3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES"

Transcripción

1 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM DERIVACIÓN DE FUNCIONES DE UNA VARIABLE 3.3. TEOREMAS DE VALOR MEDIO Y APLICACIONES Teorema de Rolle Si f es continua en [a, b], derivable en (a, b) y f(a) = f(b), entonces eiste α (a, b) tal que f (α) = 0. Demostración: Puesto que f es continua en el intervalo cerrado [a, b], se puede aplicar el teorema de Weierstrass (2.3.14) y alcanza el máimo M y el mínimo m absolutos en dicho intervalo. Si M = m entonces f es constante en [a, b] y f () = 0 para todo (a, b). Si M m, alguno de ellos lo alcanza en el interior del intervalo (a, b). Sea, por ejemplo, α (a, b) tal que f(α) = M. Puesto que este máimo absoluto, al alcanzarlo en el interior del intervalo, es también relativo, entonces f (α) = 0. y M f(a) = f(b) f O a α b Interpretación geométrica: El teorema de Rolle afirma que la gráfica tiene un punto con tangente horizontal (derivada nula). Sin embargo, no asegura que sea único: la gráfica de la figura tiene tres puntos con tangente horizontal (derivada nula). y f(a) = f(b) O a α 1 α 2 α 3 f b Ejemplos Aplica, si es posible, el teorema de Rolle a las siguientes funciones en el intervalo que se indica: (a) f() = en [0, 4] (b) f() = 3 ( 1) 2 en [0, 2] Teorema de Cauchy Si f y g son funciones continuas en [a, b] y derivables en (a, b), entonces eiste α (a, b) tal que: [f(b) f(a)] g (α) = [g(b) g(a)] f (α) Además, si g(a) g(b) y las derivadas de f y g no se anulan simultáneamente en ningún punto de (a, b), se puede escribir: f(b) f(a) g(b) g(a) = f (α) g (α) Demostración: Se considera la función F definida por: F () = [f(b) f(a)] g() [g(b) g(a)] f() que es continua en [a, b], derivable en (a, b) y tal que F (a) = F (b) = f(b)g(a) f(a)g(b), por lo que se le puede aplicar el teorema de Rolle y eiste α (a, b) tal que: F (α) = [f(b) f(a)] g (α) [g(b) g(a)] f (α) = 0 = [f(b) f(a)] g (α) = [g(b) g(a)] f (α) como se quería demostrar Ejemplo Aplica, si es posible, el teorema de Cauchy a f() = 2 1 y g() = 3 en el intervalo [1, 3].

2 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Teorema de valor medio Si f es continua en [a, b] y derivable en (a, b), entonces eiste α (a, b) tal que: f(b) f(a) = f (α)(b a) Demostración: Basta aplicar el teorema de Cauchy a f y g() =. Interpretación geométrica: el teorema asegura que eiste un punto de la gráfica donde la pendiente de la tangente es: f f(b) f(a) (α) = = tan θ b a es decir, donde la tangente es paralela a la secante que pasa por los etremos de la gráfica. y O θ a α f b Corolario 1 Si f es derivable en el intervalo I y f () = 0 para todo I, entonces f es constante en I. Demostración: Si, y I, < y, son dos puntos cualesquiera del intervalo, aplicando el teorema de valor medio a la función f en el intervalo [, y], eiste α (, y) tal que: f(y) f() = f (α)(y ) = 0(y ) = 0 es decir, f() = f(y), y esto para cualesquiera, y I. Por tanto, f es constante en (a, b) Corolario 2 Si f y g son derivables en I y f () = g () para todo I, entonces f g es constante en I. Demostración: La función f g es derivable en I y (f g) () = f () g () = 0, para todo I. Por tanto, aplicando el corolario 1, f g es constante en I Regla de L Hôpital Sean f y g dos funciones derivables en un entorno reducido de a (que puede ser finito o infinito) con g () 0 cerca de a. Si f() y g() son simultáneamente 0 o ±, entonces, a a f() a g() = ( 0 0 o ) = a f () g () siempre que este último límite eista. Demostración: Sólo demostraremos el caso 0/0. Definiendo f(a) = g(a) = 0, las funciones f y g verifican las hipótesis del teorema de Cauchy en el intervalo I a = [a, ] o I a = [, a], según proceda, y aplicándolo: ( ) f() 0 a g() = f() f(a) = 0 a g() g(a) = f (α) a g α I (α) = f (α) α a g (α) = f () a g () a ya que α a cuando a Ejemplos 1. Halla, aplicando la regla de L Hôpital, los siguiente límites: (a) tan 3 (b) ln tan 2 ln tan (c) ln 1 ( + 1 ) 1 (d) cot (e) (1 + )1/ (f) +

