se deine como: TVM (a, b ( x ( x x x Si consideramos x x + h, podemos expresar la TVM como: Interpretación

Más detalles

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad

PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES Tema Derivadas. Aplicaciones Matemáticas I º Bacillerato TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES TASA DE VARIACIÓN MEDIA DE UNA FUNCIÓN EN UN INTERVALO EJERCICIO : Halla la tasa de variación

Más detalles

CARACTERÍSTICAS DE UNA FUNCIÓN

CARACTERÍSTICAS DE UNA FUNCIÓN . DOMINIO CARACTERÍSTICAS DE UNA FUNCIÓN inio de o campo de eistencia de es el conjunto de valores para los que está deinida la unción, es decir, el conjunto de valores que toma la variable independiente.

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)

Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de

Más detalles

Aplicaciones de la integral definida al cálculo de áreas

Aplicaciones de la integral definida al cálculo de áreas Aplicaciones de la integral definida al cálculo de áreas 1º) Interpreta geométricamente el área que define la integral y obtenla. Geométricamente, la integral representa el área de la región del plano

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

COL LECCIÓ DE PROBLEMES RESOLTS

COL LECCIÓ DE PROBLEMES RESOLTS DEPARTAMENT DE MATEMÀTICA ECONOMICOEMPRESARIAL DEPARTAMENT D ECONOMIA FINANCERA UNIVERSITAT DE VALÈNCIA LLICENCIATURA EN ECONOMIA LLICENCIATURA EN ADMINISTRACIÓ I DIRECCIÓ D EMPRESES DIPLOMATURA EN CIÈNCIES

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x =

FUNCIONES. Función. π k π +, k } (los puntos que quitamos anulan el coseno). 2. tg x: {x / x = Función FUNCIONES Es una relación entre dos magnitudes variables, de tal manera que a cada valor de la primera, llamada independiente, le corresponde un único valor de la segunda, llamada dependiente.

Más detalles

Límites y Continuidad de funciones de varias variables

Límites y Continuidad de funciones de varias variables 1- Se construe un depósito de propano adosando dos hemisferios a los etremos de un cilindro circular recto Epresar el volumen V de ese depósito en función del radio r del cilindro de su altura h - Determinar

Más detalles

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!

www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid! CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,

Más detalles

1. INTEGRALES DEFINIDAS E IMPROPIAS

1. INTEGRALES DEFINIDAS E IMPROPIAS . INTEGRALES DEFINIDAS E IMPROPIAS. Hallar el área de la región limitada por la parábola y = y el eje OX. Los cortes de la gráfica de y = con el eje OX son los valores de tales que =, esto es, = y =. El

Más detalles

Estudio de funciones mediante límites y derivadas

Estudio de funciones mediante límites y derivadas Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio 1, Opción A Reserva 1, Ejercicio 1, Opción

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS

UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo

Más detalles

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO

TEMA 12 INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES 12.1 CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TEMA DERIVADAS Y APLICACIONES MATEMÁTICAS I º Bac TEMA INICIACIÓN AL CÁLCULO DE DERIVADAS. APLICACIONES. CRECIMIENTO DE UNA FUNCIÓN EN UN INTERVALO TASA DE VARIACIÓN MEDIA Deinición Se llama tasa de variación

Más detalles

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES

ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento

Más detalles

1. Resolver las siguientes ecuaciones o inecuaciones.

1. Resolver las siguientes ecuaciones o inecuaciones. . Resolver las siguientes ecuaciones o inecuaciones. a) + ; b) + 9 + 6 + ; c) + + ; d) = + + ; e) + = 0; f) 5 < + ; g) + > ; h) < < ; i) + < ; j) + ; b) < ó c) 05 9 05 9 ó < ó > 0

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

x = 0, la recta tangente a la gráfica de f (x)

x = 0, la recta tangente a la gráfica de f (x) CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas

Más detalles

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?.

1. Estudia la derivabilidad de la función )En qué punto del intervalo (0,ð) la recta tangente a y=tg(x) tiene pendiente 2?. ejerciciosyeamenes.com EXAMEN DERIVADAS. Estudia la derivabilidad de la función si f ()= si > 3. )En qué punto del intervalo (0,ð) la recta tangente a y=tg() tiene pendiente?. 4. Ecuación de la recta tangente

Más detalles

La concentración de ozono contaminante, en microgramos por metro cúbico, en una

La concentración de ozono contaminante, en microgramos por metro cúbico, en una ANÁLISIS MATEMÁTICO. PAU CASTILLA Y LEÓN A) EJERCICIOS DE APLICACIÓN A LAS CCSS La concentración de ozono contaminante, en microgramos por metro cúbico, en una ciudad viene dada por la función C ( ) 90

