FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:
|
|
- Patricia Lozano Aguilar
- hace 6 años
- Vistas:
Transcripción
1 FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes en los etremos del intervalo tienen signo distinto: < 0 Entonces, eiste un punto, tal que 0 Es decir la función corta al eje OX en el interior del intervalo Teorema de Bolzano Hipótesis: f es continua en [a, b] f (a). f(b) < 0 Tesis: c (a, b) / f(c) 0 Aplicación del teorema de Bolzano El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: Ejemplo Demostrar que la ecuación tiene una solución real. º. Se considera la función continua en R luego continua en cualquier intervalo cerrado que se considere. º. Se busca el intervalo donde se cumplan las hipótesis del Tª Bolzano: 0 > 0 > 0 > 0 3 < 0 3º. Por tanto en el intervalo [, ] se cumplen las hipótesis del Tª de Bolzano, luego:, tal que 0 que equivale a decir que la ecuación tiene una solución en el intervalo,
2 Teoremas de continuidad y derivabilidad Teorema de Weierstrass Toda función continua en un intervalo cerrado alcanza su máimo y mínimo absolutos Como se observa en los dibujos anteriores los máimos y mínimos (etremos) absolutos se encuentran entre los relativos o los etremos del intervalo: º.- Se calculan los máimos y mínimos relativos º.- Se calculan las imágenes en estos máimos y mínimos relativos y en los etremos del intervalo 3º.- El mayor valor es el máimo absoluto y el menor valor es el mínimo absoluto. Ejemplo Sea la función 3 Calcula los etremos absolutos de en el intervalo [,3], en qué Tª te basas para asegurar su eistencia.? + 3 [,3] 3,3 Por tanto [,3] + 3 º [,3] es máimo relativo (parábola) º.-, 3 0 3º.- máimo absoluto:, mínimo absoluto:3,0
3 FUNCIONES DERIVABLES EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Rolle Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Es derivable en el intervalo abierto, 3. Toma el mismo valor en los etremos del intervalo, es decir Entonces, eiste un punto, tal que 0, es decir, con tangente horizontal. Teorema de Rolle Hipótesis :f es continua en [a, b] f es derivable en (a, b) f(a) f(b) Tesis: c (a, b) / f (c) 0 Ejemplo 3 La función : [, ] R definida por 3 verifica las siguientes hipótesis:. Es continua en[, ] por ser polinómica. Es derivable en, por se polinómica. 3. Entonces eiste un punto en el intervalo abierto, con derivada nula en dicho punto. Vamos a comprobarlo: ±, Ejemplo 4 Determina para que la función + 0 cumpla las hipótesis del Tª de Rolle en el intervalo [ 3, ] y calcula el punto que vaticina el Tª. La continuidad y derivabilidad se cumplen puesto que es una función polinómica, luego la única condición que hay que imponer es la 3ª: El valor que vaticina el Tª es: ± 53, 3
4 Teoremas de continuidad y derivabilidad Ejemplo 5: Aplicación del teoremas de Rolle Sea una función derivable, demostramos que si tiene única solución tiene soluciones como máimo Solución La demostración se hace por reducción al absurdo es decir negar tiene soluciones como máimo Se supone que 0 tiene 3 soluciones: < < 0 Por tanto se puede aplicar el Tª de Rolle a la función en los intervalos [, ] y [, ] En ambos intervalos se cumplen las hipótesis del Tª Rolle, luego:,, 0 en contradicción con 0 tiene única solución por tanto no se puede suponer que 0 tiene 3 soluciones Por tanto 0 tiene soluciones como máimo Se demuestra en general que: Sea una función derivable, demostramos que si tiene única soluciones tiene + soluciones como máimo Ejemplo 6: Aplicación conjunta de los teoremas de Bolzano y de Rolle Demuestra que la ecuación sólo admite una solución real Solución º. Se considera la función continua y derivable en R luego continua y derivable en cualquier intervalo cerrado que se considere. º. Se busca el intervalo donde se cumplan las hipótesis del Tª Bolzano: 0 > 0 7 > 0 5 > 0 4 < 0 3º. Por tanto en el intervalo [, ] se cumplen las hipótesis del Tª de Bolzano, luego:, tal que 0 solución en el intervalo, 4º. Es única: que equivale a decir que la ecuación tiene una Se supone que tiene soluciones: < 0 En el intervalo [, ] se cumple las hipótesis del Tª Rolle, luego:, 0 pero R suponer que 0 tiene soluciones por tanto no se puede 4