3 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM En el cálculo de los dos siguientes límites se ha aplicado incorrectamente la regla de L Hôpital: 2 sin ( 2 + sin = ( ) sin 1 sin = ) H= 2 cos 2 + cos H = 2 sin 1 cos 1 cos H = sin sin = 1 = 0 cos 1 1 = cos 1 no eiste Encuentra el motivo de su mala aplicación, y hállalos correctamente sin aplicar la regla de L Hôpital Aproimación de funciones por polinomios. Polinomio de Taylor Los polinomios son funciones muy sencillas y apropiadas para el cálculo numérico. Este es uno de los motivos por los que es interesante desarrollar métodos que permitan aproimar funciones arbitrarias mediante polinomios. Con el objetivo inicial de aproimar una función f por un polinomio P alrededor de un punto a, parece lógico pedir que en el punto coincidan sus valores y los de sus primeras derivadas hasta el mayor orden posible. Se trata, por tanto, de encontrar el polinomio: P () = a 0 + a 1 ( a) + a 2 ( a) a n ( a) n que tenga el mayor número posible de derivadas iguales a las de f en a. Imponiendo estas condiciones se obtienen los coeficientes del polinomio: P () = a 0 + a 1 ( a) + a 2 ( a) 2 + a 3 ( a) a n ( a) n = P (a) = a 0 = f(a) P () = a 1 + 2a 2 ( a) + 3a 3 ( a) na n ( a) n 1 = P (a) = a 1 = f (a) P () = 2a a 3 ( a) n(n 1)a n ( a) n 2 = P (a) = 2a 2 = f (a) P () = 3!a n(n 1)(n 2)a n ( a) n 3 = P (a) = 3!a 3 = f (a). P n) () = n!a n = P n) (a) = n!a n = f n) (a) de donde: a 0 = f(a) a 1 = f (a) a 2 = f (a) 2! a 3 = f (a) 3!... a n = f n) (a) n! Si f es una función derivable n veces en a, se llama polinomio de Taylor de orden n de la función f en a al polinomio: P a n () = f(a) + f (a)( a) + f (a) 2! ( a) f n) (a) ( a) n = n! La diferencia entre la función y el polinomio se llama término complementario: que, obviamente, verifica: T n () = f() P a n () T n (a) = T n(a) =... = Tn n) (a) = 0 y Tn n+1) () = f n+1) () n k=0 f k) (a) ( a) k k! siempre que f sea derivable n + 1 veces en a. Aplicando reiteradamente el teorema de Cauchy a T n () y g() = ( a) n+1, se obtiene: T n () ( a) n+1 = T n() T n (a) = T n(α 1 ) g() g(a) g (α 1 ) = T n(α 1 ) T n(a) g (α 1 ) g (a) = T n (α 2 ) g (α 2 ) = =... = T n n) (α n ) g n) (α n ) = T n n) (α n ) Tn n) (a) g n) (α n ) g n) (a) = T n n+1) (α) g n+1) (α) = f n+1) (α) (n + 1)!

4 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM. 4 donde α está comprendido entre a y. Despejando, se obtiene el término complementario o resto de Lagrange: T n () = f n+1) (α) (n + 1)! ( a)n+1 con α entre a y Al sumar el polinomio de Taylor con el término complementario, se obtiene la fórmula de Taylor: f() = f(a) + f (a)( a) + f (a) ( a) f n) (a) ( a) n + f n+1) (α) ( a)n+1 } 2! {{ n! } (n + 1)! }{{} polinomio de Taylor resto de Lagrange con α entre a y. En el caso particular a = 0, la fórmula de Taylor se llama fórmula de McLaurin: f() = f(0) + f (0) + f (0) f n) (0) n + f n+1) (α) } 2! {{ n! } (n + 1)! n+1 }{{} polinomio de McLaurin resto de Lagrange con α entre 0 y. Observación: El polinomio de Taylor aproima a la función en un entorno del punto. La aproimación es mejor cuánto más próimos estemos del punto Ejemplos 1. Halla el polinomio de Taylor de orden 2 de f() = tan en = π/4. Úsalo para hallar un valor aproimado de tan π 3 y acota el error cometido. 2. Halla el polinomio de McLaurin de orden 3 de f() = e. Úsalo para hallar un valor aproimado del número e y acota el error cometido. PROBLEMAS RESUELTOS 1. Estudia si se puede aplicar el teorema de Rolle a las siguientes funciones en los intervalos que se indican. En caso afirmativo, encuentra el punto cuya eistencia asegura el teorema. { [ (a) f() =, en [ 1, 1] (b) f() = sin 2, en π 2, π ] si 0 (c) f() = 2 2, en [ 1, 1] si > 0 2. Demuestra que la ecuación = 0 no tiene más de dos raíces reales distintas. 3. Comprueba que las siguientes funciones satisfacen las condiciones del teorema de valor medio en el intervalo que se indica, y encuentra el punto cuya eistencia asegura el teorema: (a) f() =, en [1, 4] (b) f() = 1 [0, + 1, en [0, 2] (c) f() = cos, en π ] 2 ] 4. Halla el límite: [(1 + ) Halla los siguientes límites: (a) tan sin (b) ln(e 1) + ln (c) π/2 cosec tan (d) cosh cos 2 e α cos α (e) e β cos β (f) 1 ln + 1 (β 0)

5 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Halla los siguientes límites: ( 1 (a) 1 ln 1 ) 1 (b) ( tan a + tan b ) (c) (1+) 1 ( arcsin (d) ) 1/ 2 7. Para la función f() = { e 1/2, si 0 0, si = 0 (a) Obtén f y f. (b) Halla los intervalos de crecimiento y decrecimiento de f y f. (c) Dibuja su gráfica. 8. Obtén el desarrollo de McLaurin de orden 3 de la función f() = sin. 9. Justifica y evalúa el error de la siguiente relación: , para < Halla los tres primeros términos del desarrollo de Taylor de: (a) f() = 1, en = 1 (b) g() = ln cos, en = π Halla el polinomio de Taylor de orden 4 de f() = ln en un entorno del punto = 1. Halla una cota del error cometido al hallar ln 3 2 usando dicho polinomio. 12. Halla el polinomio de Taylor de grado 4 en un entorno de = 1 de la función f() = 2+1 (+1). CUESTIONES 1. Contesta razonadamente si son ciertas o falsas las siguientes afirmaciones: (a) Si f es continua en [a, b] y f(a) = f(b) entonces se anula su derivada en un punto interior del intervalo. (b) Si f es continua y derivable en (a, b) con f(a) = f(b), entonces su derivada se anula en un punto interior del intervalo. (c) Si f es continua en [a, b], derivable en (a, b), y su derivada se anula en un α (a, b), entonces f(a) = f(b). (d) Si f es continua en [a, b], derivable en (a, b) y f(a) f(b), entonces f () 0 para todo (a, b). (e) Si f es continua en [a, b], derivable en (a, b), y f () 0 para todo (a, b), entonces f(a) f(b). (f) El límite de una función coincide con el límite de su derivada. (g) Una función coincide con su polinomio de Taylor en las proimidades del punto. 2. Sea f una función dos veces derivable en [a, b] y tal que f(a) = f(c) = f(b) para cierto c (a, b). Se puede asegurar que se anula su derivada segunda en dicho intervalo? 3. Demuestra que arctan sin 1 + cos = 2, para todo ( π 2, π ) Siendo f() = 3 + a 2 + b + c, halla el siguiente límite: + [ f( + 1) 3 f()] 3