Más detalles

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y).

f: D IR IR x f(x) v. indep. v. dependiente, imagen de x mediante f, y = f(x). A x se le llama antiimagen de y por f, y se denota por x = f -1 (y). TEMA 8: FUNCIONES. 8. Función real de variable real. 8. Dominio de una función. 8.3 Características de una función: signo, monotonía, acotación, simetría y periodicidad. 8.4 Operaciones con funciones:

Más detalles

26 Apuntes de Matemáticas II para preparar el examen de la PAU

26 Apuntes de Matemáticas II para preparar el examen de la PAU 6 Apuntes de Matemáticas II para preparar el examen de la PAU Unidad. Funciones.Continuidad TEMA FUNCIONES. CONTINUIDAD. 1. Definición de Continuidad. Tipos de discontinuidades 3. Continuidad de las funciones

Más detalles

Ejercicios de Análisis propuestos en Selectividad

Ejercicios de Análisis propuestos en Selectividad Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página

Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por

Más detalles

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento

1 x (rad) 0 π/2 π 3π/2 2π cos x x Para representarla, recomiendo que se haga una tabla dando al argumento . A partir de las funciones: y = sen, y = cos, y = e, y = Ln, e y = ² representar las siguientes funciones: i. y = cos 2 y = cos Función periódica. = 2π 2π T ; ω Coeficiente de la. T = = 2π ω (rad) 0 π/2

Más detalles

TEMA 4 FUNCIONES ELEMENTALES

TEMA 4 FUNCIONES ELEMENTALES TEMA 4 FUNCIONES ELEMENTALES 4.1. Funciones lineales, cuadráticas y polinómicas 4.1.1. Funciones lineales. Las unciones lineales o aines tienen por epresión analítica ( m n. Si m > 0, la unción aín tiene

Más detalles

FUNCIONES REALES DE VARIABLE REAL.

FUNCIONES REALES DE VARIABLE REAL. FUNCIONES REALES DE VARIABLE REAL. CORRESPONDENCIA. Se llama CORRESPONDENCIA entre dos conjuntos A y B a toda ley que asocia elementos del conjunto A con elementos del conjunto B. Se denota por : A B A

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Límites y continuidad de funciones reales de variable real

Límites y continuidad de funciones reales de variable real Límites y continuidad de funciones reales de variable real Álvarez S., Caballero M.V. y Sánchez M. a M. salvarez@um.es, m.victori@um.es, marvega@um.es Índice 1. Definiciones 3 2. Herramientas 10 2.1. Funciones

Más detalles

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones

DERIVADAS LECCIÓN 22. Índice: Representación gráfica de funciones. Problemas. 1.- Representación gráfica de funciones DERIVADAS LECCIÓN Índice: Representación gráfica de funciones. Problemas.. Representación gráfica de funciones Antes de la representación de la gráfica de una función se realiza el siguiente estudio: º)

Más detalles

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA

Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA Universidad de Buenos Aires Instituto Libre de Segunda Enseñanza MATEMÁTICA CUARTO AÑO - 015 QUINTO AÑO - 016 1) Hallar la órmula de unción cuadrática g, que cumple las dos condiciones simultáneamente:

Más detalles

CBC. Matemática (51) universoexacto.com 1

CBC. Matemática (51) universoexacto.com 1 CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta

Más detalles

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL

TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL TEMA 6 INICIACIÓN AL CÁLCULO DIFERENCIAL 6.1. TASAS DE VARIACIÓN MEDIA E INSTANTÁNEA 6.1.1. Tasa de variación media La tasa de variación media de una unción en un intervalo a, b es el cociente: b a TVM,

Más detalles

PROBLEMAS DE INTEGRALES INDEFINIDAS

PROBLEMAS DE INTEGRALES INDEFINIDAS PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su

Más detalles

LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS

LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS LA INTEGRAL DEFINIDA 001. Calcula la integral de f() =, en el intervalo [1, ] 00. Calcula 0 ( + ) d LA INTEGRAL DEFINIDA Y EL CÁLCULO DE ÁREAS 01 ACTIVIDAD PROPUESTA Calcula el área limitada por la función

Más detalles

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro)

UNIDAD 6.- Funciones reales. Propiedades globales (temas 6 del libro) (temas 6 del libro). EXPRESIÓN DE UNA FUNCIÓN - Epresión mediante una tabla de valores La tabla de valores de una unción está ormada por dos ilas o columnas. En la primera ila o columna iguran los valores

Más detalles

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN

ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN ESTUDIO COMPLETO Y REPRESENTACIÓN DE UNA FUNCIÓN Teoría Práctica Los pasos a seguir para el estudio completo y representación de una Función son los siguientes: ) Hallar el Dominio de la función. En dicho

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Septiembre Modelo 2) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 0 (Septiembre Modelo ) Germán-Jesús Rubio Luna UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CURSO 00-0. MATEMÁTICAS II Opción A Ejercicio opción A,

Más detalles

Función derivada. lim

Función derivada. lim Pro. Enrique Mateus Nieves Función derivada TASA DE VARIACIÓN: Muchas leyes de la Física, la Química, la Bioloía o la Economía, son unciones que relacionan una variable dependiente y con otra variable

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos

Más detalles

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.