5 Teoremas de continuidad y derivabilidad Teorema del valor medio o de Lagrange Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Es derivable en el intervalo abierto, Entonces eiste un punto, tal que Teorema del Valor Medio Hipótesis: f es continua en [a, b] f es derivable en (a, b) Tesis:, / Interpretación geométrica: Eiste un punto en la curva cuya tangente es paralela a la cuerda que une los etremos. Ejemplo 7 Sea : [,] R la función definida por 3 6 que es continua y derivable en su dominio. Por el teorema del valor medio:, Teorema de Cauchy Si y son dos funciones continuas en [. ] y derivables en,, f ( b) f ( a) f ( c) eiste un punto, tal que g( b) g( a) g ( c) Ejemplo 8 Halla el valor de del intervalo 0,3 donde se cumple la tesis del teorema de Cauchy, siendo + 4 y 4 Las funciones son continuas y derivables en todo R por ser funciones polinómicas Valores de las funciones en los etremos del intervalo: Luego ,3 5
6 Teoremas de continuidad y derivabilidad Regla de L Hôpital Esta regla permite obtener fácilmente ciertos límites y dice: f ( ) 0 f '( ) Si lim y lim a g ( ) 0 a g '( ) f ( ) f '( ) lim lim a g( ) a g '( ) También se puede aplicar para cuando y la indeterminación La regla puede aplicarse una o más veces, mientras se mantenga la indeterminación. Ejemplo 9 cos 0 cos 0 sen 0 cos lím indeterminación L' Hôp lím 0 lím lím Ejemplo 0 ( + ) Ln sen lim 0. sen ( + 0) Ln sen0 0. sen0 0 0 (aplicamos la regla de L'Hôpital) ( + ) Ln sen lim 0. sen cos lim + 0 sen +. cos cos (aplicamos L'Hôpital) sen0 + 0.cos sen ( + ) lim 0 cos + cos. sen + sen0 ( + 0) cos0 + cos0 0. sen0 Ejemplo Se sabe que Solución lim 0 a e es finito. Determina el valor de a y calcula el límite. lim 0 a e a( e ) lim 0 ( e ). 0 0 ind ( L' Hôpital) lim 0 e ae a. ( e ). + 0 Como me dicen que el límite eiste y es finito el numerador ha de ser cero para poder seguir aplicándole la Regla de L Hôpital, es decir 0 Volviendo a aplicar la regla de L Hôpital, con, tenemos. e lim 0 e. + ( e ). Ejemplo. e lim 0 e. +. e +. e cos 0 0 ô 0 0 6
7 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier intervalo cerrado que se considere. º. Se busca el intervalo donde se cumplan las hipótesis del Tª Bolzano: 4 > 0 4 < 0 3º. Por tanto en el intervalo, se cumplen las hipótesis del Tª de Bolzano, luego:, tal que 0 que equivale a decir que la ecuación 4 tiene una solución en el intervalo,.- Demostrar que la ecuación 5 3 no puede tener más de dos raíces reales. º. Se considera la función continua y derivable en R luego continua y derivable en cualquier intervalo cerrado que se considere. º. Se buscan los intervalos donde se cumplan las hipótesis del Tª Bolzano: 0 3 > 0 < 0 > 0 3º. Por tanto en el intervalo [0,] y [,] se cumplen las hipótesis del Tª de Bolzano, luego: 0,, tal que tiene soluciones en R que equivale a decir que la ecuación 3.- Demuestra que la ecuación con R tiene a lo más una solución en [,]. Para que valor de eiste dicha solución?. º. Se considera la función 3 + continua y derivable en R luego continua y derivable en cualquier intervalo cerrado que se considere. º. Se supone que hay más de solución: hay soluciones,, [,] 0 Luego en el intervalo [, ] se cumplen las hipótesis del Tª Rolle por lo que, [,] 0 que equivale a decir, Veamos que pasa con la función derivada: ±, en contradicción con, Por tanto a lo sumo eiste una solución de la ecuación. 3º. Para que valor de eiste dicha solución?. Se tiene que cumplir el Tª Bolzano en [,]: < 0, 3 + 7