6 Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM Demuestra que si f admite derivada segunda, entonces: (a) f () = h 0 f( + h) f( h) 2h (b) f () = h 0 f( + h) + f( h) 2f() h 2 PROBLEMAS PROPUESTOS 1. Estudia si se puede aplicar el teorema de Rolle a las siguientes funciones en los intervalos que se indican. En caso afirmativo, encuentra el punto cuya eistencia asegura el teorema. (a) f() =, en [1, 2] (b) f() = 3 1, en [ 8, 8] (c) f() = 2 (a + b) + ab, en [a, b] 2. Demuestra que la ecuación = 0 tiene eactamente una raíz real. 3. Encuentra valores de a, b y c para que la siguiente función satisfaga el teorema de valor medio. 3, si = 0 f() = a, si 0 < < 1 b + c, si Comprueba que las siguientes funciones satisfacen las condiciones del teorema de valor medio en el intervalo que se indica, y encuentra el punto cuya eistencia asegura el teorema: (a) f() = , en [0, 2] (b) f() = 3 +, en [1, 2] (c) f() = 4 + 2, en [ 1, 2] 5. Demuestra las desigualdades: (a) cos cos y y (b) tan tan y y, con π 2 <, y < π 2 6. Demuestra que cuando < 1 se cumple que: arctan arctan = π 4 7. Halla los siguientes límites: (a) e sin 1 (b) sin a sin b (c) tan 3 π/2 tan (d) cos(sin ) cos 4 8. Halla los siguientes límites: ( 1 (a) sin 1 ) 1 ( (b) + 1/ ln (c) 1 + r (d) (cotan ) + ) sin cos a b 9. Halla valores de a y b para que: 2 2 = Halla las dos primeras derivadas, en = 0, de la función: { sin f() =, si 0 1, si = Halla e a partir del polinomio de Taylor de orden 3 de la función f() = en = 1, y acota el error cometido. 12. Halla 3 30 a partir del polinomio de Taylor de orden 2 de f() = 3 en un entorno del punto = 27, y acota el error cometido.

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable

Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística. Cálculo diferencial de una variable Universidad Politécnica de Cartagena Departamento de Matemática Aplicada y Estadística Cálculo diferencial de una variable. Calcula el dominio máimo de las siguientes funciones. Determina en cada caso

Más detalles

DERIVABILIDAD. 1+x 2. para x [1, 3]

DERIVABILIDAD. 1+x 2. para x [1, 3] 1 DERIVABILIDAD 1. Definir derivada y derivadas laterales de una función en un punto. Probar que la función f es derivable en =1 y que la derivada lateral por la derecha en =0 es infinito. para [0, 1)

Más detalles

Cálculo Infinitesimal: grupo piloto

Cálculo Infinitesimal: grupo piloto Tema : La derivada. Cálculo Infinitesimal: grupo piloto Curso 6/7 A. Objetivos. Al finalizar el tema, los estudiantes deberán ser capaces de: Calcular la derivada de una función utilizando la definición

Más detalles

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento.

3.3 Propiedades locales de una función derivable: continuidad, crecimiento y decrecimiento. DERIVADAS. Función derivable en un punto. laterales. Interpretación geométrica de la derivada. Ecuaciones de las rectas tangente normal a la gráfica de una función en un punto.. Concepto de función derivada.

Más detalles

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo.

Criterio 1: Sea f una función derivable en (a,b). f es estrictamente creciente en el intervalo abierto (a, b) si f es positiva en dicho intervalo. UNIDAD. APLICACIONES DE LAS DERIVADAS.. Información etraída de la primera derivada.. Información etraída de la segunda derivada.. Derivabilidad en intervalos: Teorema de Rolle, del valor medio y Caucy..4

Más detalles

ejerciciosyexamenes.com

ejerciciosyexamenes.com ejerciciosyeamenes.com Eamen de derivadas 1. Razona la verdad o falsedad de las siguientes afirmaciones: a) f() toma todos los valores entre f(a) y f(b), es continua? b) Si f'() > 0 y g'() > 0 en [a,b]

Más detalles

Propiedades de las funciones en un intervalo

Propiedades de las funciones en un intervalo Propiedades de las funciones en un intervalo Teorema de Rolle: si una función es continua y derivable en un intervalo y toma valores iguales en sus etremos, eiste un punto donde la derivada primera se

Más detalles

Boletín II. Cálculo diferencial de funciones de una variable

Boletín II. Cálculo diferencial de funciones de una variable CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. (NUEVO) Utiliza la definición de derivada para demostrar que f () = 10 para 5 2. ( ) sin() 2. Sea arctan. Calcula

Más detalles

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a):

(x a) f (n) (a) Los polinomios de Taylor en el punto a = 0, suelen denominarse polinomios de McLaurin. n,a(a) = f (k) (a): 0 Matemáticas I : Cálculo diferencial en IR Tema 0 Polinomios de Taylor Hemos visto el uso de la derivada como aproimación de la función (la recta tangente) y como indicadora del comportamiento de la función

Más detalles

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0.

PROPIEDADES GLOBALES DE LAS FUNCIONES. =, para x 0. PROPIEDADES GLOBALES DE LAS FUNCIONES Ejercicio. Sea f: R R la función definida por f ( ) Ln( + ), siendo Ln la función logaritmo neperiano. (a) [ punto] Determina los intervalos de crecimiento y decrecimiento

Más detalles

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid

Derivadas. Jesús García de Jalón de la Fuente. IES Ramiro de Maeztu Madrid Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta tangente a una curva Recta

Más detalles

Soluciones del Segundo Parcial 22 de diciembre de 2015

Soluciones del Segundo Parcial 22 de diciembre de 2015 Grado M+I Curso 2015-2016 Apellidos: Nombre: Cálculo I Soluciones del Segundo Parcial 22 de diciembre de 2015 Matemática Aplicada ETSIINF-UPM Nota: /10 Parte 1. Teoría (2 puntos). 1. Enuncia el teorema

Más detalles

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT

ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT ENGINYERIA TÈCNICA INDUSTRIAL: ELECTRICITAT CÀLCUL CURSO 007/08 Profesor: Juan Alberto Rodríguez Velázquez http://deim.urv.cat/ jarodriguez/ Departament d Enginyeria Informàtica i Matemàtiques PROGRAMA

Más detalles

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización.

Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. TEMA 1 Límites de funciones. Continuidad de funciones. Derivabilidad. Propiedades de las funciones derivables. Optimización. Límite finito en un punto: Consideremos una función f definida en las proimidades

Más detalles

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales.

Como todo máximo o mínimo absoluto es también local (relativo), siempre que hablemos de máximos o mínimos, consideraremos que son locales. TEOREMAS BÁSICOS DEL CÁLCULO DIFERENCIAL. Cuando una función es continua en un intervalo cerrado [ a, b ] alcanza su máimo y su mínimo absolutos en puntos c y c, respectivamente, de dico intervalo. Esto

Más detalles

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1

Ejercicios resueltos. 4 continua en R luego continua en cualquier. , [ 1,1] = 0 que equivale a decir 1,1 Teoremas de continuidad y derivabilidad Ejercicios resueltos.- Demostrar que la siguiente ecuación tiene una solución en el intervalo, : 4 º. Se considera la función 4 continua en R luego continua en cualquier

Más detalles

Aplicación de la Derivada

Aplicación de la Derivada Aplicación de la Derivada Etremos locales. Teorema del valor medio Habilidades 1.Define el concepto de etremos locales 2.Define el Teorema del valor etremo. Ilustra su significado geométricamente. 3.Define

Más detalles

Matemática I (BUC) - Cálculo I

Matemática I (BUC) - Cálculo I Matemática I (BUC) - Cálculo I Práctica 5: DERIVADAS Matemática I (BUC) / Cálculo I.. Calcular la derivada en el punto indicado, aplicando la definición: + 5 en ln( + ) en - + 7 en en. Calcular la recta

Más detalles

Cálculo Diferencial de una Variable

Cálculo Diferencial de una Variable Departamento de Matemática Aplicada Universitat Politècnica de València, España Fundamentos Matemáticos para la Ingenieria Civil Esquema Esquema de la exposición Definición. Interpretación geométrica de

Más detalles

III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos

III BLOQUE III ANÁLISIS. Página Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y extremos III BLOQUE III ANÁLISIS Página 9 Estudia las asíntotas, intervalos de crecimiento y de decrecimiento y etremos de la función y =, y represéntala gráficamente. Asíntotas: Vertical: = Posición: = @ 8 8 +

Más detalles

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio.

NOTA: En todos los ejercicios se deberá justificar la respuesta explicando el procedimiento seguido en la resolución del ejercicio. Pág. NOTA: En todos los ejercicios se deberá justificar la respuesta eplicando el procedimiento seguido en la resolución del ejercicio. CURSO 0- FUNCIONES DE UNA VARIABLE CONTROL A continuación se presentan

Más detalles

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy

Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy Problemas resueltos de los teoremas de Rolle, valor medio y Cauchy 1 Es aplicable el teorema de Rolle a la función f(x) = x 1 en el intervalo [0, 2]? 2 Estudiar si la función f(x) = x x 3 satisface las

Más detalles

en dicho intervalo y si f ( x 1

en dicho intervalo y si f ( x 1 Tema 7 (III) Teoremas de Rolle y del valor medio Aplicaciones al cálculo de ites: regla de L Hòpital Teorema del máimo Teorema de Rolle Se dice que f () tiene un máimo local (o relativo) en un punto si

Más detalles

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla.

CÁLCULO. Ingeniería Industrial. Curso Departamento de Matemática Aplicada II. Universidad de Sevilla. CÁLCULO Ingeniería Industrial. Curso 2009-2010. Departamento de Matemática Aplicada II. Universidad de Sevilla. Lección 1. Derivadas. Polinomios de Taylor. Resumen de la lección. 1.1. La derivada y la

Más detalles

1. CONJUNTOS DE NÚMEROS

1. CONJUNTOS DE NÚMEROS Águeda Mata Miguel Rees, Dpto. de Matemática Aplicada, FI-UPM. 1 1.2.1. Definición 1. CONJUNTOS DE NÚMEROS 1.2. NÚMEROS COMPLEJOS Se llama número complejo a cualquier epresión de la forma z = + i donde

Más detalles

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0.

Razonar si son ciertas o falsas las siguientes igualdades: Asociar cada función con su gráfica. (19) Si x 2 > 0, entonces x > 0. Razonar si son ciertas o falsas las siguientes igualdades: ) a + b) = a + b ) ) a + b = a + b e = e 4) a + ab b + a = a 5) 8 + = 6) a ) = a 5 7) 8) a = a 4 = 4 9) 9 = 0) ) e ) = e + = ) e ln = ) ln 0 =

Más detalles

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales:

FUNCIONES CONTINUAS EN UN INTERVALO. El Tª de Bolzano es útil para determinar en algunas ocasiones si una ecuación tiene soluciones reales: FUNCIONES CONTINUAS EN UN INTERVALO Teoremas de continuidad y derivabilidad Teorema de Bolzano Sea una función que verifica las siguientes hipótesis:. Es continua en el intervalo cerrado [, ]. Las imágenes

Más detalles

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016)

Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) Cálculo Infinitesimal 1. Cuestiones de examen (2010/2011 a 2015/2016) 1. Justifíquese la verdad o falsedad de la siguiente afirmación: La suma de dos números irracionales iguales es irracional (enero 2011).

Más detalles

APLICACIONES DE LAS DERIVADAS 2º Bachillerato

APLICACIONES DE LAS DERIVADAS 2º Bachillerato APLICACIONES DE LAS DERIVADAS º Bachillerato RECTA TANGENTE A UNA CURVA EN UN PUNTO. Si f es derivable en el punto, la ecuación de la recta tangente a f en el punto es: y = f + f ' Si f es derivable en

Más detalles

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada

a) Calcular las asíntotas, el máximo y el mínimo absolutos de f (x). 4. (SEP 04) Sabiendo que una función f (x) tiene como derivada Matemáticas II - Curso - EJERCICIOS DE CÁLCULO DIFERENCIAL E INTEGRAL PROPUESTOS EN LAS PRUEBAS DE ACCESO COMUNIDAD DE MADRID (JUN ) Calcular la base y la altura del triángulo isósceles de perímetro 8

Más detalles

Anexo 2: Demostraciones

Anexo 2: Demostraciones 0 Matemáticas I : Cálculo diferencial en IR Aneo : Demostraciones Funciones reales de variable real Demostración de: Propiedades del valor absoluto 79 de la página 85 Propiedades del valor absoluto 79.-

Más detalles

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min.

Prueba º Bach C Análisis. Nombre:... 17/05/10. Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible 1 h. 30 min. Nota Prueba 3.04 º Bach C Análisis Nombre:... 7/05/0 Elige una de las dos opciones y contesta a todas sus preguntas. Tiempo disponible h. 30 min. OPCIÓN A. a) Calcula los siguientes límites: ln( + ) sen

Más detalles

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:...

EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:...CURSO:... EXÁMENES PARCIALES Y FINALES DE ANÁLISIS MATEMÁTICO I ANÁLISIS MATEMÁTICO I ANUAL - Primer Parcial TURNO MAÑANA APELLIDO NOMBRE:CURSO: 4 5 NOTA Condición mínima de aprobación (4 puntos): 5% del eamen correctamente

Más detalles

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva.

-, se pide: b) Calcula el área del recinto limitado por dicha gráfica, el eje horizontal y la vertical que pasa por el máximo relativo de la curva. EJERCICIOS PARA PREPARAR EL EXAMEN GLOBAL DE ANÁLISIS ln ) Dada la función f ( ) = +, donde ln denota el logaritmo - 4 neperiano, se pide: a) Determinar el dominio de f y sus asíntotas b) Calcular la recta

Más detalles

Unidad 12 Aplicaciones de las derivadas

Unidad 12 Aplicaciones de las derivadas Unidad 1 Aplicaciones de las derivadas 4 SOLUCIONES 1. La tabla queda: Funciones Estrictamente Creciente Estrictamente Decreciente f( ) 4,,+ = ( ) ( ) 3 = + (,0) (, + ) (0,) f( ) 3 5 f( ) = 5 + 3 R 3 f(

Más detalles

Cálculo I Aplicaciones de la Derivada: El Teorema del Valor Medio, Crecimiento y Decrecimiento. Julio C. Carrillo E. * 1.

Cálculo I Aplicaciones de la Derivada: El Teorema del Valor Medio, Crecimiento y Decrecimiento. Julio C. Carrillo E. * 1. 4.3. Aplicaciones de la Derivada: El Teorema del Valor Medio, Crecimiento y Decrecimiento Julio C. Carrillo E. * Índice 1. Introducción 1 2. Teoremas de Rolle y del valor medio 1 3. Criterio para el crecimiento

Más detalles

Guía 2: Derivadas y aplicaciones.

Guía 2: Derivadas y aplicaciones. Facultad De Ciencias Físicas y Matemáticas Escuela de Verano 2014 Profesor: Pablo Dartnell Profesores auiliares: Felipe Asencio, Sebastián Tapia Guía 2: Derivadas y aplicaciones. P1. Usando sólo de la

Más detalles

FUNCIÓN. Las formas en que se puede indicar la relación entre la variable independiente, x, y la variable dependiente, y, son:

FUNCIÓN. Las formas en que se puede indicar la relación entre la variable independiente, x, y la variable dependiente, y, son: FUNCIÓN CPR. JORGE JUAN Xuvia-Narón Dados dos conjuntos, D, y, E. Se define una función, f, del conjunto, D, hacia el conjunto, E, como una correspondencia que asigna a cada elemento del conjunto, D, un

Más detalles

Función Real de variable Real. Definiciones

Función Real de variable Real. Definiciones Función Real de variable Real Definiciones Función Sean A y B dos conjuntos cualesquiera. Una aplicación de A en B es una relación que asocia a cada elemento (x=variable independiente) de A un único valor

Más detalles

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas

UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas UNIVERSIDAD CARLOS III DE MADRID Escuela Politécnica Superior Departamento de Matemáticas a t e a t i c a s PROBLEMAS, CÁLCULO I, er CURSO 2. CÁLCULO DIFERENCIAL DE UNA VARIABLE GRADO EN INGENIERÍA EN:

Más detalles

Análisis Matemático I (Biólogos)

Análisis Matemático I (Biólogos) Análisis Matemático I (Biólogos) Primer Cuatrimestre 2006 Práctica 5: Aplicaciones de la derivación 1. Decida si las siguientes funciones satisfacen las hipótesis del Teorema de Rolle en los intervalos

Más detalles

Análisis Matemático I

Análisis Matemático I Universidad Nacional de La Plata Facultad de Ciencias Exactas Departamento de Matemática Análisis Matemático I Evaluación Final - Agosto de 26. Nombre: Dirección correo electrónico: Ejercicio. Sea f una

Más detalles

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable

EJERCICIOS DE CÁLCULO I. Para Grados en Ingeniería. Capítulo 2: Cálculo diferencial de una variable EJERCICIOS DE CÁLCULO I Para Grados en Ingeniería Capítulo 2: Cálculo diferencial de una variable Domingo Pestana Galván José Manuel Rodríguez García Índice 2. Cálculo diferencial de una variable. 2..