8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12. 7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +

Más detalles

TEMA 11 REPRESENTACIÓN DE FUNCIONES

TEMA 11 REPRESENTACIÓN DE FUNCIONES Tema Representación de unciones Matemáticas II º Bachillerato TEMA REPRESENTACIÓN DE FUNCIONES EJERCICIO : Representa gráicamente la unción: Dominio R 8 respecto al origen. 8 Simetrías:. No es par ni impar:

Más detalles

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE

TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión

Más detalles

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de Acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS II EJERCICIO Nº páginas: INDICACIONES:.- OPTATIVIDAD: El alumno deberá escoger una de las dos opciones, pudiendo

Más detalles

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA

4.1 MONOTONÍA 4.2 MÁXIMOS Y MÍNIMOS 4.3 CONCAVIDAD 4.4 ELABORACIÓN DE GRÁFICAS SOFISTICADAS 4.5 TEOREMA DEL VALOR MEDIO PARA Cáp. Temas Adicionales de la derivada. MONOTONÍA. MÁXIMOS Y MÍNIMOS. CONCAVIDAD. ELABORACIÓN DE GRÁFICAS SOFISTICADAS.5 TEOREMA DEL VALOR MEDIO PARA DERIVADAS.6 TEOREMA DE ROLLE.7 TEOREMA DE CAUCHY.8 TEOREMA

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad

Colegio Portocarrero. Curso Departamento de matemáticas. Ejercicios con solución de todo hasta probabilidad Ejercicios con solución de todo hasta probabilidad Problema 1: Se considera la función siendo a y b parámetros reales. a) Determina los valores de los parámetros a y b para que f(2) = 4 y la recta tangente

Más detalles

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos

(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos (Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,

Más detalles

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x.

La variable independiente x es aquella cuyo valor se fija previamente. La variable dependiente y es aquella cuyo valor se deduce a partir de x. Bloque 8. FUNCIONES. (En el libro Temas 10, 11 y 12, páginas 179, 197 y 211) 1. Definiciones: función, variables, ecuación, tabla y gráfica. 2. Características o propiedades de una función: 2.1. Dominio

Más detalles

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera:

2-2 (x) (x) (x) 3. Para hallar la ecuación canónica de la parábola, gráfico de la función f(x) = ax 2 + bx + c, se procede de la siguiente manera: Funciones cuadráticas Función cuadrática Deinición: Una unción cuadrática es una unción : R R deinida por la ormula = a + b + c Donde a, b y c son números reales y a 0. Esta epresión de la unción cuadrática

Más detalles

Estudio Gráfico de Funciones

Estudio Gráfico de Funciones Esquema 1 2 Esquema 1 2 Definición es una correspondencia entre dos conjuntos A B tal que a cada elemento del conjunto A le corresponde un único valor solo uno del conjunto B. La gráfica de la función

Más detalles

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.

a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1. Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)

Más detalles

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10

Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 página 1/20 Problemas Tema 4 Solución a problemas de Repaso y Ampliación 1ª Evaluación - Hoja 02 - Problemas 2, 4, 5, 6, 7, 8, 10 Hoja 2. Problema 2 Resuelto por Carmen Jiménez Cejudo (diciembre 2014)

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0

FUNCIÓN RACIONAL. 1 es racional x. es racional. es racional. es racional. es racional. El dominio de toda función racional es igual al conjunto ( ) 0 FUNCIÓN RACIONAL Función Racional. Dados polinomios p( ) q( ) tales que no tienen actores comunes, se deine la unción racional como la unción ormada por el cociente de los polinomios Ejemplos de unciones

Más detalles

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o

Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =

Más detalles

TEMA 3. Funciones. Cálculo diferencial

TEMA 3. Funciones. Cálculo diferencial TEMA 3. Funciones. Cálculo diferencial En este tema vamos a hacer un estudio preliminar de las funciones de una variable real y el importante concepto de derivada. Comenzaremos recordando las funciones

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas:

1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: LIMITE DE FUNCIONES Tema: Introducción a límite 1) Considera la función f(x) = x2 + 1 para contestar las siguientes preguntas: a) Cuál es el valor de la función si x = 2? b) Cuál es el valor de la función