8 Teoremas de continuidad y derivabilidad 4.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier intervalo cerrado que se considere. º. Se busca el intervalo donde se cumplan las hipótesis del Tª Bolzano: 4 > 0 4 < 0 3º. Por tanto en el intervalo, se cumplen las hipótesis del Tª de Bolzano, luego:, tal que 0 que equivale a decir que la ecuación 4 tiene una solución en el intervalo, 5.- Demostrar que la ecuación 5 3 no puede tener más de dos raíces reales. º. Se considera la función continua y derivable en R luego continua y derivable en cualquier intervalo cerrado que se considere. º. Se buscan los intervalos donde se cumplan las hipótesis del Tª Bolzano: 0 3 > 0 < 0 > 0 3º. Por tanto en el intervalo [0,] y [,] se cumplen las hipótesis del Tª de Bolzano, luego: 0,, tal que tiene soluciones en R que equivale a decir que la ecuación 4º. Solo hay : Se supone que hay 3 soluciones:,, R < < 0 En los intervalos [, ] y [, ] se cumplen las hipótesis del Tª Rolle, luego:,, 0 pero que solo tiene una solución real en contradicción con la suposición, por tanto solo hay 6.- La función : [,] R definida por intervalo: toma el mismo valor en los etremos del Encontrar su derivada y comprobar que no se anula nunca. Contradice esto el teorema de Rolle? Si intentamos anular la derivada resulta: 0 0 absurdo! Esto no contradice el teorema de Rolle porque la segunda hipótesis no se verifica: la función no es derivable en todos los puntos del intervalo, en el punto 0 no eiste la derivada como podemos ver calculándola a través del límite: 0 + h 0 h 0 h h 0 h 3 3 h 8
9 Teoremas de continuidad y derivabilidad 7.- Calcula para que la función 9 + cumpla las hipótesis del teorema de Rolle en el intervalo [0, ]. Dónde se cumple la tesis?. Por ser una función polinómica, es continua y derivable en todo R y se cumplen las dos primeras hipótesis. Tercera hipótesis: ±3 La única solución válida es 3 La tesis se cumple: ± 3 3 0,3 8.- Prueba que la función + < Cumple las hipótesis del Tª de Rolle. 5 4 Averigua dónde cumple la tesis. En cada uno de los intervalos es una función polinómica que es continua y derivable en R El único punto dudoso es estudiamos la continuidad y derivabilidad en dicho punto continua en 4 Se cumple la ª hipótesis: es continua en, 4 derivable en + < 5 4 < < < < 4? derivable en Se cumple la ª hipótesis: es continua en, 4 + se cumple la 3ª hipótesis Veamos dónde se verifica la tesis: < < < [,4 La tesis se verifica en 9
10 9.- Sea la función 0 + > 0 Calcula "" y "" para que cumpla las hipótesis del Tª de Lagrange en [, ] Teoremas de continuidad y derivabilidad La función es continua y derivable R 0 R puesto que los trozos lo son luego para que se cumplan las hipótesis del Tª se tiene que cumplir la continuidad y derivabilidad en 0 continua en derivable en > 0 < 0 > 0 0 derivable en Prueba que la función < satisface las hipótesis del teorema del valor medio en el intervalo [0,] y calcula el o los valores vaticinados por el teorema. La función es continua en el intervalo [0,] continua en R (es polinómica) continua en < continua en R continua en > continua en porque < La función es derivable en el intervalo 0, >? derivable en R (es polinómica) derivable en < derivable en R derivable en > derivable en porque El valor o valores que vaticina el teorema del valor medio: < < < ± 0
11 .- Calcula aplicando la regla de L Hôpital:,,, Teoremas de continuidad y derivabilidad,,, ó ô lím 0 ô 0 Las indeterminaciones 0. se transforman en o y se pueden resolver por L Hôpital [0 ó] 0 [ ] ô 0 [ ó] Se ha aplicado la fórmula: [ ] [ ] Otra forma de hacerlo es: ó ô Así: [. ô]. ô + Las indeterminaciones se transforman en o. ô y se pueden resolver por L Hôpital lim ó ô 0. ô ó ô ó ô ó ô ó ô ó ô
12 Teoremas de continuidad y derivabilidad Ejercicios propuestos.- Determina los etremos absolutos de la función :[ 0,8] R.- Sea : R R dada por f ( ) 3. f definida por A. Estudia si cumple las hipótesis del teorema de Rolle en el intervalo [,4] B. Estudia si cumple las hipótesis del teorema de Rolle en el intervalo [,3] C. Si cumple las hipótesis del teorema de Rolle en alguno de los intervalos de los apartados anteriores, determina el punto correspondiente cuya eistencia se afirma en dicho teorema 3.- Demostrar que la ecuación + tiene eactamente dos soluciones en [, ] 4.-Demuestra que la siguiente función nunca tiene dos raíces en el intervalo cerrado [0,] : 3 + a) Si "n" es par entonces el polinomio p no puede tener más de dos raíces reales. b) Si "n" es impar entonces el polinomio p no puede tener más de tres raíces reales. 6.- Demuestra que la ecuación ln 3 tiene al menos una solución real a) Sea f :[,] R la función definida por f ( ) Determina todos los puntos de la gráfica de f en los que la recta tangente a la gráfica de f es paralela a la recta que pasa por los puntos A (, f ( ) ) y B(,f ( )). Cuál de ellos es el predicho? por el Tª de Lagrange en el intervalo [,] b) Considera :[ 0,π ] R f definida por f ( ) + sen. Comprueba si f cumple las hipótesis del Tª y, en caso afirmativo, encuentra dichos valores. 8.- Sea la función: < 0 Sol : a 0 Calcular " a " para que ésta función cumpla las hipótesis del Tª del valor medio de Lagrange en el intervalo, ( Sol : valor vaticinado, + ) Sea la función. 0 a) Para que valor de " " será continua en 0? b) Se puede aplicar el Tª de Lagrange en [,]? Se puede aplicar el teorema de Rolle a la función f ( ) en el intervalo [0, 4]? Razónalo a 3 si < 4.- Calcula a y b para que f ( ) cumpla las hipótesis del teorema del + 0 b si 4 valor medio en el intervalo [, 6]. Dónde cumple la tesis? (Solución: a ; b 9; c 9 ) + n si <.- Se considera la función f ( ) 3 + m si a. Determina y para que se cumplan las hipótesis del teorema del valor medio en [-4, ] b. Halla los puntos del intervalo cuya eistencia garantiza el teorema. 3. a) 0 (Solución /6 ) b) (Solución: ) c) (Solución: )
Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1
Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE
TEORMAS DE WEIERSTRASS, BOLZANO, ROLLE Y LAGRANGE PROBLEMAS RESUELTOS + Dada F() =, escriba la ecuación de la secante a F que une los puntos (, F( )) y 4 (, F()). Eiste un punto c en el intervalo [, ]
Teoría Tema 3 Teoremas de derivabilidad
página 1/10 Teoría Tema 3 Teoremas de derivabilidad Índice de contenido Teorema de Rolle...2 Teorema del valor medio de Lagrange (o de los incrementos finitos)...4 Teorema de Cauchy...6 Regla de L'Hôpital...8
Tema 10 Aplicaciones de la derivada Matemáticas II 2º Bachillerato 1. ( x) 2x x. Hay dos puntos: (1, 2) y (1, 2)
Tema 0 Aplicaciones de la derivada Matemáticas II º Bachillerato TEMA 0 APLICACIONES DE LA DERIVADA RECTA TANGENTE Escribe e 0 EJERCICIO : la ecuación de la recta tangente a la curva f en 0. Ordenada del
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)
x = 0, la recta tangente a la gráfica de f (x)
CÁLCULO DIFERENCIAL JUNIO 004 1. Sea la función e y = estúdiese su monotonía, etremos relativos y asíntotas. (Solución: Es derivable en todos los puntos ecepto en =0. Creciente si < 0. No tiene asíntotas
Estudio de funciones mediante límites y derivadas
Estudio de funciones mediante límites y derivadas Observación: La mayoría de estos ejercicios se han propuesto en las pruebas de Selectividad, en los distintos distritos universitarios españoles El precio
DERIVADAS. TÉCNICAS DE DERIVACIÓN
DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES
CÁLCULO DE PRIMITIVAS Y ÁREAS POR INTEGRALES RELACIÓN DE PROBLEMAS DE SELECTIVIDAD º DE BACHILLERATO CIENCIAS DEPARTAMENTO DE MATEMÁTICAS COLEGIO MARAVILLAS TERESA GONZÁLEZ GÓMEZ .-Hallar una primitiva
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES
ESTUDIO Y REPRESENTACIÓN GRÁFICA DE FUNCIONES 1. Sea f : (0, + ) definida como f () = Ln a) Probar que la función derivada f es decreciente en todo su dominio. b) Determinar los intervalos de crecimiento
x + x 2 +1 = 1 1 = 0 = lím
UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado
8. y = Solución: x 4. 9. y = 3 5x. Solución: y' = 5 3 5x L 3. 10. y = Solución: 4 4 (5x) 3. 11. y = Solución: (x 2 + 1) 2. 12.
7 Cálculo de derivadas. Reglas de derivación. Tabla de derivadas Aplica la teoría Deriva en función de :. y = 8. y = 5 3 5 4. y = ( ) 5 0( ) 4 9. y = 3 5 5 3 5 L 3 3. y = 7 + 3 4. y = e e 5. y = 7 7 +
PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD
PROBLEMAS DE CONTINUIDAD Y DERIVABILIDAD Considera la función f(x)= x 3 + px donde p es un número real. Escribir (en función de p) la ecuación de la recta tangente a la grafica f(x) en el punto de abscisa
Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.
UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4
APLICACIONES DE LAS DERIVADAS
0 APLICACIONES DE LAS DERIVADAS Página 8 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
EXAMEN DE MATEMATICAS II 2ª ENSAYO (1) Apellidos: Nombre:
EXAMEN DE MATEMATICAS II ª ENSAYO () Apellidos: Nombre: Curso: º Grupo: A Día: CURSO 05 Instrucciones: a) Duración: HORA y 0 MINUTOS. b) Debes elegir entre realizar únicamente los cuatro ejercicios de
DERIVABILIDAD. 1+x 2. para x [1, 3]
1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
TEMA 2: CONTINUIDAD DE FUNCIONES
TEMA : CONTINUIDAD DE FUNCIONES 1. Continuidad de una función en un punto Entre las primeras propiedades de las funciones aparece el concepto de continuidad. Durante mucho tiempo fue asumida como una idea
Teoría Tema 9 Representación gráfica de funciones
página 1/24 Teoría Tema 9 Representación gráfica de funciones Índice de contenido Gráficas de funciones...2 Gráfica de una parábola...3 Gráfica de un polinomio de grado 3...6 Gráfica de un cociente de
DERIVADAS. TÉCNICAS DE DERIVACIÓN
DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 55 REFLEXIONA Y RESUELVE Tangentes a una curva y f ( 5 5 Halla, mirando la gráfica y las rectas trazadas, f'(, f'( y f'(. f'( 0; f'( ; f'( Di otros tres puntos
TEMA 4: DERIVADAS. En símbolos, la pendiente de la curva en P = lim Q P (pendiente de P Q).
TEMA 4: DERIVADAS 1. La derivada de una función. Reglas de derivación 1.1. La pendiente de una curva. La pendiente de una curva en un punto P es una medida de la inclinación de la curva en ese punto. Si
Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca
Ejercicio: 4. 4. El intervalo abierto (,) es el conjunto de los números reales que verifican: a). b) < . - Intervalo abierto (a,b) al conjunto de los números reales, a < < b. 4. El intervalo
1. Calcula la tasa de variación media de la función y = x 2 +x-3 en los intervalos: a) [- 1,0], b) [0,2], c) [2,3]. Sol: a) 0; b) 3; c) 6
ejerciciosyeamenes.com PROBLEMAS DE DERIVADAS 1. Calcula la tasa de variación media de la función +- en los intervalos: a) [- 1,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación media
Tema 1. Cálculo diferencial
Tema 1. Cálculo diferencial 1 / 57 Una función es una herramienta mediante la que expresamos la relación entre una causa (variable independiente) y un efecto (variable dependiente). Las funciones nos permiten
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones.
Resumen Tema 3: Derivadas. Concepto. Propiedades. Cálculo de derivadas. Aplicaciones. 0.. Concepto de derivada. Definición. Sea f : S R R, a (b, c) S. Decimos que f es derivable en a si existe: f(x) f(a)
www.academiacae.com!!info@academiacae.com!!91.501.36.88!!28007!madrid!
CONTINUIDAD Y DERIVABILIDAD. TEOREMAS Y APLICACIONES DE LAS DERIVADAS 1.- junio 1994 Se sabe que y = f (x) e y = g (x) son dos curvas crecientes en x = a. Analícese si la curva y = f(x) g(x) ha de ser,
Profesor: Rafa González Jiménez. Instituto Santa Eulalia ÍNDICE
TEMA 5: DERIVADAS. APLICACIONES. ÍNDICE 5..- Derivada de una función en un punto. 5...- Tasa de variación media. Interpretación geométrica. 5..2.- Tasa de variación instantánea. Derivada de una función
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.5: Aplicaciones de la derivada. Máximos y mínimos (absolutos) de una función. Sea f una función definida en un conjunto I que contiene un punto
Las superficies serán: Tapa y superficie lateral S 1 = ( x 2 +4xy ) cm 2 Superficie de la base: S 2 = x 2 cm 2
MATEMÁTICAS II, º BACHILLERATO F.- Se desea construir una caja cerrada de base cuadrada con una capacidad de 8 cm. Para la tapa y la superficie lateral se usa un material que cuesta /cm y para la base
ejerciciosyexamenes.com
ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de funciones. Extremos
(Apuntes en revisión para orientar el aprendizaje) Capítulo IV Variación de unciones. Etremos INTRODUCCIÓN En múltiples problemas de ingeniería se requiere optimizar una o varias de las variables que intervienen
Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim
Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim
Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy
Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las
Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:
Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0
Matemáticas aplicadas a las CC.SS. II
Tema Nº 8 Aplicaciones de las Derivadas ( 17! Determina las dimensiones de una ventana rectangular que permita pasar la máima cantidad de luz, sabiendo que su marco debe medir 4 m. ---oooo--- La ventana
3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.
DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.
III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos
III BLOQUE III ANÁLISIS Página 9 Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y etremos de la función y =, y represéntala gráficamente. Asíntotas: Vertical: = Posición: = @ 8 8 +
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS
Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite
Problemas Tema 2 Enunciados de problemas de Límite y Continuidad
página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en
Herramientas digitales de auto-aprendizaje para Matemáticas
Herramientas digitales de auto-aprendizaje para Matemáticas, Grupo de Innovación Didáctica Departamento de Matemáticas Universidad de Extremadura Índice la cadena Tabla de Dada una función f : D R R,
APLICACIONES DE LAS DERIVADAS
7 APLICACIONES DE LAS DERIVADAS Página 67 REFLEXIONA Y RESUELVE Relación del crecimiento con el signo de la primera derivada Analiza la curva siguiente: f decrece f' < 0 f crece f' > 0 f decrece f' < 0
Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales
Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=
Aplicaciones de las Derivadas
Tema 4 Aplicaciones de las Derivadas 4.1 Introducción Repasaremos en este Tema algunas de las aplicaciones fundamentales de las derivadas. Muchas de ellas son ya conocidas por tratarse de conceptos explicados
4.2. Continuidad de una función en un punto. (A) Una función f es continua en un punto x=a, cuando se cumplen las siguientes condiciones:
4. CONTINUIDAD DE UNA FUNCIÓN. 4.. Noción intuitiva de continuidad de una unción en un punto. La mayor parte de las unciones que manejamos a nivel elemental, presentan en sus gráicas una propiedad característica
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS
REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo
a) p = ½. b) p = 0. c) Ninguna de las anteriores. Solución: Para que sea continua en x = 0 debe cumplirse que lím
Matemáticas Empresariales I PREGUNTAS DE TIPO TEST DERIVADAS Y APLICACIONES si 0. La función f ( ) sen es continua en = 0 si: p si 0 a) p = ½. b) p = 0. Para que sea continua en = 0 debe cumplirse que
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 29-OCTUBRE-1996. (1) 2x 3 > 4.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E1300, 9-OCTUBRE-199 1) 3 > 4. +1 ) Sea la función 3 si 1 a + b si 1 . Encontrar los valores de a, b, c para que la función
Curso Propedéutico de Cálculo Sesión 2: Límites y Continuidad
y Laterales Curso Propedéutico de Cálculo Sesión 2: y Joaquín Ortega Sánchez Centro de Investigación en Matemáticas, CIMAT Guanajuato, Gto., Mexico y Esquema Laterales 1 Laterales 2 y Esquema Laterales
DERIVACIÓN DE FUNCIONES DE UNA VARIABLE
DERIVACIÓN DE FUNCIONES DE UNA VARIABLE Derivada de una función en un punto. Función derivada. Sea f () una función de una variable definida en un intervalo abierto (a, b) y sea (a, b). Se dice que f es
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-) = f
RESUMEN DE DERIVADAS. TVM = f(x) = lim 1+2h+h 2-1. = lim 1+h) lim. = 0 = lim h2+h)
RESUMEN DE DERIVADAS Tasa de variación Media. Definición: se llama tasa de variación media (TVM) de una función f(x) entre los valores x 1 y x 2 al cociente entre el incremento que experimenta la variable
Aplicaciones de las derivadas
Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función
Cálculo Diferencial e Integral - Recta tangente y velocidad. Farith J. Briceño N.
Cálculo Diferencial e Integral - Recta tangente y velocidad. Farit J. Briceño N. Objetivos a cubrir Código : MAT-CDI.7 Problema: Recta tangente a una curva en un punto 0. Problema: Velocidad promedio y
2.1 CONTINUIDAD EN UN PUNTO 2.2 CONTINUIDAD DE FUNCIONES CONOCIDAS 2.3 CONTINUIDAD EN OPERACIONES CON
Cap. Continuidad de funciones.1 CONTINUIDAD EN UN PUNTO. CONTINUIDAD DE FUNCIONES CONOCIDAS.3 CONTINUIDAD EN OPERACIONES CON FUNCIONES.4 CONTINUIDAD EN UN INTERVALO.5 TEOREMA DEL VALOR INTERMEDIO OBJETIVOS:
Es evidente la continuidad en En el punto, se tiene:
Tema 3 Continuidad Ejercicios Resueltos Ejercicio 1 Estudia la continuidad de la función La función puede expresarse como Para representarla basta considerar dos arcos de parábola: Es evidente la continuidad
3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES
Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 1 3. DERIVACIÓN DE FUNCIONES DE UNA VARIABLE 3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES 3.3.1. Teorema de Rolle Si f es continua en [a,
-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.
EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta
CÁLCULO DIFERENCIAL 9. UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS
CÁLCULO DIFERENCIAL 9 UNIVERSIDAD CARLOS III DE MADRID Departamento de Matemáticas MATEMÁTICAS SOLUCIONES DE LA COLECCIÓN DE PROBLEMAS - CAPÍTULO 3 CURSO PREPARATORIO DE LA PRUEBA DE ACCESO A LA UNIVERSIDAD
RESUMEN TEÓRICO DE CLASES
Página 1 RESUMEN TEÓRICO DE CLASES Página 2 Tema 1. Inecuaciones Las inecuaciones son desigualdades algebraicas en la que sus dos miembros se relacionan por uno de estos signos: >; ;
Límites y continuidad
Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 6 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
Unidad 10 Continuidad de las funciones
Unidad 10 Continuidad de las funciones 4 SOLUCIONES 1. La continuidad queda: a) La continuidad en x = 0. No es continua en ese punto al no coincidir los límites laterales. b) La continuidad en x = 3. 2.
Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.
TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades
Aplicaciones de la derivada
CAPÍTULO 8 Aplicaciones de la derivada 8. Máimos mínimos locales Si f. 0 / f./ para cada cerca de 0, es decir, en un intervalo abierto que contenga a 0, diremos que f alcanza un máimo local o un máimo
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU
EJERCICIOS DE ANÁLISIS PRIMERA EVALUACIÓN - MATEMÁTICAS II 2 BACH A Soluciones en Ejercicios resueltos de la PAU Problema 1 (2 puntos) De una función derivable f (x) se conoce que pasa por el punto A(-1,
JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.
Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones
a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada
Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8
Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)
Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )
en un punto determinado. Esto es, qué le pasa a f (x) cuando varía x en los alrededores de un punto a. , su derivada en el punto x = 3 es
UAH Derivadas Tema 4 DERIVADAS Derivada de una función en un punto Una función f ( es derivable en el punto a si f ( a ) eiste el ite: Este ite se denota por f (a), y eiste cuando resulta un número real
Propiedades de las funciones en un intervalo
Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
Funciones de varias variables
Capítulo Funciones de varias variables Problema Sea f : IR 2 IR definida por: 2 y 2 f, y) = e +y 2 > y, y. i) Estudiar la continuidad de f en IR 2. ii) Definimos g : IR IR como g) = f, ). Analizar la derivabilidad
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.
PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD = 3 2
UNIDAD 2: LÍMITES DE FUNCIONES.CONTINUIDAD 1.- Límites en el Infinito: lim x + f(x) = L Se dice que el límite de f (x) cuando x tiende a + es L ϵ Ɽ, si podemos hacer que f(x) se aproxime a L tanto como
Gráficamente: una función es continua en un punto si en dicho punto su gráfica no se rompe. Función continua en x = 0 Función no continua en x = 0
Funciones continuas Funciones continuas Continuidad de una función Si x 0 es un número, la función f(x) es continua en este punto si el límite de la función en ese punto coincide con el valor de la función
Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA
Fuente: PreUniversitario Pedro de Valdivia Guía Práctica N 11 ECUACIÓN DE SEGUNDO GRADO Y FUNCIÓN CUADRÁTICA Una ecuación de segundo grado es una ecuación susceptible de llevar a la forma a + b + c = 0,
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
Unidad didáctica. Ecuaciones, inecuaciones y sistemas de ecuaciones e inecuaciones CONCEPTOS ECUACIONES Una ecuación es una igualdad entre dos epresiones en las que aparece una o varias incógnitas. En
f (x) (1+[f (x)] 2 ) 3 2 κ(x) =
MATEMÁTICAS II - EXAMEN PRIMER PARCIAL - 4/11/11 Grado: Ing. Electrónica Rob. y Mec. Ing. Energía Ing. Organización Ind. Nombre y Apellidos: Ejercicio 1. La curvatura de una función f en un punto x viene
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS
SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación
RESOLUCIÓN DE ACTIVIDADES
RESOLUCIÓN DE ACTIVIDADES Actividades iniciales. Representa ráficamente la siuiente función y estudia su continuidad en = : = = f() = f() En = la función no es continua.. Puedes definir la función en alún
Función Real de variable Real. Definiciones
Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor
x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4
CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2
FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.
Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 2 ) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 01 (Modelo ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Septiembre 01 ['5 puntos] Un alambre de 10 metros de longitud se divide en dos trozos.
Aplicación de la Derivada
Aplicación de la Derivada Etremos locales. Teorema del valor medio Habilidades 1.Define el concepto de etremos locales 2.Define el Teorema del valor etremo. Ilustra su significado geométricamente. 3.Define
Límites y continuidad
Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces
Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable
Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso
Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS
ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN
BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE. ESTUDIO DE LA GRÁFICA DE UNA FUNCIÓN Crecimiento y decrecimiento. Extremos absolutos y relativos. Concavidad y convexidad. Asíntotas.
En las figuras anteriores vemos algunos casos (no todos) que pueden presentarse al pasar por un punto x 0. (en este caso, para x 0 =2)
UNIVERSIDAD DEL VALLE PROFESOR CARLOS IVAN RESTREPO CONTINUIDAD. 1.- Continuidad en un punto. Continuidad lateral..- Continuidad en un intervalo. 3.- Operaciones con funciones continuas 4.- Discontinuidades.
en el intervalo - 1-cos(x) 2 si x > 0 sen(x)
. [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..
Unidad 12 Aplicaciones de las derivadas
Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 001 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio 1, Opción A Junio, Ejercicio 1, Opción B Reserva 1, Ejercicio, Opción A Reserva 1, Ejercicio, Opción B Reserva,