Más detalles

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES

2. Funciones reales de una variable real Límites DEFINICIONES Y PROPIEDADES .. Límites..1. DEFINICIONES Y PROPIEDADES Límite de una función en un punto Sea y = f() definida en un entorno del punto a R (aunque no, necesariamente, en el punto). Se dice que f tiene límite l en el

Más detalles

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo?

Para qué x de ese intervalo alcanza F su valor máximo? Y el valor mínimo? Análisis I (A y B) febrero9 Consideremos f() = sen() arctg( 3 Calcular el límite de f cuando tiende a Sea la sucesión ) a n = cosn Es convergente? Determinar el límite, si eiste, de la sucesión {f(a n

Más detalles

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE

BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE BLOQUE 4. CÁLCULO DIFERENCIAL DE FUNCIONES REALES DE UNA VARIABLE El concepto de derivada. Relación entre continuidad y derivabilidad. Función derivada. Operaciones con derivadas. Derivación de las funciones

Más detalles

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS:

DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA APELLIDOS: DEPARTAMENTO DE FUNDAMENTOS DE ECONOMÍA E HISTORIA ECONÓMICA Análisis Matemático I EXAMEN FINAL APELLIDOS: NOMBRE: D.N.I. CUESTIONARIO DE RESPUESTA MÚLTIPLE (5%) (Cada respuesta incorrecta resta, puntos)

Más detalles

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a)

= f (a) R. f(x) f(a) x a. recta por (a, f(a)) de pendiente f(a+h2) f(a) recta tangente por (a, f(a)) de pendiente f (a) 1 1. DERIVACIÓN 1.1. DEFINICIONES Y RESULTADOS PRINCIPALES Definición 1.1. Derivada. Sea f una función definida en un intervalo abierto I con a I. Decimos que f es derivable en a si existe y es real el

Más detalles

Cálculo Diferencial en una variable

Cálculo Diferencial en una variable Tema 2 Cálculo Diferencial en una variable 2.1. Derivadas La derivada nos proporciona una manera de calcular la tasa de cambio de una función Calculamos la velocidad media como la razón entre la distancia

Más detalles

9 Continuidad. Solucionario ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones.

9 Continuidad. Solucionario ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones. Solucionario 9 Continuidad 9.I. Dibuja la gráfica de las guientes funciones. ACTIVIDADES INICIALES a) < f( ) > b) f ( ) a) Si (, ). El segmento de recta pasa por el punto (, ) y se acerca al (, ). Si [,

Más detalles

ACTIVIDADES INICIALES

ACTIVIDADES INICIALES 0 Derivadas 0.I. Dada la función f() + : ACTIVIDADES INICIALES a) Calcula las rectas secantes que pasan por los puntos A(, ) y B(5, ), y por A y C(4, 5), respectivamente. Cuáles son sus pendientes? f(

Más detalles

2.2.1 Límites y continuidad

2.2.1 Límites y continuidad . Listas de ejercicios de Cálculo Diferencial. Listas de ejercicios de Cálculo Diferencial.. Límites y continuidad 3. Hallar el dominio de las funciones reales de variable real dadas por: a) f () = b)

Más detalles

Aplicaciones de las derivadas

Aplicaciones de las derivadas Aplicaciones de las derivadas. Recta tangente a una curva en un punto La pendiente de la recta tangente a la gráfica de la función f() en el punto ( 0, f( 0 )) viene dada por f ( 0 ) siempre que la función

Más detalles

Aplicaciones de la derivada

Aplicaciones de la derivada Aplicaciones de la derivada º) Calcula los máimos y mínimos de la función f() = Máimo en P( 6, ) ; Mínimo en Q(0, 0) º) Determina el parámetro c para que la función f() = + + c tenga un mínimo igual a

Más detalles

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS

SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS SELECTIVIDAD APLICACIÓN DE LAS DERIVADAS Septiembre 008: Calcula los valores del número real a sabiendo que punto) 0 a e a = 8. ( Septiembre 008: Hallar, de entre los puntos de la parábola de ecuación

Más detalles

E.U.I.T. Minas. Cálculo.

E.U.I.T. Minas. Cálculo. CURSO 008/009 E.U.I.T. Minas. Cálculo. Primera Prueba 7--008 Eamen Final --009 Eamen Repesca 6--009 Eamen Septiembre -9-009 PRIMERA PRUEBA DE CALCULO -7--008. a) Calcular la parte principal de los infinitésimos

Más detalles

11 Funciones derivables ACTIVIDADES INICIALES

11 Funciones derivables ACTIVIDADES INICIALES 11 Funciones derivables ACTIVIDADES INICIALES 11.I. Cuenta la tradición que sobre la tumba de Arquímedes había esculpido un cilindro con una esfera inscrita. Arquímedes halló la relación entre sus volúmenes

Más detalles

Funciones, límites y continuidad

Funciones, límites y continuidad Funciones, límites y continuidad Funciones Las funciones de una variable real son el principal objeto de estudio de este curso. Notación. Sea f : D f R R una función de una variable real. Entonces: D f

Más detalles

12.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN 3.- REGLAS DE DERIVACIÓN

12.- DERIVADAS 2.- DERIVADA DE UNA FUNCIÓN 3.- REGLAS DE DERIVACIÓN DERIVADAS DERIVADA EN UN PUNTO Calcula la derivada de y = + en o = utilizando la definición Solución: y'() = 8 Calcula la derivada de en o = utilizando la definición Solución: y '() = 6 Calcula la derivada

Más detalles

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN

FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN FUNDAMENTOS MATEMÁTICOS (Grado en Ingeniería Informática) Práctica 4. DERIVACIÓN 1.- Derivada de una función en un punto. El estudio de la derivada de una función en un punto surge con el problema geométrico

Más detalles

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m.

FUNCIONES. 7.(99).- Hallar la longitud de los lados del triángulo isósceles de área máxima cuyo perímetro sea 60 m. Enunciados de problemas de selectividad. Matemáticas II. Funciones FUNCIONES.(97).- Hay alguna función f() que no tenga límite cuando y que, sin embargo, [f()] sí tenga límite cuando?. Si la respuesta

Más detalles

Derivadas de orden superior

Derivadas de orden superior Tema 6 Derivadas de orden superior 6 Polinomios de Taylor Nuestro objetivo es aproimar una función dada mediante funciones polinómicas Resulta conveniente estudiar las funciones polinómicas con más detenimiento

Más detalles

APLICACIONES DE LAS DERIVADAS

APLICACIONES DE LAS DERIVADAS APLICACIONES DE LAS DERIVADAS Apuntes de A. Cabañó. Calcula la tasa de variación media de la función +- en los intervalos: a) [-,0], b) [0,], c) [,]. Sol: a) 0; b) ; c) 6. Calcula la tasa de variación

Más detalles

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R

TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. f : R R TEMA 3: CONTINUIDAD Y DERIVABILIDAD DE FUNCIONES REALES DE UNA VARIABLE REAL. Concepto de función. Definición Se llama función (real de variable real) a toda aplicación f : R R f() que a cada número le

Más detalles

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS

Selectividad hasta el año incluido = 0. Página 1 de 13 ANÁLISIS ANÁLISIS Selectividad hasta el año 9- incluido Ejercicio. Calificación máima: puntos. (Junio 99 A) Hallar la longitud de los lados del triángulo isósceles de área máima cuyo perímetro sea 6 m. Ejercicio.

Más detalles

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos

Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos página 1/12 Problemas Tema 1 Solución a problemas de Repaso de Matemáticas I - Hoja 26 - Todos resueltos Hoja 26. Problema 1 1. a) Calcula el número real m que cumple lim 0 ln(1+m ) sen(2 ) =. b) Obtener

Más detalles

Teoremas del valor medio

Teoremas del valor medio Teoremas del valor medio Teorema de Rolle Teorema de Cauchy Teorema de Lagrange Teorema de Rolle Sea f x una función contínua en a; b, derivable en a; b y f a = f(b) entonces existe al menos un cε a; b

Más detalles

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 4: Aplicaciones de la derivada. Estudio de funciones

FACULTAD de INGENIERÍA Análisis Matemático A. TRABAJO PRÁCTICO N 4: Aplicaciones de la derivada. Estudio de funciones TRABAJO PRÁCTICO N 4: Aplicaciones de la derivada. Estudio de funciones ) Analice las guientes funciones satisfacen las hipótes del teorema de Rolle en el intervalo indicado, en cuyo caso halle los valores

Más detalles

2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima.

2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso da suma mínima. cos(3) - e + a 1. [ANDA] [EXT-A] Sabiendo que lim 0 sen() es finito, calcula a y el valor del límte. 2. [ANDA] [EXT-B] De entre todos los números reales positivos, determina el que sumado con su inverso

Más detalles

Función real de variable real, hallar g f y

Función real de variable real, hallar g f y 1.- Si 3 f() e y g() cos( ) Función real de variable real, hallar g f y f g..- Hallar el dominio de las siguientes funciones: 1 a) f() ln(sen) b) f() 1 c) f() 1 1 3.- Hallar la inversa de las siguientes

Más detalles

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE.

TEMA 2: CÁLCULO DIFERENCIAL DE UNA VARIABLE. ESCUELA TÉCNICA SUPERIOR DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA APLICADA TITULACIONES Ingeniería Industrial (GITI/GITI+ADE) Ingeniería de Telecomunicación (GITT/GITT+ADE) CÁLCULO Curso 05-06 TEMA : CÁLCULO

Más detalles

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4

x 2 + 1, si x 0 1 x 2 si x < 0 e x, si x > 0 x si 0 x < 2 f(x) = x + 2 si 2 x < 3 2x 1 si 3 x < 4 tgx, 0 < x < π/4 CÁLCULO. Curso 2003-2004. Tema 7. Derivabilidad.. Estudiar la continuidad y la derivabilidad de las funciones: {, si 0 (a) e, si > 0 2 +, si > 0 (b), si = 0 2. Dada la función (c) 2 si < 0 e, si > 0 2

Más detalles

Universidad Nacional de La Plata

Universidad Nacional de La Plata 1 Universidad Nacional de La Plata Facultad de Ciencias Naturales Museo Cátedra de Matemática Elementos de Matemática Asignatura: Matemática Contenidos de la Unidad Temática nº 7 Diferencial: definición,

Más detalles

106 Matemáticas 1. Parte III. Cálculo diferencial en IR

106 Matemáticas 1. Parte III. Cálculo diferencial en IR 06 Matemáticas Parte III Cálculo diferencial en IR Prof: José Antonio Abia Vian Grados de Ing. Industrial : Curso 0 03 07 Matemáticas : Cálculo diferencial en IR 0. Derivada de una función en un punto

Más detalles

2 Espacios vectoriales

2 Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 2 Espacios vectoriales 2.1 Espacio vectorial Un espacio vectorial sobre un cuerpo K (en general R o C) es un conjunto V sobre el que hay

Más detalles

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales

Problemas de limites, continuidad y derivabilidad. Calcula los siguientes límites de funciones racionales, irracionales y exponenciales Problemas de limites, continuidad y derivabilidad Calcula los siguientes límites de funciones racionales, irracionales y eponenciales - ) = [ = = = = = = = . ) = [0. ] = = = = = = = = = 0 = [ = p=

Más detalles

Tema 2: Espacios vectoriales

Tema 2: Espacios vectoriales Águeda Mata y Miguel Reyes, Dpto. de Matemática Aplicada, FI-UPM 1 Tema 2: Espacios vectoriales Ejercicios 1. En R 2 se definen las siguientes operaciones: (x 1, y 1 ) + (x 2, y 2 ) = (x 1 + x 2, y 1 +

Más detalles

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19

Cálculo I (Grados TICS UAH) Cálculo diferencial Curso 2018/19 Cálculo I (Grados TICS UAH Cálculo diferencial Curso 08/9. Calcular, utilizando la definición rigurosa de derivada, las derivadas de las siguientes funciones: (a f( = 3 (b f( = 3 + 3 (c f( = + (d f( =

Más detalles

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos

Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím

Más detalles

DERIVABILIDAD DE FUNCIONES REALES DE VARIABLE REAL

DERIVABILIDAD DE FUNCIONES REALES DE VARIABLE REAL DERIVABILIDAD DE FUNCIONES REALES DE VARIABLE REAL Definición. Sea f :]a, b[ R y x 0 ]a, b[. Sedicequef es derivable en x 0 si existe f(x lim 0 +h) f(x 0 ) h 0 h yesfinito. En ese caso denotaremos por

Más detalles

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado

Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Desarrollos en Serie.Series Funcionales Teorema de Rolle Enunciado Sea y=f(x) Contínua en [a,b] Derivable en (a,b) Cumpliendo f(a) = f(b) Se cumple que: Demostración Por el teorema de Weirstrasse, f(x)

Más detalles

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio

Ejercicios de aplicaciones de las derivadas y del teorema del valor medio Se proponen a continuación varios ejercicios relacionados con las derivadas y sus aplicaciones (por ejemplo, cálculo de etremos, monotonía, cálculo de la imagen de una función, soluciones de ciertas ecuaciones...).

Más detalles

9 Continuidad ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones.

9 Continuidad ACTIVIDADES INICIALES EJERCICIOS PROPUESTOS. 9.I. Dibuja la gráfica de las siguientes funciones. 9 Continuidad 9.I. Dibuja la gráfica de las guientes funciones. ACTIVIDADES INICIALES a) < f( ) > b) f ( ) 9.II. Escribe la epreón algebraica de la función. Y O X EJERCICIOS PROPUESTOS 9.. Indica las guientes

Más detalles

5 APLICACIONES DE LA DERIVADA

5 APLICACIONES DE LA DERIVADA 5 APLICACIONES DE LA DERIVADA La derivada va a ser la herramienta más potente a la hora de dar forma a la representación gráfica de una función. Ella determinará con toda fidelidad el crecimiento, decrecimiento,

Más detalles

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3).

Es decir, tenemos una función continua en el intervalo [2, 3] donde signo de f(2) signo de f(3). TEOREMA DE BOLZANO: Probar que la ecuación x 3-4x - 2 = 0 tiene alguna raíz real, aproximando su valor hasta las décimas. Consideramos la función f(x) = x 3-4x - 2 la cual es continua por ser polinómica.

Más detalles

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad

Problemas Tema 2 Enunciados de problemas de Límite y Continuidad página /2 Problemas Tema 2 Enunciados de problemas de Límite y Continuidad Hoja. Estudiar la continuidad y derivabilidad de la función f ()=. solución: continua en toda la recta real. Punto anguloso en

Más detalles

en el intervalo - 1-cos(x) 2 si x > 0 sen(x)

en el intervalo - 1-cos(x) 2 si x > 0 sen(x) . [04] [ET-A] Sea la función f() = e -. Determinar sus intervalos de crecimiento y decrecimiento, etremos relativos, intervalos de concavidad y conveidad, puntos de infleión y asíntotas. Esbozar su gráfica..

Más detalles

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I

Unidad 3 Límites y continuidad. Universidad Diego Portales CALCULO I Unidad Límites y continuidad Una vista preinar Qué es el cálculo? Los dos problemas fundamentales El área del conocimiento que llamamos Cálculo gira en torno a dos problemas geométricos fundamentales que

Más detalles

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones.

Matemáticas II Hoja 9: Derivadas y Aplicaciones. Representación de Funciones. Profesor: Miguel Ángel Baeza Alba (º Bachillerato) Matemáticas II Hoja 9: Derivadas y Aplicaciones Representación de Funciones Ejercicio 1: (Continuación del Ejercicio 1 de la Hoja 8) + 1 a 1 e < 0 0 Para

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Estudios J.Concha ( fundado en 00) ESO, BACHILLERATO y UNIVERSIDAD Departamento Bachillerato MATEMATICAS º BACHILLERATO Profesores Javier Concha y Ramiro Froilán Tema 8 Límites de funciones, continuidad

Más detalles

1 Consideramos la gráfica siguiente:

1 Consideramos la gráfica siguiente: Conderamos la gráfica guiente: Determina, a la vista de la gráfica, el dominio de definición, metrías, el recorrido, la eistencia de asíntotas, los intervalos de crecimiento y decrecimiento. Justifica,

Más detalles

ANÁLISIS (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016

ANÁLISIS (Selectividad 2016) 1 ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 2016 ANÁLISIS (Selectividad 6) ALGUNOS PROBLEMAS DE ANÁLISIS PROPUESTOS EN LAS PRUEBAS DE SELECTIVIDAD DE 6 Aragón, junio 6 a) (, puntos) Considere la función: f 8 a) (, puntos) Determine las asíntotas, si

Más detalles

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES

EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES Universidad Simón Bolívar Departamento de Matemáticas Puras Aplicadas Enero-Abril 4 EJERCICIOS SUGERIDOS PARA LA PRACTICA DE ECUACIONES DIFERENCIALES.- Compruebe que la función indicada sea una solución

Más detalles

1. Problemas Teorema de Rolle

1. Problemas Teorema de Rolle . Problemas Teorema de Rolle Eercise.. Dada la función f() = Esta función verifica las hipótesis + del Teorema de Rolle en [0, ]? f() = ; y D(f) =

Más detalles

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones:

x (0) si f (x) = 2s 1, s > 1 d) f 3. Analizar la existencia de derivadas laterales y de derivada en a = 0, para las siguientes funciones: FACULTAD DE CIENCIAS EXACTAS Y NATURALES UNIVERSIDAD DE BUENOS AIRES COMPLEMENTOS DE ANÁLISIS MAESTRíA EN ESTADíSTICA MATEMÁTICA SEGUNDO CUATRIMESTRE 2007 PRÁCTICA 7 1. Usando sólo la definición de derivada,

Más detalles