Más detalles

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad

Colegio Portocarrero. Curso Departamento de matemáticas. Limites, asíntotas y continuidad Limites, asíntotas y continuidad Problema 1: Sea la función. Determina las asíntotas si existen. Problema 2: Dada la función a) Representa gráficamente f(x) b) Estudia su continuidad. Problema 3: Un inversor

Más detalles

Apuntes de dibujo de curvas

Apuntes de dibujo de curvas Apuntes de dibujo de curvas El objetivo de estas notas es dar unas nociones básicas sobre dibujo de curvas definidas por medio de ecuaciones cartesianas explícitas o paramétricas y polares: 1. Curvas en

Más detalles

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano).

1. Calificación máxima: 2 puntos Calcular los siguientes límites (donde Ln significa Logaritmo Neperiano). JUNIO INSTRUCCIONES: El eaen presenta dos opciones B; el aluno deberá elegir una de ellas contestar raonadaente a los cuatro ejercicios de que consta dicha opción en h. in. OPCIÓN. Calificación áia: puntos

Más detalles

Límites y continuidad

Límites y continuidad 9 Matemáticas I : Cálculo diferencial en IR Tema 9 Límites y continuidad 9. Límite y continuidad de una función en un punto Definición 9.- Un punto IR se dice punto de acumulación de un conjunto A si,

Más detalles

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x.

Calcula la tangente de las siguientes curvas en los puntos dados: Calcula la derivada de las siguientes funciones: e) f (x) = x x. Derivadas Definición Reglas de derivación jercicio Calcula la tangente de las siguientes curvas en los puntos dados: a) y = en el origen + b) y = cos() en ( c) y = + en (3, 0) π, 0) d) y = en (, ) Solución

Más detalles

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:

1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución: RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,

Más detalles

EJERCICIOS TEMA 1 CÁLCULO DIFERENCIAL EN UNA VARIABLE

EJERCICIOS TEMA 1 CÁLCULO DIFERENCIAL EN UNA VARIABLE EJERCICIOS TEMA CÁLCULO DIFERENCIAL EN UNA VARIABLE EJERCICIOS TEMA EJERCICIOS TEMA 3 CONJUNTOS NUMÉRICOS Ejercicio Demostrar, aplicando el principio de inducción, las siguientes propiedades a) + + 3 +

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto

Más detalles

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x

Funciones 1. D = Dom ( f ) = x R / f(x) R. Recuerda como determinabas los dominios de algunas funciones: x x Funciones. DEFINICIÓN Y TERMINOLOGÍA.. Definición de función real de variable real. "Es toda correspondencia, f, entre un subconjunto D de números reales y R (o una parte de R), con la condición de que

Más detalles

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]

Más detalles

Cálculo de derivadas

Cálculo de derivadas 0 Cálculo de derivadas. La derivada Piensa y calcula La gráfica f() representa el espacio que recorre un coche en función del tiempo. Calcula mentalmente: a) la pendiente de la recta secante, r, que pasa

Más detalles

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS

ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto

Más detalles

Aproximación intuitiva al concepto de límite de una función en un punto

Aproximación intuitiva al concepto de límite de una función en un punto Aproimación intuitiva al concepto de límite de una función en un punto ) Consideremos el siguiente gráfico Cuando los valores de se aproiman a 8 por la derecha, las imágenes de se acercan a 4 Cuando los

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS

PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS PRUEBAS DE ACCESO A LA UNIVERSIDAD EJERCICIOS RESUELTOS DEL BLOQUE DE ANÁLISIS MODELO 2000: OPCIÓN A: a. Calcúlense p y q de modo que la curva y = x $ + px + q contenga al punto ( 2, 1) y presente un mínimo

Más detalles

Tema 13 La integral definida. Aplicaciones

Tema 13 La integral definida. Aplicaciones Tema La integral definida. Aplicaciones. Integral definida. Calcula la integral. ( ) d 4 Calculamos una primitiva de la función f ( ) : G( ) ( ) d Según la regla de Barrow: 4 4 ( ) d G(4) G() 4 8 4 Ahora

Más detalles

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES

CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva

Más detalles

TEMA 2: DERIVADA DE UNA FUNCIÓN

TEMA 2: DERIVADA DE UNA FUNCIÓN TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media

Más detalles

INTRODUCCIÓN. FUNCIONES. LÍMITES.

INTRODUCCIÓN. FUNCIONES. LÍMITES. INTRODUCCIÓN. FUNCIONES. LÍMITES. Este capítulo puede considerarse como una prolongación y extensión del anterior, límite de sucesiones, al campo de las funciones. Se inicia recordando el concepto de función

Más detalles

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE

4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles